

电感测微仪检定

装置不确定度评定

张馥生

(中国科学院长春光学精密机械与物理研究所)

摘 要:不确定度是测量工作的质量和测量结果可信赖程度和评价。按JJF 1059-1999、GJB 3756-1999标准规定,对我计量站的标准装置不确定度进行了详细分析,并按GJB/J 2749-1996 要求对计量标准进行了重复性和稳定性考核以及不确定度的验证,最后给出了计量标准装置不确定度评定。

关键词:量块 计量标准 不确定度 重复性 稳定性 评定

1. 概述

不确定度是与测量结果相联系的,用以表征 测值的分散性。不确定度用以说明基准标准、检 定测试水平,作为量值溯源的依据,表面测量设 备的质量。一个测量结果,只有当知道它的测量 不确定度时才有意义,才表明该测量结果的可信 赖程度。

为了满足科研生产的需要,确保长度类计量 器具的量值统一,保证科研生产中试验与测试数 据的准确可靠,特建立此项计量标准,在本单位 内开展电感测微仪量值传递工作。

此项计量标准主要由二等量块(0.991mm~1mm,1mm~1.009mm,1mm~1.5mm)组成。

(1)测量方法

以二等量块检定电感测微仪为例,测量方法根据JJG396-2002《电感测微检定规程》。采用直接测量法和量块配对法。

(2)测量标准性能

二等量块主要技术指标

测量范围:0.991mm~1mm,1mm~ 1.009mm,1mm~1.5mm。

不确定度:(0.05+0.5 × L) μ m (3)测量标准的测量器具及配套设备

测量器具

量块的测量范围:0.991mm~1mm,1mm~ 1.009mm,1mm~1.5mm;允许误差极限: 0.06 μm。

配套设备

平板测量范围: $800 \, \text{mm} \times 500 \, \text{mm}$; 允许误 差极限: $4 \, \mu \, \text{m}$

(4)校准(检定)环境条件

温度要求:20 ± 1 ;

实际情况:温度:20 ± 1 。

2.测量原理

- (1)测量标准:二等量块,小于10mm量块中心长度扩展不确定度为0.06 μ m。
- (2)被测对象:分度值为 0.1μ m 挡位量程的示值误差的误差限为 0.10μ m; 其他各挡位量程的示值误差 $_{i}$ 应不超过 $_{i}$ = \pm $1\%(|S_{i}|+I)$ 。 S_{i} ——受检点的标称值 μ m; I——检定时所用的量程 μ m。
- (3)测量过程:电感测微仪示值误差是以量块为标准,采用直接法或配对法进行测量并计算获得的。

(4)数学模型:

$$_{i}=r_{i}-(L_{i}-L_{0})\times 1000$$
 (1)

式中: δ ——各受检点的示值误差 μ m;

 r_i ——电感测微仪上读得的示值 μ m;

 L_i —— 受检点上所用量块的实际尺寸 μ m; L_o —— 对零用量块的实际尺寸 μ m。

3. 测量标准不确定度的评定

(1)输入量 r_i 的标准不确定度 $u(r_i)$ 的评定输入量 r_i 的标准不确定度来源主要是测量重复性引起的标准不确定度 $u(r_i)$,可以通过连续测量得到测量列,采用 A 类方法进行评定。

对一台分度值为 $0.1~\mu$ m 的电感测微仪,用配对法检+ $1~\mu$ m点。先用1mm量块对零,用1.001mm量块检+ $1~\mu$ m点,记录数据。用1.001mm量块对零,用1.002mm量块检+ $1~\mu$ m点,记录数据。用1.002mm量块对零,用1.003mm量块检+ $1~\mu$ m点,记录数据。然后,将 $3~\chi$ 所记录数据求和,得出 r_i 。重复上述方法,连续测量 $10~\chi$,测量数据见表 1:

实验标准偏差:
$$S = \sqrt{\frac{\sum (r_i - r_i)^2}{n-1}} = 0.015 \,\mu$$
 m 表 1 测量数据

序号	r_i (µm)	$r_i - \overline{r_i} (\mu \text{ m})$
1	2.92	0.009
2	2.90	-0.011
3	2.93	0.019
4	2.92	0.009
5	2.93	0.019
6	2.89	-0.021
7	2.91	-0.001
8	2.92	0.009
9	2.90	-0.011
10	2.89	-0.021
Σ	29,11	
$\overline{r_i}$	2.911	=

标准不确定度 u_1 为: $u_1 = u(r_i) = S = 0.015 \mu m$ (2) 输入量 L_i 的标准不确定度 $u(L_i)$ 的评定 因为二等量块(小于 10mm)的扩展不确定 度 U=0.06 μ m,包含因子 k=3,所以二等量块 L_i 的标准不确定度为:

$$u_2=u$$
 $(L_i) = \frac{U}{k} = \frac{0.06}{3} \mu \text{ m} = 0.02 \mu \text{ m}$ (3)

(3) 输入量 L_0 的标准不确定度 $u(L_0)$ 的评定

评定方法与(2)相同,其标准不确定度为:

$$u_3 = u (L_0) = \frac{U}{k} = \frac{0.06}{3} \mu \text{ m} = 0.02 \mu \text{ m}$$
 (4)

(4) 灵敏系数

$$c_1 = \partial \Delta L / \partial r_i = 1/(n-1) = 0.33$$
 (n=4)

$$c_2 = \partial \Delta L / \partial L_i = -1/(n-1) = -0.33$$
 (n=4)

$$c_3 = \partial \Delta L / \partial L_0 = 1/(n-1) = 0.33$$
 (n=4)

4. 合成标准不确定度的评定

各分量之间彼此独立,合成标准不确定度为:

$$u_{c}^{2}(\delta_{i}) = \left[\frac{\partial \Delta L}{\partial r_{i}} \cdot u(r_{i})\right]^{2} + \left[\frac{\partial \Delta L}{\partial \Delta L_{i}} \cdot u(L_{i})\right]^{2} + \left[\frac{\partial \Delta L}{\partial \Delta L_{0}} \cdot u(L_{0})\right]^{2}$$
(5)

$$u_{c}^{2} = (c_{1}u_{1})^{2} + (c_{2}u_{2})^{2} + (c_{3}u_{3})^{2}$$

$$u_{c} = \sqrt{(c_{1}u_{1})^{2} + (c_{2}u_{2})^{2} + (c_{3}u_{3})^{2}}$$
(6)

$$= \sqrt{0.0049^2 + (-0.0066)^2 + 0.0066^2} \, \mu \, m$$

$$= 0.01 \, \mu \, m$$

5. 扩展不确定度的评定

取 k=2,则扩展不确定度为:

 $U = ku_c = 2 \times 0.01 \ \mu \ \text{m} = 0.02 \ \mu \ \text{m}$

6. 测量标准重复性

(2)

测量标准的重复性应小于合成标准不确定度 的三分之二。

选一块1.009mm的量块,对同一台电感测微 仪连续测量 8 次,测量数据见表 2。

根据
$$S = \sqrt{\frac{\sum_{i=1}^{n} (Xi - \overline{X})^{2}}{(n-1)}} = 0.005$$
 (7)

+	2	河里北阳	
表	7	测量数据	

序号	X_i (µm)	$X_i - \overline{X} (\mu \text{m})$
1	0.00	0.00
2	-0.01	-0.01
3	0.00	0.00
4	0.00	0.00
5	0.00	0.00
6	+0.01	+0.01
7	0.00	0.00
8	0.00	0.00
Σ	0.00	
\overline{X}	0.00	

S < 2/3 u_c 标准装置重复性符合要求。 7. 测量标准稳定性

测量标准的稳定性应小于测量标准的合成标准不确定度。

选一块1.009mm的量块,对同一台电感测微 仪每隔两个月测量一次,共观测四次,每次观测值取8个测量值。取n个观测值的算术平均值 $(\overline{X}_n)_i$ 作为一次观测结果,共观测m次,测量数据见表 3:

表 3 测量数据

序号	\overline{X}_n (µm)	$\overline{X}_n - \overline{X}_m (\mu \mathrm{m})$
1	-0.0075	-0.0028
2	-0.0038	0.0009
3	-0.0062	-0.0015
4	-0.0012	0.0035
Σ	-0.0187	
\overline{X}_m	-0.0047	

 $S_m = \sqrt{\frac{\sum_{i=1}^m \left(\overline{X}_n - \overline{X}_m \right)^2}{m-1}} = 0.0028$ (8)

式中: X_n —次观测时n个测量值的算术平均值;

 \overline{X}_m —— m 次观测结果的算术平均值。

Sຼ < u 稳定性符合要求。

8.结论

该电感测微仪检定装置不确定度为 0.02 µm, 重复性为 0.005 µm,稳定性为 0.0028 µm。检 定人员具有有效证书,配套设备齐全,环境条件 满足要求,技术资料齐全。

符合 JJG 396-2002《电感测微仪检定规程》的要求,可开展电感测微仪等检定。

参考文献:

- [1] International Organization for Standardization, Guide to the Expression of Uncertainty in Measurement [S]. 1993.
- [2]GJB/J 2749-1996 建立测量标准技术报告的 编写要求[S].北京:国防科工委军标出版社发 行部出版,1996.
- [3]JJF 1059-1999 测量不确定度评定与表示 [S]. 北京:中国计量出版社出版, 1999.
- [4]GJB 3756-1999 测量不确定度的表示与评定 [S]. 北京: 中国人民解放军总装备部,1999.
- [5] JJG 396-2002 电感测微仪检定规程[S]. 北京: 中国计量出版社出版, 2002.
- [6] JJG 146-2003 量块检定规程[S]. 北京: 中国计量出版社出版, 2003.
- [7]刘智敏.不确定度及其实践[M].北京:中国标准出版社,2000.
- [8]施昌彦. 现代计量学概论 [M]. 北京: 中国计量出版社,2003.

(本文作者通讯地址:长春市东南湖大路 16 号中国科学院长春光学精密机械与物理研究所,邮编:130033)