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Gain-phase grating based on spatial modulation of active Raman gain in cold atoms

Shang-qi Kuang, Chun-shui Jin, and Chun Li
Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
(Received 21 March 2011; published 16 September 2011)

In order to obtain an atomic grating which can diffract light into the high-order directions more efficiently,
a gain-phase grating (GPG) based on the spatial modulation of active Raman gain is theoretically presented.
This grating is induced by a pump field and a standing wave in ultracold atoms, and it not only diffracts a
weak probe field propagating along a direction normal to the standing wave into the high-order directions,
but also amplifies the amplitude of the zero-order diffraction. In contrast with electromagnetically induced
grating or electromagnetically induced phase grating, the GPG has larger diffraction efficiencies in the high-
order directions. Hence it is more suitable to be utilized as an all-optical router in optical networking and

communication.
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By replacing the traveling wave of electromagnetically
induced transparency (EIT) [1] with a standing wave, an
atomic grating called an electromagnetically induced grating
(EIG) is formed [2]. Due to the spatial modulation induced
by the standing wave, the amplitude of a resonant probe field
changes in a period, and then the probe field is diffracted
into the high-order directions. The phenomenon of EIG
was experimentally observed in ultracold atoms [3], and it
was used to realize optical bistability [4]. For the small
diffraction efficiency of EIG, an electromagnetically induced
phase grating (EIPG) based on the cross-phase modulation
(XPM) of the probe field was demonstrated [5]; the first-order
diffraction efficiency of this phase grating can be close to
the efficiency of an ideal sinusoidal phase grating. However,
the largest diffraction efficiency of EIPG in the first-order
direction is still relatively small (*30%), and the diffracted
beam in the second-order direction is too weak to be observed
in experiments. Meanwhile, the effect of active Raman gain
(ARG) has attracted much attention, and it was used to obtain
superluminal [6] or subluminal light propagation [7,8]. Most
recently, the manipulation of ARG in a four-level atomic
medium has been used to control the group velocity [9] or
obtain a large Kerr effect [10,11]. In comparison with the
schemes based on the manipulation of the probe absorption of
EIT, the schemes based on the modulation of the probe gain
of ARG have several advantages [10,11].

In this paper, we theoretically present that a gain-phase
grating (GPG) can be formed in cold atoms which are driven by
apump field and a standing wave. Due to the spatial modulation
of the standing wave, a weak probe field propagating in a
direction normal to the standing wave can be diffracted into
the high-order directions effectively, and the amplitude of
the zero-order diffraction is amplified. In contrast with the
EIPG, the first-order diffraction efficiency of the GPG is larger,
and the second-order diffraction efficiency can be comparable
with the first-order diffraction efficiency of the EIG. Therefore,
we believe that this kind of grating can be utilized as
an all-optical routing [12] in the optical networking and
communication.

The atomic system under consideration is shown in
Fig. 1(a), it can be described by a four-level N-type configura-
tion. The transitions |3)—|1), |3)—|2), and |4)—|2) are electric
dipole allowed, while the transitions |2)—|1) and |4)—|1) are
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electric dipole forbidden. The pump and standing fields drive
the transitions |3)—|1) and |4)—|2), respectively. A weak probe
field with a Rabi frequency g interacts with the transition
|3)-|2), and the Rabi frequencies of the pump field and
standing wave are 2, and 2, respectively. Without loss of
generality, we take these Rabi frequencies to be real, and 2y;
(i = 1,2,3) represents the rate of spontaneous emission of the
corresponding transition. As shown in Fig. 1(b), the standing
wave in the x direction is formed by two overlapped fields, and
the weak probe and strong pump fields propagate along the z
and x directions, respectively. Therefore, the Rabi frequency
of the standing wave can be written as Q; = Qsin(zx/A),
where A is the space period of the standing wave.

In the framework of the semiclassical theory, using the
dipole approximation and the rotating-wave approximation,
the Hamiltonian H; of the system in the interaction picture is

Hp =n[8]2)(2] = Ap[3)(3] 4 (8 — Ay)[4) (4] — (g13)(2]
+ 2, 13) (1] + €4|4) (2| + H.c))l, (D

where A, A, and A, are the detunings of the probe field, pump
field, and standing wave, respectively, and 6 = A — A,. Due
to the large detuning of the pump field and the weak intensity
of the probe field, we can assume that the majority of the atoms
populates at the level |1) (p;; & 1), and levels |2), |3), and |4)
remain empty [6—8]. Including relaxation terms for the system,
the equations of motion for the density matrix of the four-level
atomic system can be written as

o135 = —({A, + y13)p13 — 2, — igp12,

032 = (A — y32)p32 — 82034 + 12,012,

P12 = (id — y12)p12 — igp13 — i2 014 + 2,032, )
034 = [I(A — Ay) — y3a]p34 — i2030 + 12,014 + 8024,
Pra = —(TAs + y24) 024 + 18034,

014 = [i(6 — Ay) — vialp1a — iQsp12 + 182,034,

where ys =y =i+ v va=Yu=yYua=y1+y +
y3, and yp, is the dephasing rate for the transition |2)—|1)
due to the atomic collisions. For simplicity, we assume
y1 =y2» =y3 = y/2, and then the steady solution of the
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element p3; is

o iQ%(M + I'34T14)
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where M =Q3 —Q}, Tis=iA,+y, Ty =i(A; —8)+
)//2, F34 = —i(A — AS) + 3)//2, F32 =iA— Y, and Flz =
—i8 + y12.

From Eq. (3), the linear susceptibility x experienced by the
probe field can be written as

X =3nNy%, @)

where N = Ny(A/2m)? is the scaled average atomic density,
and Ny and A represent the atomic density and the wavelength
of the probe field. We assume that the interaction length of
cold atoms experienced by the probe field in the z direction
is L, which is given in units of ¢ = /62N In the slowly
varying envelope approximation and the steady-state regime,
the propagation of probe field driven by the atomic polarization
can be described by Maxwell’s equation as

E;_g = (—a +ip)g. &)
z

where o = (27 /A)Im[x] and 8 = (27w /A)Re[x] are the ab-
sorption and dispersion coefficients of the probe field. In order
to simplify the physical interpretation and focus on the main
features of the GPG, the transverse term in Eq. (5) has been
neglected [2]. After solving Eq. (5) analytically, we obtain the
transmission function of the probe field at z = L,

T(x) = e *WkePOL, (6)

Under the condition that the probe field is a plane wave, the
Fraunhofer diffraction pattern is given by the Fourier transform

(b)

FIG. 1. (Color online) (a) A schematic diagram of the four-level
N-type atomic system. The possible levels correspond to the D, line
of Rb atoms: |1) = |F =3, mp = =3), |2) = |F =2, mp = —1),
BY=I|F =2, mp=-2), and 4)=|F' =1, mp =0). (b) A
sketch of a prototype experimental setup.

g - [i3[(M + T3ala)(Cial3 = M) + Q2(Tas + Ti2) (T2 — Tia)]’

3)

of the transmission function 7'(x). Following the results in [2],
the diffraction intensity distribution can be written as

sinf? (N A sin6/x)

NZsin2(w A sin6/1)’
where N is the number of spatial periods of the atomic grating
illuminated by the probe field, and 6 is the diffraction angle

with respect to the z direction. Here the Fraunhofer diffraction
of a single space period is

1(0) = |E@®)]? @)

1
E(Q):/ T(x)exp(—2mwiAxsinf/A)dx. ®)
0

The diffraction efficiency of the grating is taken to be the ratio
of the intensity in the diffracted output to the intensity of the
input. Because 7(#) in our manuscript is normalized such that
the intensity of the input probe field is equal to 1, the diffraction
efficiency in any diffraction order can be given by the intensity
of 1(0) for that order.

In the following, we demonstrate the calculated results
which correspond to transitions of 3°Rb atoms, and here
2y /27 = 6.066 MHz and yi,/27 =~ 1 kHz are chosen.
Figure 2(a) displays the amplitude and phase of the transmis-
sion function as a function of x. An investigation of Fig. 2(a)
shows that the probe field is amplified, and the probe gain
oscillates along the x direction in a period of A. The amplifi-
cation of probe field is attributed to the effect of ARG induced
by the pump field, and the periodic intensity pattern of the
standing wave changes the probe gain periodically. Therefore,
an amplitude grating or gain grating is formed in the cold
atomic medium. Due to the Kramer-Kronig relations [13], the
dispersion of the probe field also changes periodically in
the x direction, and then the phase of the probe field alters in
the same period as shown in Fig. 2(a). We can also understand
the probe phase modulation by the XPM of the standing
field, and at this point, this grating is a phase grating. As a
result, we define such a grating as a GPG. In Fig. 2(b), we
supply the diffraction pattern according to the transmission
function of Fig. 2(a) in the conditions of A/A =4 and N = 5.
In the absence of the phase modulation [B(x)L = 0], only
the zero-order diffraction is significant, which proves that
the amplitude grating mainly diffracts the energy into the
zero-order direction. Due to the coherent superposition of
the probe gains in the spatial periods, the amplitude of the
zero-order diffraction in Fig. 2(b) is larger than the probe gain
in a single period in Fig. 2(a). When the phase modulation
is considered, a fraction of the intensity has been deflected
out of the zeroth diffraction into additional side patterns
located at sinf = nA/A (n = 1,2,3) as shown in Fig. 2(b).
The first-order and second-order diffraction efficiencies in
Fig. 2(b) are about 50% and 14%, and the diffraction in the
third-order direction also has a small amount of energy. In
comparison with the EIG and EIPG, the GPG has a larger
diffraction intensity in the first-order direction. Because the
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FIG. 2. (Color online) (a) The amplitude (solid line) and phase
(dashed line) of the transmission function 7'(x) as a function of
x within two space periods when A, = A = =50y, A, = —22y,
Q, =0.1y, 2 =0.11y, and L = 100¢. (b) The diffraction intensity
as a function of sin @ for the corresponding transmission function as
shown in (a). The gain-phase grating considers the spatial modulation
of the gain and phase of the probe field, while the gain grating ignores
the phase modulation in space [B(x)L = 0]. The inset shows the
residual parts of the diffraction patterns.

second-order diffraction efficiency of the GPG is comparable
with the first-order diffraction efficiency of the EIG, the
second-order diffraction component of the GPG should be
observed in experiments.

In order to meet the requirement of ARG that the ground-
state population is not depleted, we confirm that the Rabi
frequency of the pump field is much smaller than its detuning
(2, < |Ap]). On this condition, the first-order and second-
order diffraction efficiencies are plotted as a function of
the intensity or detuning of the pump field in Fig. 3. An
investigation of Fig. 3 shows that the diffraction efficiency
in the high-order direction increases as the intensity of pump
field increases, while the diffraction efficiency decreases as the
detuning increases. The reason is that the grating with a larger
amplitude and phase modulation can diffract more energy into
the high-order directions.

In Fig. 4(a), the diffraction efficiencies in the first-order and
second-order directions are given as a function of the intensity
of the standing wave for different interaction lengths and A; =
—22y. An investigation of Fig. 4(a) shows that diffraction
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FIG. 3. (Color online) The diffraction intensities in the first-order
and second-order directions as a function of the Rabi frequency of
the pump field when A, = —50y; the first-order and second-order
diffraction intensities as a function of the detuning of the pump field
when ©, = 0.1y and § = 0. Here sin8, = 0.25, sin6, = 0.5, and
other parameters are the same as in Fig. 2(a).

A, (units of y)

FIG. 4. (Color online) (a) The first-order and second-order
diffraction intensities as a function of the intensity of the standing
wave for different interaction lengths and A; = —22y. (b) The
first-order and second-order diffraction intensities as a function of the
detuning of the standing field for different standing-wave intensities.
In both cases, sin6; = 0.25, sinf, = 0.5, and other parameters are
the same as in Fig. 2(a).
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efficiencies increase as the interaction length increases, and at
L = 120¢, for a Rabi frequency of standing wave as 0.11y,
the diffraction efficiencies in the first-order and second-order
directions can reach 94% and 25%. Increasing the interaction
length, the gain and XPM of the probe field increase, and
then the high-order diffraction efficiency increases. In order to
ensure the weak-field approximation of the probe field in our
calculations, the largest interaction length under consideration
is L = 120¢, which leads to an amplification of the probe
field by a factor of four. In Fig. 4(b), for the different standing-
wave intensities, we depict the first-order and second-order
diffraction intensities as a function of the detuning of the
standing wave. It is seen from Figs. 4(a) and 4(b) that there are
optimum parameters of the standing wave, such as 2 = 0.11y
and Ay = —22y; this result proves that there is an optimum
phase modulation of the probe field. Due to the ac Stark
shift of the state |2) induced by the standing wave, there is
a change in the probe detuning, and the largest one induced
by a certain standing wave is §; = Q2/A, [14,15]. At the
frequency of the half-height of the gain profile, the probe
field has the largest dispersion coefficient. Hence the largest
phase modulation occurs when the largest change of the probe
detuning equals to the half width at half maximum of the gain
profile. Because the full width at half maximum of the gain
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profile is about 2y, [6], the change of the probe detuning
8s which leads to an optimum phase modulation, can be
derived as

8 = =8 — y1a, ©)

where 6§, = —Qi/AP is the ac Stark shift of the state |3)
induced by the pump field. Inserting the optimum parameters
of the standing wave in Fig. 4 into Eq. (9), one can obtain
good agreement. Owing to the high diffraction efficiency in
the high-order direction, the GPG can be used as an all-optical
router [12] which has a great potential application in optical
networking and communication.

In conclusion, we theoretically demonstrate that a GPG
can be induced by the periodic modulation of ARG in an
ultracold atomic medium. This grating is induced not only by
the amplitude modulation of the probe gain, but also by the
modulation of the probe phase. In the GPG, the gain grating
induces an amplification of the diffracted beam in the zero-
order direction, and the phase grating deflects the energy into
high-order directions effectively. In comparison with the EIG
and the EIPG, the GPG has larger diffraction intensities in
the high-order directions, thus it may be utilized as an all-
optical router which is an important optical device in optical
networking and communication.
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