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Abstract. A novel semiconductor optical amplifier (SOA) optical gate
with a graded strained bulk-like active structure is proposed. A fiber-to-
fiber gain of 10 dB when the coupling loss reaches 7 dB/factet and a
polarization insensitivity of less than 0.9 dB for multiwavelength and dif-
ferent power input signals over the whole operation current are obtained.
Moreover, for our SOA optical gate, a no-loss current of 50 to 70 mA and
an extinction ratio of more than 50 dB are realized when the injection
current is more than no-loss current, and the maximum extinction ratio
reaches 71 dB, which is critical for crosstalk suppression. © 2003 Society
of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1539053]

Subject terms: graded strained bulk-like active structure; semiconductor optical
amplifier; optical gate.
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1 Introduction

In the near future, photonic wavelength-division multiple
ing ~WDM! systems will require a number of optical ga
elements for both routing and buffering operations.1 Com-
pared with other components as optical gates, a semi
ductor optical amplifier~SOA! is a promising candidate a
an on and off gate array to fabricate switch matrices
optical path cross connection, add-drop multiplexes,
asynchronous transfer mode cell switching due to their
pacity of providing no-loss operation, fiber-to-fiber ga
and a large optical extinction ratio over wide waveleng
range.2

In developing SOA gates into functional and efficie
optical components, one serious problem is the wide ba
width polarization insensitivity over a large operation cu
rent. For the realization of such a characteristic, multip
quantum-well ~MQW! active structures are given u
because different gain variations for TE and TM modes
be induced when signal wavelength or injection curr
changes.3 A quasi-square unstrained bulk active structure
an ideal selection for an SOA optical gate. However, n
row stripe width~,0.5 mm! is difficult to fabricate by ei-
ther growth technology or etching technology.4,5 A single
tensile bulk active structure overcomes the narrow str
width limitation, and good polarization insensitivity ha
798 Opt. Eng. 42(3) 798–802 (March 2003) 0091-3286/2003/$15
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been obtained. In addition, it is possible to obtain hi
fiber-to-fiber gain by using the optimized whole devi
design.6 However, it is difficult to obtain high crystal qual
ity when the single tensile bulk active layer is more th
100 nm, because it is inevitable for such semicoher
growth to induce dislocation although there is no latti
relaxation evidence. Using a graded-strain bulk-li
~GSBL! active structure to fabricate an SOA gate was
cently proposed.7 Such an active structure is an ideal sele
tion because it can overcome both the narrow-stripe wi
limitation due to the tensile strain layer introduction and t
dislocation appearance due to thinner tensile strain la
and distribution separately. In addition, compared with
single tensile bulk active region, a GSBL structure ha
wider and flatter gain spectrum due to the multiple reco
bination wavelengths in this structure, which favors obta
ing a wider polarization-insensitive gain bandwidth a
multiwavelength signal amplification. The polarization i
sensitivity characteristics were analyzed from the point
theory.7,8 In this paper, we present their characteristics as
optical gate, which shows that such an SOA is an effici
and functional device in this context.

2 Device Design and Fabrication

A GSBL active structure is based on the facts that the t
sile strain can enhance the TM mode material gain a
.00 © 2003 Society of Photo-Optical Instrumentation Engineers
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relax the limitation of narrow stripe width, that a thin stra
layer distribution can enhance the active layer quality, a
that the whole active region including the different mate
als can reduce multirecombination wavelengths and fur
expand the gain spectrum bandwidth. The active la
structure is schematically shown in Fig. 1~a!. The active
layers are sandwiched between upper~150-nm-thick! and

Fig. 1 (a) GSBL active structure and (b) its schematic diagram.
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lower ~150-nm-thick! InGaAsP optical confinement layer
with a bandgap wavelength of 1.18mm. The layers with
different strains and different thicknesses are distribut
respectively, in terms of the whole structure polarizati
insensitivity and the flat gain spectrum bandwidth. No
that the different strains refers to both type and amoun
the strain. An energy band diagram of this structure
shown in Fig. 1~b!. The center of this active structure
lattice-matched bulk layer, which has a degenerated
lence band and provides the same TE and TM mode m
rial gain. As the tensile stress increases, both the light-h
band edge and conduction band edge shape the same
low trapezium, whereas the heavy-hole band edge form
contrary trapezium. Such an energy band structure res
in both the transition wavelength between electrons a
light holes being unchanged, and that between electr
and heavy holes becoming shorter and shorter in the wh
active structure. Device mode gain is the weighted sum
material gain in each layer, and the weighting factor is
corresponding optical confinement factor. As a result,
wide-bandwidth TE mode gain spectrum will be obtain
due to multiwavelength recombination between electro
and heavy holes in tensile strain layers, however, the w
bandwidth TM mode gain will be obtained because t
smaller effective masses for electron and light holes lea
the band-filling effect significantly with the injection cur
rent. Meanwhile, it is possible to achieve a wid
polarization-insensitive bandwidth due to the large opti
confinement factor in unstrained material. Detailed theo
ical analysis has been published in Ref. 8.

Such an SOA is fabricated using three-step me
organic vapor phase epitaxy~MOVPE! process. For the
first growth, the 0.5-mm n-doped InP buffer layer, the 150
nm-thick 1.18-mm-bandgap InGaAsP quaternary lower o
tical confinement layer, the 150-nm-thick GSBL activ
structure just as shown in Fig. 1~a!, the 150-nm-thick 1.18-
mm-bandgap InGaAsP quaternary upper optical confi
ment layer, and the 100-nm-thickp-doped InP cladding
layer are grown by conventional MOVPE technology sep
rately. Then, standard contact photolithography combin
with chemical etching through the patterned photoresis
used for the 1.5-mm-wide active waveguide definition
along the direction tilted 7 deg with respect to@1,1,0# crys-
talline direction. For the second growth,p-n-p current-
blocking layers are grown by low pressure MOVPE~LP-
Fig. 2 X-ray simulation (left) and measurement (right) results for the GSBL structure.
799Optical Engineering, Vol. 42 No. 3, March 2003
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MOVPE!. The nearly 3-mm-thick p-InP layer and the 100
nm-thick P1-InGaAs contact layer are grown in turn by th
third LP-MOVPE technology. After the electrodes are fi
ished, antireflection ~AR! coating proceed with
SiOx /SiONx to further reduce facet reflectivity. Finally
600-mm-long devices are cleaved along the@1,21,0# direc-
tion.

To verify the GSBL active structure crystal quality, x-ra
simulation and measurement results are shown in Fig
respectively. The similarity of both results and no rela
ation evidence prove that such a GSBL structure has g
crystal quality, which favors the SOA obtaining good ch
acteristics.

To measure such SOA optical gate characteristics,
adopt the measurement system shown in Fig. 3. Coup
loss between the device and AR-lens single-mode fi
reaches 7 dB/facet. The polarization controller may ens
that the exact polarization dependence loss has been
sured. An optical spectrum analyzer was used to protect
signal characteristic measurements from ASE noise.

3 Device Characteristics

The amplified spontaneous emission~ASE! spectrum of
such an SOA at an injection current of 120 mA is shown
Fig. 4. The 3-dB bandwidth of about 43 nm and a ripple
about 0.5 dB were obtained at an injection current of 1

Fig. 3 SOA optical gate static measurement system.
800 Optical Engineering, Vol. 42 No. 3, March 2003
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mA. Optimizing the AR coating design will expand th
3-dB bandwidth for such a device. The blue shift of t
ASE spectrum results from the band-filling effect at a lar
current bias. Thus, it is indispensable for fabricatingC band
SOA to select longer wavelength InGaAsP material. Fig
5 shows the fiber-to-fiber gain versus the driving curre
when the optical input signal power is 0,23, 210, and
213 dBm with a wavelength of 1520 nm. For all kinds
optical input signals, no-loss operation current is betwe
50 and 75 mA, and the maximum fiber-to-fiber gain reach
10-dB at driving current of nearly 150 mA, which is hig
enough to act as an optical gate. Figure 6 shows that
gain flatness is about 2 dB for a signal wavelength of 15
to 1530 nm at different operation currents. And about
dB fiber-to-fiber gain at a driving current of 160 mA wa
obtained for different wavelength input signals. The p
ceding results indicate that our SOA optical gate is suita
to operation for various wavelengths and various pow
input optical signal gatings. In addition, smaller gain f
our device is related with larger coupling loss and high
power input signal.

Fig. 5 Fiber-to-fiber gain dependence of operation current at differ-
ent input signal light powers for the SOA gate.
Fig. 4 ASE spectrum of the SOA at injection current of 120 mA.
erms of Use: http://spiedl.org/terms
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Figure 7 shows the polarization dependence loss~PDL!
variation with the injection current for different input sign
wavelengths at an input signal power of213 dBm. We can
observe that for all kinds of optical input signals, the PD
always fluctuates between 0 and 0.9 dB with the opera
current, which indicates that such SOA can realize nea
polarization-insensitive gating for a wide optical input si
nal wavelength range.

A large extinction ratio is another advantage of an SO
optical gate. Figure 8 shows the extinction ratio vers
driving current for different power input signals. And th
input signal wavelength is 1520 nm. Figure 8 indicates t
the higher the input signal power, the larger the extinct
ratio. And the maximum extinction ratio of 71 dB wa
achieved for an input signal power of 0 dBm at injecti
current of 200 mA. More than 50 dB of extinction ratio wa
achieved when the injection current was more than 60
for every input signal, which is compared with NEC
result.9 And switching time will be measured in the ne
future.

4 Conclusions

A novel semiconductor optical amplifier gate with grad
strained bulk-like active region has been designed and

Fig. 6 Fiber-to-fiber gain versus signal light wavelength at different
driving currents for the SOA gate.

Fig. 7 Polarization characteristics versus driving current for the
SOA gate.
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ricated. The fabrication process is simple, compatible w
a conventional buried heterostructure laser diode~BH LD!
process. Measurements indicate that this device has
low polarization dependence~,0.9 dB!, high extinction ra-
tio ~.50 dB!, a maximum fiber-to-fiber gain of 10 dB, an
lossless operation currents of 50 to 75 mA for an inp
signal with different wavelength and power. Such resu
are enough to satisfy the optical gating demand. Furt
optimization of the active structure and enhancement of
coupling efficiency will be helpful for the device characte
istics. The switching time will be measured in the ne
future.
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