Contents lists available at SciVerse ScienceDirect

# ELSEVIER





journal homepage: www.elsevier.com/locate/jlumin

# Crystal structure and luminescence properties of $Lu^{3+}$ and $Mg^{2+}$ incorporated silicate garnet $[Ca_{3-(x+0.06)}Lu_xCe_{0.06}](Sc_{2-y}Mg_y)Si_3O_{12}$

Yongfu Liu<sup>a,b</sup>, Xia Zhang<sup>a,\*</sup>, Zhendong Hao<sup>a</sup>, Yongshi Luo<sup>a</sup>, XiaoJun Wang<sup>c</sup>, Jiahua Zhang<sup>a,\*</sup>

<sup>a</sup> State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern South Lake Road, Changchun 130033, China

<sup>b</sup> Graduate School of Chinese Academy of Sciences, Beijing 100039, China

<sup>c</sup> Department of Physics, Georgia Southern University, Statesboro, GA 30460, United States

#### ARTICLE INFO

Article history: Received 8 July 2011 Received in revised form 7 December 2011 Accepted 21 December 2011 Available online 30 December 2011

Keywords: Lu<sup>3+</sup>-Mg<sup>2+</sup> Ce<sup>3+</sup> luminescence Phosphor White LED

# ABSTRACT

The yellow-emitting phosphor  $[Ca_{3-(x+0.06)}Lu_xCe_{0.06}](Sc_{2-y}Mg_y)Si_3O_{12}$  obtained from  $Lu^{3+}$  and  $Mg^{2+}$  co-modified green-emitting silicate garnet  $Ca_3Sc_2Si_3O_{12}$ : $Ce^{3+}$  (CSS: $Ce^{3+}$ ) exhibits promising applications for white LEDs. In this paper, we discuss the effect of charge balance on the garnet structure formation. The changes of bond length and covalence caused by the replacement of  $Lu^{3+}$  and  $Mg^{2+}$  for  $Ca^{2+}$  and  $Sc^{3+}$  are analyzed. The shift of the  $Ce^{3+}$  emission and excitation can be attributed to the combined results from crystal field splitting effect and centroid shift of  $Ce^{3+}$  5d levels. Thermal stability is analyzed according to configurational coordinate diagram.

© 2011 Elsevier B.V. All rights reserved.

#### 1. Introduction

Phosphor converted white light emitting diode (pcWLED) is regarded as a new lighting source for the next generation [1,2]. The most current pcWLEDs employ yellow-emitting  $Y_3Al_5O_{12}$ :Ce<sup>3+</sup> (YAG:Ce<sup>3+</sup>) garnet phosphors combined with blue InGaN LEDs [3,4]. The YAG:Ce<sup>3+</sup> emits a yellow band peaking at 530 nm with a width of about 100 nm due to 5d  $\rightarrow$  <sup>2</sup>F<sub>7/2</sub>, <sup>2</sup>F<sub>5/2</sub> transition [5]. The deficient red emission leads to the color rendering index (CRI) of white LEDs being below 80. To enrich the red emission, significant investigations have been done to modify YAG:Ce<sup>3+</sup> by substitutions for Y<sup>3+</sup> and Al<sup>3+</sup> sites [6–8].

In addition to Al-based garnets, a new green-emitting silicate garnet phosphor  $Ca_3Sc_2Si_3O_{12}:Ce^{3+}$  (CSS: $Ce^{3+}$ ) suitable for blue excitation has attracted much attention for its higher luminescence and higher thermal stability than YAG: $Ce^{3+}$  [9]. The position of the  $Ce^{3+}$  5d configuration is strongly influenced by the host lattice selection [10–13]. For the garnet structure, it can be presented by the general formula of  $C_3A_2D_3O_{12}$ , where C, A and D are dodecahedral, octahedral and tetrahedral sites with coordination numbers (CNs) of 8, 6 and 4, respectively [14]. It is well known that the garnet is quite flexible and can incorporate various cations into the C, A and D sites. This affords an opportunity to control the position of the  $Ce^{3+}$  4f $\rightarrow$ 5d excitation

E-mail address: zhangjh@ciomp.ac.cn (J. Zhang).

and  $5d \rightarrow 4f$  emission bands by careful substitutions on the dodecahedral, octahedral and tetrahedral sites, because the lowest 5d excited state is strongly influenced by the site size and type coordinating Ce<sup>3+</sup> [10–13]. In 2008, Shimomura et al. [15] performed a remarkable red shift by partially incorporating Mg<sup>2+</sup> into the octahedral Sc<sup>3+</sup> site to obtain a yellow-emitting phosphor Ca<sub>3</sub>ScMgSi<sub>3</sub>O<sub>12</sub>:Ce<sup>3+</sup>, which contained pronounced by-products of Ca<sub>2</sub>MgSi<sub>2</sub>O<sub>7</sub> and CaMgSiO<sub>4</sub>. In 2011, we provided an effective means of achieving enhanced quality performance of the yellow [Ca<sub>3-(x+0.06)</sub>Lu<sub>x</sub>Ce<sub>0.06</sub>](Sc<sub>2-y</sub>Mgy)Si<sub>3</sub>O<sub>12</sub> phosphor by eliminating the by-products through the introduction of Lu<sup>3+</sup> at the Ca<sup>2+</sup> site to compensate for the negative charge caused by the Mg<sup>2+</sup> replacement for Sc<sup>3+</sup> [16].

In this paper, we discuss the effect of charge balance on the crystal structure and optical properties of  $[Ca_{3-(x+0.06)}Lu_xCe_{0.06}]$  ( $Sc_{2-y}Mg_y$ )Si<sub>3</sub>O<sub>12</sub>. After analyzing the change of bond length and covalency, the factors that determine crystal field splitting and centroid shift of Ce<sup>3+</sup> 5d configurations, we provide an initial interpretation for the shift of Ce<sup>3+</sup> emission and excitation when  $Lu^{3+}$  and  $Mg^{2+}$  are incorporated into CSS:Ce<sup>3+</sup> as well as the thermal quenching mechanisms, and provide an optimization method for phosphors used for pcWLEDs.

# 2. Experimental

Samples with the general formula of  $[Ca_{3-(x+0.06)}Lu_xCe_{0.06}]$  $(Sc_{2-y}Mg_y)Si_3O_{12}$  with  $0 \le x \le 0.94$  and  $0 \le y \le 1$  were prepared

<sup>\*</sup> Corresponding authors. Tel./fax: +86 431 86708875.

<sup>0022-2313/\$ -</sup> see front matter  $\circledcirc$  2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jlumin.2011.12.060

by solid-state reactions. The raw materials of high purity CaCO<sub>3</sub>, Lu<sub>2</sub>O<sub>3</sub>, CeO<sub>2</sub>, Sc<sub>2</sub>O<sub>3</sub>, MgO and SiO<sub>2</sub> were homogenized according to stoichiometric proportions and fired in a tubular furnace under reducing conditions of 5% H<sub>2</sub>+95% N<sub>2</sub> at 1200–1400 °C for 4 h. All samples were doped with 6 mol% Ce<sup>3+</sup>. The structures of sintered samples were identified over the scattering range of  $20^{\circ} \le 2\theta \le 60^{\circ}$  by X-ray powder diffractometer (XRD) (Rigaku D/M AX-2500V). The photoluminescence (PL) and photoluminescence excitation (PLE) spectra were measured using a Hitachi F4500 fluorescent spectrometer.

#### 3. Results and discussion

# 3.1. $Lu^{3+}$ incorporated CSS:Ce<sup>3+</sup>

Fig. 1 shows the XRD patterns for samples with the nominal compositions of  $[Ca_{3-(x+0.06)}Lu_xCe_{0.06}]Sc_2Si_3O_{12}$  (x=0.14, 0.34, 0.54, 0.74 and 0.94). For the lower  $Lu^{3+}$  content (*x*=0.14), one can see the primary phase is CSS (JCPDF no. 72-1969) with a few amount of by-products of Sc<sub>2</sub>O<sub>3</sub> (JCPDF no. 74-1210) and SiO<sub>2</sub> (JCPDF no. 86-2327) phases. With the increasing Lu<sup>3+</sup> contents (x > 0.14), however, possible additional by-products of Lu<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> (JCPDF no. 35-0326), Sc<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> (JCPDF no. 74-0989) and Ce<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> (JCPDF no. 48-0058) appear and increase. For the higher Lu<sup>3</sup> contents (x=0.74 and 0.94), the amount of the by-products is significant. This indicates a limited solid solubility of Lu<sup>3+</sup> on the dodecahedral sites. It can also be carefully observed that the XRD peaks shift to high angle regions with increasing x, reflecting the substitution of  $Ca^{2+}$  by  $Lu^{3+}$  for the ionic radius (r) of  $Lu^{3+}$ (r=0.977 Å for CN=8) is much smaller than that of Ca<sup>2+</sup> (r=1.12 Å for CN=8) so as to shrink the lattice. It should be noted that the shrinkage of the lattice does not exclude the possibility of the  $Lu^{3+}$  substitution for  $Sc^{3+}$ . This is because the difference between the ionic radius of  $Lu^{3+}$  (r=0.861 Å for CN=6) and Sc<sup>3+</sup> (r=0.745 Å for CN=6) is (0.116 Å) smaller than that (0.143 Å) between  $Lu^{3+}$  and  $Ca^{2+}$ . A minor substitution of  $Sc^{3+}$  by the larger  $Lu^{3+}$  cannot result in a macroscopic lattice



**Fig. 1.** XRD patterns for the samples of  $[Ca_{3-(x+0.06)}Lu_xCe_{0.06}]Sc_2Si_3O_{12}$  (x=0.14, 0.34, 0.54, 0.74 and 0.94).

expansion in case of a major substitution of  $Ca^{2+}$  by the smaller  $Lu^{3+}$ . The  $Lu^{3+}$  substitution for  $Sc^{3+}$  can be actually found from the by-products. The substitution of  $Sc^{3+}$  by  $Lu^{3+}$  leads to the residue of  $Sc^{3+}$ , consequently resulting in the formation of  $Sc_2Si_2O_7$ . The observation of  $Lu_2Si_2O_7$  and  $Sc_2Si_2O_7$  strongly indicates the limited solid solubility of  $Lu^{3+}$  in CSS in the case of charge mismatches between  $Lu^{3+}$  and  $Ca^{2+}$ .

Fig. 2 shows the PL and PLE spectra of  $[Ca_{3-(x+0.06)}Lu_xCe_{0.06}]$  $Sc_2Si_3O_{12}$  (x=0, 0.14, 0.34, 0.54, 0.74 and 0.94). For x=0 (CSS:Ce<sup>3+</sup>), the PL spectrum exhibits an intense green emission band peaked at 505 nm with a shoulder around 540 nm. originating from the transition from 5d to  ${}^{2}F_{5/2}$  and  ${}^{2}F_{7/2}$  of Ce<sup>3+</sup>, respectively [9]. Meanwhile, the PLE spectrum for the green emission exhibits an intense excitation band around 450 nm and some weak bands in the UV region. Following the increased incorporation of Lu<sup>3+</sup> into CSS:Ce<sup>3+</sup>, the emission intensity dramatically drops off, which is correlated to the decrease of the CSS phase and the increase of the by-products phase. On the other hand, the PL spectra gradually shift to shorter wavelengths from 505 nm for x=0 to 499 nm for x=0.94 as well as the blue shift of the PLE spectra. To understand this phenomenon, the luminescences of the secondary silicate phases are analyzed.  $Ce^{3+}$ -doped silicates, such as  $Re_2Si_2O_7$  (Re=Lu and Sc) that are present as the secondary phases in these samples, always have absorptions in the UV region and give rise to blue emissions [17]. Pauwels et al. have reported that Lu<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>:Ce<sup>3+</sup> showed two excitation bands peaking at 305 and 355 nm and one emission band peaking at 380 nm [17]. Therefore, under 450 nm excitation, the emission bands of CSS:Ce<sup>3+</sup> should not be influenced by Lu<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>:Ce<sup>3+</sup>. Under UV excitation, the luminescence of these second phases could be re-absorbed by CSS:Ce<sup>3+</sup>, consequently leading to unresolved excitation bands in the UV region other than in the blue (450 nm) region.

The position of the excitation and emission bands for  $Ce^{3+}$  in different hosts can be understood by analyzing two independent competing factors: the crystal field splitting of the 5d levels and the centroid shift of the 5d configuration with respect to the free ion position of the 5d levels [10–13]. Phenomenologically (or typically), the two factors are inversely dependent upon the  $Ce^{3+}-O^{2-}$  bond length. With the replacement of  $Ca^{2+}$  by smaller  $Lu^{3+}$ ; however, the blue shift of emission and excitation does not follow the typical relationship between the bond length and the position of the lowest 5d excited state of  $Ce^{3+}$ . In this case, covalency and polarizability of  $Ce^{3+}$ -ligand bonds responsible for the centroid shift should play an important role in the blue shift





**Fig. 3.** XRD patterns for the samples of  $[Ca_{3-(x+0.06)}Lu_xCe_{0.06}](Sc_{2-y}Mg_y)Si_3O_{12}$ (*x*=0, 0.34, 0.74, 0.94 and *y*=0, 0.4, 0.8, 1.0).

behavior. For Lu<sup>3+</sup> the anion polarizability is smaller than that for Ca<sup>2+</sup> because of the larger electronegativity of Lu<sup>3+</sup> ( $\chi$ (Lu)=1.27) than that of Ca<sup>2+</sup> ( $\chi$ (Ca)=1.00). This means that the bonding of the valence electron of oxygen to Lu<sup>3+</sup> increases. In other words, the ionicity of the Lu<sup>3+</sup>–O<sup>2-</sup> bond decreases while the covalency of Lu<sup>3+</sup>–O<sup>2-</sup> bond increases, thereby decreasing the covalency of Ce<sup>3+</sup>–O<sup>2-</sup> bond and resulting in a smaller centroid shift of the 5d levels from the free Ce<sup>3+</sup> ion levels. The effect of centroid shift is more pronounced than that of the crystal field splitting. Therefore, the blue shift of the emission and excitation is observed. After analyzing the two factors, it is noticed that polarizability (or electronegativity) plays a more effective role than bond lengths.

# 3.2. $Lu^{3+}-Mg^{2+}$ incorporated CSS:Ce<sup>3+</sup>

Fig. 3 shows the XRD patterns for the phosphors with nominal compositions of  $[Ca_{3-(x+0.06)}Lu_xCe_{0.06}](Sc_{2-\nu}Mg_{\nu})Si_3O_{12}$  with x=0, 0.34, 0.74, 0.94 and y=0, 0.4, 0.8, 1.0. All the samples exhibit a pure CSS phase, which are greatly different from the case of  $Lu^{3+}$  or  $Mg^{2+}$  single doped CSS:Ce<sup>3+</sup>. Meanwhile, it is obvious that the XRD peaks shift to larger angle regions, indicating a decrease of the lattice parameter. This phenomenon accords with the replacements of  $Ca^{2+}$  by  $Lu^{3+}$  and  $Sc^{3+}$  by  $Mg^{2+}$ , because both the ionic radius of  $Lu^{3+}$  (r=0.977 Å for CN=8) and Mg<sup>2+</sup> (r=0.72 Å for CN=6) are smaller than that of Ca<sup>2+</sup> (r=1.12 Å forCN=8) and Sc<sup>3+</sup> (r=0.745 Å for CN=6), respectively. Lattice parameters were calculated according to the XRD data in Fig. 3 using Jade 5. As Fig. 4 presents, the lattice parameters against the  $Lu^{3+}$  and/or Mg<sup>2+</sup> contents follow Vegard's law, reflecting a complete solid solution of  $Lu^{3+}$  and  $Mg^{2+}$  in CSS in the case of charge balance of the total molecular formula.

Shimomura et al. have reported that abundant by-products of  $Ca_2MgSi_2O_7$  and  $CaMgSiO_4$  appeared when  $Mg^{2+}$  was singly present at the  $Sc^{3+}$  site in  $CSS:Ce^{3+}$ [15]. In Section 3.1, we also demonstrate that large by-products are formed when  $Lu^{3+}$  is singly present at the  $Ca^{2+}$  site. Charge mismatches between  $Mg^{2+}$  and  $Sc^{3+}$  or between  $Lu^{3+}$  and  $Ca^{2+}$  should answer for the two cases, respectively. Keeping the content of  $Mg^{2+}$  on the  $Sc^{3+}$  site while enhancing the content of  $Lu^{3+}$  on the  $Ca^{2+}$  site, the phases of  $Ca_2MgSi_2O_7$  and  $CaMgSiO_4$  gradually disappeared and a pure CSS phase was obtained when the charge of the total molecular formula reached a balance [16]. Therefore, it is concluded that charge balance of the total molecular formula plays



**Fig. 4.** Lattice parameters against Mg content for  $[Ca_{3-(x+0.06)}Lu_xCe_{0.06}] - (Sc_{2-y}Mg_y)Si_3O_{12}$  with x=0, 0.14, 0.34, 0.54, 0.74, 0.94 and y=0, 0.2, 0.4, 0.6, 0.8, 1.0.



**Fig. 5.** PL ( $\lambda_{ex}$ =450 nm) and PLE (monitored at the emission maximum wavelength) spectra for [Ca<sub>3-(x+0.06)</sub>Lu<sub>x</sub>Ce<sub>0.06</sub>](Sc<sub>2-y</sub>Mg<sub>y</sub>)Si<sub>3</sub>O<sub>12</sub> (x=0, 0.34, 0.74, 0.94 and y=0, 0.4, 0.8, 1.0).

an important role in the garnet phase formation. In 2006, Setlur et al. [18] reported a red-emitting silicate garnet Lu<sub>2</sub>CaMg<sub>2</sub>Si<sub>3</sub>O<sub>12</sub>:  $Ce^{3+}$  phosphor. A complete solid solution between the two silicate garnets CSS and Lu<sub>2</sub>CaMg<sub>2</sub>Si<sub>3</sub>O<sub>12</sub> was demonstrated by the same authors in 2010 [19]. In this paper, we achieve a similar result. However, the effects of Lu<sup>3+</sup> and those of Mg<sup>2+</sup> on the luminescence properties are different from each other and specified in this report.

Fig. 5 shows the PL and PLE spectra for  $[Ca_{3-(x+0.06)}Lu_xCe_{0.06}]$  $(Sc_{2-y}Mg_y)Si_3O_{12}$  with x=0, 0.34, 0.74, 0.94 and y=0, 0.4, 0.8, 1.0. The PL spectra were excited by 450 nm and the PLE spectra were monitored at the emission peak wavelength. With the increasing  $Lu^{3+}$  and  $Mg^{2+}$  contents, the emission shifts to longer wavelengths from 505 nm (y=0) to 560 nm (y=1) following a peak intensity decrease as well as the excitation. However, the integral intensity is almost unchanged, reflecting the unchanged quantum efficiency (QE) at room temperature.

Shimomura et al. [15] have demonstrated that the red shift of the emission spectra of the  $Mg^{2+}$  single doped CSS:Ce<sup>3+</sup> was caused by the enhanced Ce<sup>3+</sup> content for charge compensation effects. Whereas, differing from the almost unchanged excitation spectra for the  $Mg^{2+}$  single doped CSS:Ce<sup>3+</sup>, the excitation for the



**Fig. 6.** PL intensity versus temperature for  $[Ca_{3-(x+0.06)}Lu_xCe_{0.06}](Sc_{2-y}Mg_y)$ Si<sub>3</sub>O<sub>12</sub> (*x*=0, 0.34, 0.74, 0.94 and *y*=0, 0.4, 0.8, 1.0) under 450 nm excitation. The circles are experimental data and the lines are the fitting functions.

 $Lu^{3+}$  and  $Mg^{2+}$  double doped CSS:Ce<sup>3+</sup> exhibits a red shift. Considering the two factors of crystal field splitting and centroid shift aforementioned, the changes of bond length and covalency are analyzed. As Fig. 4 depicts, the reduction of the lattice parameters indicates a shorter  $Ce^{3+}-O^{2-}$  bond for the compression of the garnet, shifting the lowest excited 5d state energy level of Ce<sup>3+</sup> to an even lower energy position for the stronger crystal field splitting. This regular result is similar to that from Lu<sub>2</sub>CaMg<sub>2-</sub> Si<sub>3</sub>O<sub>12</sub> to CSS reported by Setlur et al., who demonstrated a smaller crystal field splitting from the longer  $Ce^{3+}-O^{2-}$  bond length [19]. Furthermore, the electronegativity of  $Mg^{2+}$  $(\chi(Mg)=1.31)$  is smaller than that of Sc<sup>3+</sup> ( $\chi(Sc)=1.36$ ), which means a higher ionicity of the Mg<sup>2+</sup>-O<sup>2-</sup> bond and a more covalent  $Ce^{3+}-O^{2-}$  bond. Therefore, a lower energy position of the lowest 5d excited state is induced for a larger centroid shift arising from the higher covalent  $Ce^{3+}-O^{2-}$  bond. This is also demonstrated by the larger Ce<sup>3+</sup> centroid shift in Lu<sub>2</sub>CaMg<sub>2</sub>Si<sub>3</sub>O<sub>12</sub>  $(\sim 13,300 \text{ cm}^{-1})$  than that in CSS  $(\sim 12,300 \text{ cm}^{-1})$  [19]. Taking the stronger crystal field splitting effect and the larger centroid shift into account, a lower energy  $Ce^{3+}$  4f  $\rightarrow$  5d excitation and  $5d \rightarrow 4f$  emission band is observed. After estimating the effect of  $Lu^{3+}$  and  $Mg^{2+}$ , the red shift of the emission and excitation should be attributed to  $Mg^{2+}$  other than to  $Lu^{3+}$  inducing a blue shift as discussed in Section 3.1. However, Lu<sup>3+</sup> also plays an important role in the enhancements of luminescence intensity and thermal stability [16].

With the incorporation of  $Lu^{3+}$  and  $Mg^{2+}$  into CSS:Ce<sup>3+</sup>, the QE at room temperature is almost unchanged. However, as shown in Fig. 6, the QE significantly reduces at high temperature. The energy difference between the excited 5d state and the bottom of the conduction band is named activation energy ( $\Delta E$ ). The smaller the activation energy, the stronger the thermal quenching. Using the equation of  $I(T)=I(0)/(1+A \exp(-\Delta E/k_BT))$  with constant A and Boltzmann constant  $k_B$ , the activation energies were estimated to be 0.128, 0.180, 0.204 and 0.213 eV for y=0, 0.4, 0.8 and 1.0, respectively. Apparently, the result of the increase  $\Delta E$  with the increasing value of y is opposite to the thermal quenching behavior. This could be related with the smaller temperature range that leads to an inexact activation energy.

hand, basing on the configurational coordinate diagram [20], thermal quenching is described as a nonradiative relaxation process between the lowest excited 5d state and the 4f ground state. A larger Stokes shift induces a lower energy barrier for nonradiative relaxation processes and results in a stronger thermal quenching. Stokes shift can be obtained from the energy difference between the lowest excitation peak and the higher emission peak. From the room temperature spectra (Fig. 5) the Stokes shifts are calculated to be 2470, 2850, 2900 and 2930 cm<sup>-1</sup> for y=0, 0.4, 0.8 and 1.0, respectively. Combining the discussions above, the increased Stokes shift should respond to the stronger thermal quenching with increasing Lu<sup>3+</sup> and Mg<sup>2+</sup> substitutions.

# 4. Conclusions

In summary, we demonstrate that charge balance plays an important role in the CSS garnet structure formation for the Lu<sup>3+</sup> and Mg<sup>2+</sup> incorporated [Ca<sub>3-(x+0.06)</sub>Lu<sub>x</sub>Ce<sub>0.06</sub>]–(Sc<sub>2-y</sub>Mg<sub>y</sub>)Si<sub>3</sub>O<sub>12</sub> with  $0 \le x \le 0.94$  and  $0 \le y \le 1$ . The changes of bond and covalence are analyzed when Lu<sup>3+</sup> and Mg<sup>2+</sup> are introduced into CSS. The shift of Ce<sup>3+</sup> emission and excitation can be attributed to the result from the combined effect of crystal field splitting and centroid shift of Ce<sup>3+</sup> 5d levels. The decrease of the QE at high temperature is induced by the nonradiative relaxation processes according to the configurational coordinate diagram. Understanding the factors that influence the position of Ce<sup>3+</sup> emission and excitation as well as the thermal quenching mechanisms provide an optimization method for phosphors used for pcWLEDs.

# Acknowledgments

This work is financially supported by the National Nature Science Foundation of China (10834006, 10904141, 10904140, 51172226, 11174278), the MOST of China (2010AA03A404).

# References

- [1] S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett. 64 (1994) 1687.
- [2] E.F. Schubert, J.K. Kim, Science 308 (2005) 1274.
- [3] S. Nakamura, Proc. SPIE 3002 (1997) 26.
- [4] K. Bando, K. Sakano, Y. Noguchi, Y. Shimizu, J. Light Visual Environ. 22 (1998) 2.
- [5] G. Blasse, A. Bril, J. Chem. Phys. 47 (1967) 5139.
- [6] W.W. Holloway Jr., M. Kestiglan, J. Opt. Soc. Am. 59 (1969) 60.
- [7] T.Y. Tien, E.F. Gibbons, R.G. Delosh, P.J. Zacmanidis, D.E. Smith, H.L. Stadler, J. Electrochem. Soc. 120 (1973) 278.
- [8] A.A. Setlur, A.M. Srivastava, H.A. Comanzo, G. Chandran, H. Aiyer, M.V. Shankar, S.E. Weaver, Proc. SPIE 5187 (2004) 142.
- [9] Y. Shimomura, T. Honma, M. Shigeiwa, T. Akai, K. Okamoto, N. Kijima, J. Electrochem. Soc. 154 (2007) J35.
- [10] P. Dorenbos, Phys. Rev. B 64 (2001) 125117.
- [11] P. Dorenbos, Phys. Rev. B 65 (2002) 235110.
- [12] P. Dorenbos, J. Lumin. 99 (2002) 283.
- [13] P. Dorenbos, J. Lumin. 105 (2003) 117.
- [14] S. Geller, Z. Kristallogr. 125 (1967) 1.
- [15] Y. Shimomura, T. Kurushima, M. Shigeiwa, N. Kijima, J. Electrochem. Soc. 155 (2008) J45.
- [16] Y.F. Liu, X. Zhang, Z.D. Hao, W. Lu, X.Y. Liu, X.J. Wang, J.H. Zhang, J. Phys. D: Appl. Phys. 44 (2011) 075402.
- [17] D. Pauwels, N. le Masson, B. Vianan, A. Kahn-Harari, E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, IEEE Trans. Nucl. Sci. 47 (2000) 1787.
- [18] A.A. Setlur, W.J. Heward, Y. Gao, A.M. Srivastava, R.G. Chandran, M.V. Shankar, Chem. Mater. 18 (2006) 3314.
- [19] M.S. Kishore, N.P. Kumar, R.G. Chandran, A.A. Setlur, Electrochem. Solid-State Lett. 13 (2010) J77.
- [20] C.C. Chiang, M.S. Tsai, M.H. Hon, J. Electrochem. Soc. 155 (2008) B517.