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Abstract
A Monte Carlo method is developed for computing the angle factors of diffuse cavities. It was
confirmed that the Monte Carlo method for calculating angle factors is powerful and flexible
due to its applicability to arbitrarily shaped cavities whose internal surfaces are diffuse. The
algorithms of angle factors for regular shapes of cavities were first proposed. Then the
calculations of angle factors for cavities with grooved cylinders were performed, and the
reproducibility and correctness of the results obtained by the Monte Carlo method were
estimated. In short, the Monte Carlo algorithms are certainly simple and accurate for those
intricately shaped cavities compared with the mathematical calculation used before.

1. Introduction

Effective emissivity is the main figure of merit for blackbody
cavities that are widely used as standard radiation sources
in radiometry and radiation thermometry. Until now,
several methods such as theoretical calculations, experimental
measurement and Monte Carlo methods have been developed
to obtain the effective emissivity of blackbody cavities. It has
been confirmed that the Monte Carlo method is much more
powerful and flexible than any other method [1–3].

Angle factors of diffuse cavities are very important in the
process of calculating effective emissivity by the Monte Carlo
method [4–6]. Sapritsky [4] and Heinisch [5] proposed that
initially each ray was assigned a statistical weight of unity in
the ray-tracing process, then this was multiplied by following
every reflection and after each diffuse reflection, the statistical
weight of the ray was reduced to take account of radiation loss
through the cavity aperture, and that was defined by applying
the angle factor between an element of the wall area at the point
of reflection and the cavity aperture.

For diffuse reflection or emission, the spatial distribution
of radiant intensity is

iθ = iN cos θ. (1)

As shown in figure 1, iN is the radiant intensity, which
represents the radiant energy per unit time leaving a given
surface dA in the direction normal to the diffuse wall and

contained within unit solid angle. iθ is the radiant intensity
in the direction θ .

For diffuse cavities, if �a is the solid angle subtended by
the aperture when viewed from point ξ , then the angle factor
F (the fraction of radiant energy leaving ξ that passes through
the aperture) is

F(ξ) =
∫

�a

iN cos θξ d�

/∫
2π

iN cos θξ d�, (2)

where iN is a constant. With this and with the introduction of
d� = sin θξ dθξ dφ, equation (2) becomes

F(ξ) = 1

π

∫
�a

cos θξ d�, (3)

where θξ is the angle between the normal to the cavity wall
at �ξ and the direction of the axis of an element of the solid
angle d�.

Some researchers have used mathematical methods for
its calculation. Sapritsky applied the superposition principle
through angle factors between the cavity aperture and an
element of the wall area, respectively either parallel or
perpendicular to the aperture plane [7]. Heinisch [5]
established a spherical coordinate system at the element of
the wall area to reduce the dimension of integral equations.

Almost all the previous studies on angle factor of
diffuse cavities have focused on mathematical analysis and
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Figure 1. Spatial distribution of radiant intensity for diffuse
reflection.

calculation. It is convenient for cavities with few surfaces
such as cylindrical or conical cavities with smooth surfaces.
As the number of surfaces increases, the complexity of the
calculation grows rapidly. For some intricate shapes such as
cylindrical or cylindro-conical cavities having a surface with
grooves or screw threads, which are widely used as high-
temperature blackbody furnaces for calibration of radiation
thermometers [8–10], it is much more difficult to evaluate
the angle factor accurately because of the complexity of the
mathematical calculation.

In this paper, we develop a Monte Carlo method to
calculate angle factors. The detailed algorithms for some
regular shapes of cavities such as a cylinder, cone and cylindro-
cone are first introduced. Then the angle factors of two types
of grooved cylinder are evaluated. One is a rectangular groove
and the other a triangular one whose reflective properties are
diffuse.

2. Monte Carlo algorithm for regular shapes of
cavities

2.1. The algorithm of diffuse directions

We apply an algorithm based on Marsaglia’s algorithm [11] for
generating points uniformly distributed on a spherical surface.
The algorithm’s key idea is that for perfectly diffuse reflection,
the sphere with its centre at the cavity wall can be considered a
uniform distribution of directions, like the big circle shown in
figure 2, although there is a cosine relation of radiant intensity.

Generate pseudo-random numbers u1 and u2, independent
and uniform on (−1,1) until

S = u2
1 + u2

2 < 1. (4)

Then form

�ω = (ωx, ωy, ωz) = (2u1(1 − S)1/2, 2u2(1 − S)1/2, 1 − 2S).

(5)

Here �ω is the direction vector of unit length of a random ray.
If �ξ0 is the position vector of the ray’s starting point, and
�(�ξa) = 0 is the equation describing the aperture plane, then
it is easy to obtain the position vectors of intersection points
where the rays, generated by �ξ0, intersect with the aperture

Figure 2. Conical cavity.

plane by solving the following system of equations:

�ξa = �ξ0 + �ωta,

�(�ξa) = 0,
(6)

where ta is a parameter.
The position vectors of the intersection points are

�ξa = (xa, ya, za) = (x0 + ωxta, y0 + ωyta, z0 + ωzta). (7)

The rays generated by �ξ0 can pass through the aperture if they
satisfy

(x0 + ωxta)
2 + (y0 + ωyta)

2 < R2,

ta > 0,
(8)

where R is the radius of the aperture.

2.2. The algorithm of radiant intensity

The radiant intensity leaving �ξ0 follows the cosine distribution,
like the inscribed circle shown in figure 2. Ray i which is
along �ωi is generated randomly, and the radiant intensity in
the direction of �ωi is

iωi
= iNcos θξ0,i , (9)

where iωi
is the radiant intensity along �ωi , θξ0,i is the angle

between the normal direction at �ξ0 and the random direction i.
The value of cos θξ0,i can be described as

cos θξ0,i = �ωi · �N
| �ωi | · | �N | , (10)

where �N is the normal vector at �ξ0. Because both �ωi and �N
are unit vectors, equation (10) becomes

cos θξ0,i = �ωi · �N. (11)

For the sake of simplicity, the radiant intensity along �N is
assumed to be 1, and then the radiant intensity along �ωi is
cos θξ0,i . Because the rays generated by Marsaglia’s algorithm
are distributed over a spherical space, for the rays which are
on the outer side of the cavity walls, the values of cos θξ0,i
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are negative. So the radiant intensity of a random ray can be
recorded as | cos θξ0,i |.

If there are N rays generated by �ξ0 in all, and each ray has
different radiant intensity | cos θξ0,i | according to θξ0,i which
is the angle between the normal direction at �ξ0 and a random
direction i, just n rays can pass through the aperture. Then the
angle factor is

F(ξ0) = 2
∑n

i=1 cos θξ0,i∑N
i=1 | cos θξ0,i |

. (12)

Actually the radiation of a point located on the cavity wall is
distributed over a hemispherical space instead of a spherical
space, so there is a factor 2 in formula (12). For obtaining one
value of angle factor, we chose 106 rays in the calculations to
ensure calculation accuracy. In order to verify the correctness
of the Monte Carlo method, we chose a conical cavity in
figure 2 whose angle factors can be easily calculated by
mathematical calculations.

For the conical cavity with α = 30◦, L = 10. F was
calculated at 1000 points which are located on the cavity walls
and uniformly distributed along the z-axis in the range 0 � z �
L by the Monte Carlo method and mathematical formulae [7],
respectively. The results of the two methods are in very good
agreement with each other. The discrepancies of the results
follow a normal distribution and the median discrepancy is
1.3×10−5 (95% confidence interval: −1.0×10−5–3.6×10−5).

3. Monte Carlo algorithm for cavities with grooved
cylinders

Because of ease and economy of construction, cylindrical or
cylindro-conical cavities having a surface with grooves or
screw threads are widely used. However, it is much more
difficult to evaluate the angle factor accurately because of the
complexity of the shapes.

Calculations for the angle factors of cavities with
grooved cylinders were performed. In figures 3 and
4, two kinds of cylindro-conical cavities are illustrated
schematically. Figures 3(a) and 4(a) represent a cavity
with a rectangular-grooved cylinder and a triangular-grooved
cylinder, respectively. For the sake of simplicity, we set
	 = 1, R = 5 throughout, and establish the uniform Cartesian
coordinate system. The xy plane is coincident with the aperture
plane, and the z-axis is along the direction of cavity length.

3.1. Results of a cavity with a rectangular-grooved cylinder

The rectangular-grooved cylinder is periodically repeated
along the z-axis, and the length of the cycle is 2. In figure 3(a),
one cycle is specially shown with each surface marked with
different letters (A, B, C and D). Different algorithms are
adopted for marked surfaces as follows.

(A) For �ξ0 on surface A, the situation is the same as regular
cavities. Diffuse directions are generated by Marsaglia’s
algorithm. The radiant intensities satisfy the cosine
relation as formula (9). The rays generated by �ξ0 can
escape from the cavity directly if they satisfy formula (8).
Finally, we can get the angle factor at �ξ0 by formula (12).

Figure 3. (a) Cavity with a rectangular-grooved cylinder; (b) angle
factors as a function of the z-axis; (c) angle factors as a function of
the x-axis.

(B) For �ξ0 on surface B, there are no rays escaping from the
cavity directly. So the angle factors are equal to 0.

(C) For �ξ0 on surface C or D, according to formula (8), ray j

starting from �ξ0 located on surface D can pass through the
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Figure 4. (a) Cavity with a triangular-grooved cylinder; (b) angle
factors as a function of the z-axis.

cavity. However, the ray is stopped by surface B of the
same cycle before it escapes from the cavity as figure 3(a)
shows.

We can get the intersection points �ξa of the rays and the
aperture plane by solving the following system of equations:

za = 0,

�ξa = �ξ0 + �ωta,
(13)

where za = 0 represents the equation of the aperture plane,
and ta is a parameter.

The intersection points �ξ ′ of the rays and surface B, which
is in the same cycle with �ξ0, can be solved by the following
system of equations:

z′ = Z1 − 1,

�ξ ′ = �ξ0 + �ωt ′
(14)

where z′ = Z1 − 1 represents the plane equation of surface B,
which is in the same cycle with �ξ0. Z1 is the minimal integer
larger than z0 and t ′ is a parameter.

By solving systems of equations (13) and (14), �ξa and �ξ ′

can be described as follows:

�ξa = (xa, ya, za) = (x0 + ωxta, y0 + ωyta, z0 + ωzta),

�ξ ′ = (x ′, y ′, z′) = (x0 + ωxt
′, y0 + ωyt

′, z0 + ωzt
′),

(15)

If �ξa and �ξ ′ satisfy

(x0 + ωxta)
2 + (y0 + ωyta)

2 < R2,

(x0 + ωxt
′)2 + (y0 + ωyt

′)2 < R2,

ta > 0,

t ′ > 0,

(16)

then it indicates the rays can pass through the aperture. Finally,
the angle factor can be calculated by formula (12).

Figure 3(b) gives the angle factor distribution for the
rectangular-grooved cylinder as a function of z in the range
0 < z < 10. The angle factor of surface A decreases with
increasing z. The angle factor of surface C has a great increase
in the same cycle, while for the points located on the same
position of different cycles, the angle factor decreases with
increasing z. It is also obvious that the angle factor curve is
not continuous at inflection points.

For the points on surface B, the angle factors are equal to
0 and remain constant. However, the situation is different for
the points located on surface D. The angle factors of surface
D in four different cycles are calculated. The curves of angle
factors as a function of x in the range 5 < x < 6 (at z = 2, 4,
6 and 8) are shown in figure 3(c). The angle factor decreases
with increasing x for the points located on the same surface
while for the points located at the same position of different
cycles, it is obvious that the angle factors are much larger for
the points that are closer to the cavity aperture.

3.2. Results of a cavity with a triangular-grooved cylinder

As in figure 4(a), the triangular-grooved cylinder is
periodically repeated along the z-axis. Five complete cycles
are numbered. The second cycle is specially shown with two
surfaces marked with different letters (a and b). The rays
generated by �ξ0 which is located on surface a or b may be
stopped by some surface before passing through the aperture.
For example, it appears that ray k starting from �ξ0 located
on surface b in the second cycle can pass through the cavity
according to formula (8). However, the ray is stopped by the
plane (z = 2) before it escapes from the cavity. If �ξ0 is in the
m cycle of the triangular-grooved cylinder cavity, we can get
the intersection points �ξa of the rays and the aperture plane by
equation (13), and the intersection points �ξ ′′ of the rays and the
plane (z = 2(m − 1)) by the following system of equations:

z′′ = 2(m − 1),

�ξ ′′ = �ξ0 + �ωt ′′,
(17)

where m is the minimal integer larger than z0/2, ta and t ′′ are
parameters.

By solving the system of equations (13) and (17), �ξa and
�ξ ′′ can be described as follows:

�ξa = (xa, ya, za) = (x0 + ωxta, y0 + ωyta, z0 + ωzta),

�ξ ′′ = (x ′′, y ′′, z′′) = (x0 + ωxt
′′, y0 + ωyt

′′, z0 + ωzt
′′).

(18)
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If �ξa and �ξ ′′
satisfy

(x0 + ωxta)
2 + (y0 + ωyta)

2 < R2,

(x0 + ωxt
′′)2 + (y0 + ωyt

′′)2 < R2,

ta > 0,

t ′′ > 0,

(19)

then it indicates the rays can pass through the aperture. Finally,
the angle factor can be calculated by formula (12).

Figure 4(b) expresses the angle factor distribution as a
function of z in the range 0 < z < 10. The angle factor
of surface a decreases with increasing z. The angle factor of
surface b increases significantly in the same cycle with z, while
for the points located at the same position of different cycles,
the angle factor decreases with increasing z. The curve is
continuous in the same cycle, but discontinuous at connections
of different cycles.

3.3. Uncertainty of the results by the Monte Carlo method

In order to estimate the reproducibility and correctness of
the results of grooved cylinders obtained by the Monte Carlo
method, we calculated the uncertainty of the results. Firstly,
for a random point located on the cavity wall, repeated
calculations by the Monte Carlo method were performed in
order to estimate the reproducibility of the results. And then
the discrepancies of the results obtained by the Monte Carlo
method and mathematical method were used to estimate the
correctness of the results.

A point was generated randomly on the rectangular-
grooved cavity wall, as well as the triangular-grooved one.
The angle factors of the two points were calculated 1000 times
by the Monte Carlo method. The standard deviation of the
results is 3.1 × 10−4 (95% confidence interval: 2.9 × 10−4–
3.3 × 10−4) for the point located on the rectangular-grooved
cavity and 1.5 × 10−4 (95% confidence interval: 1.4 × 10−4–
1.7 × 10−4) for the point located on the triangular-grooved
one.

For the two kinds of grooved cavities, angle factors were
calculated at 1000 points, which are located on the walls of
the cavities and uniformly distributed along the z-axis in the
range 0 < z < 10 by the Monte Carlo method and the
method proposed by Heinisch [5] of solving integral formula
(3), respectively. The results of the two methods are in good
agreement. The discrepancies of the results of the two methods
follow a normal distribution and the median discrepancies
are −7 × 10−6 (95% confidence interval: −3.2 × 10−5–
1.8 × 10−5) for the rectangular-grooved cavity and 1.6 × 10−5

(95% confidence interval: −1.1 × 10−5–4.2 × 10−5) for the
triangular-grooved one.

4. Conclusion

The Monte Carlo method for calculating the angle factors
of diffuse cavities can not only give accurate results, but
is more powerful, flexible and convenient. This is due to
its applicability to arbitrarily shaped cavities whose internal
surfaces are diffuse. In this paper we find that the Monte Carlo
method can be successfully applied to a variety of cavities.
Whether it is a regular cavity or a combination of complex
structure (with grooves), the algorithms are very simple and
easy to understand.

The algorithms are implemented in a program working
on a PC under a 32-bit MS Windows operating system. For
obtaining one effective angle factor value, 106 rays are emitted
from �ξ0 to ensure calculation accuracy, and it just takes tens
of seconds. Overall, whether in precision or the simplicity of
algorithms, the Monte Carlo method for calculating the angle
factors of diffuse cavities is excellent.
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