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bstract. To eliminate side-oblique image motion, a fast image al-
orithm is proposed for implementation on aerial camera systems.
hen an aerial camera works at a side-oblique angle, much parallel

mage motion with different rates will occur on the focal plane array
imultaneously. Through analysis of how different rates of parallel
mage motion blur are generated and the relationship between im-
ge motion and the field of view (FOV) angle in side-oblique situa-
ions, the entire blurred image can be segmented into many slices
y their different rates of image motion. To be computed quickly, the
lices are divided into pixel lines continuously, and then a specific
arallel computing scheme is presented using 1-D Wiener filters to
estore all the pixel lines. With all the resulting pixel lines combined,
he restoration image comes into being. The experiment results
how that the proposed algorithm can effectively restore the details
f side-oblique blurred images. The peak signal-to-noise ratio
PSNR) of the restored image can reach 31.426. With the help of the
arallel computing capability of a graphics processing unit (GPU),
he proposed algorithm can restore a 2048�2048 8-bit blurred im-
ge in 17 ms, realizing real-time restoration. © 2009 SPIE and

S&T. �DOI: 10.1117/1.3125982�

Introduction
mage motion is inevitable when an aerial camera works on
igh-velocity, low-altitude �highV/H� airborne platforms.
he complicated and changing flying attitudes of aircraft
ill influence the working attitude of aerial cameras, which

an create various kinds of image motion. This type of
mage motion is associated with the specific attitude of the
erial camera and the roll, pitch, and yaw rates of aircraft
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during the exposure time. When an aerial camera works at
a side-oblique angle on a forward flight aircraft, the image
motion in different regions of the focal plane array is dif-
ferent, forming different rates of image motion blurred im-
ages.

There are many approaches to compensate for side-
oblique motion blur, such as on-chip electronic forward
motion compensation �FMC�,1 moving focal plane,2,3 con-
trolling focal plane shutter,4 and so on. Unfortunately,
charge-coupled device �CCD�/complementary metal oxide
semiconductor �CMOS�-incorporated on-chip electronic
FMC is too expensive to be widely applied. Also, the ap-
proaches of motion compensation by moving focal plane or
controlling focal plane shutter get very bulky and have
complicated mechanism structures that consume much pay-
load and container capacity of the aircraft.

Taking cost and bulk weight into consideration, it can a
good choice to utilize digital image approaches to eliminate
side-oblique motion blur. But most restoration algorithms
are designed to compensate the identical rate of image
motion.5,6 In this work, a novel algorithm is proposed
where the entire blurred image is segmented into many
slices by their different rates of image motion. Each slice in
the frames has an identical rate of image motion and is
matched with a unique point spread function �PSF�. The
deductive process of the algorithm is described in Sec. 2,
and the experiment results are shown in Sec. 3.

2 Description of the Algorithm

2.1 Analysis of Side-Oblique Image Motion
Figure 1 illustrates the different rates of image motion pro-
duced when an aerial camera works at a side-oblique angle.
Apr–Jun 2009/Vol. 18(2)1
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N and vF represent the image motion speed of the near and
ar points on the focal plane array’s surface, respectively.
rom the simple geometrical relationship in Fig. 1, vN and
F can be calculated as follows:

F = f� V

H
� sin�� − ��

cos���
, �1�

N = f� V

H
� sin�� + ��

cos���
, �2�

here V is the aircraft velocity, H is the aircraft altitude, f
s the camera’s focal length, � is the camera’s depression
ngle, and � is the camera’s FOV half angle.

The speed ratio of the image motion between near point
nd far points is

vN

vF
=

sin�� + ��
sin�� − ��

.

hen � is a fixed value, the ratio vN /vF will increase as the
decreases in the zone of �90 deg,�� and the range of the

atio is �1, +��. It is implicated that the difference between

N and vF cannot be neglected, owing to the existence of
epression angle �.

To describe the image motion rate of general points con-
eniently, ��–������, the FOV angle of the current cor-
esponding object point, is defined. Moreover, the counter-
lockwise direction is defined as the positive direction. The
mage motion rate of a general point is described as fol-
ows:

= f� V

H
� sin�� − ��

cos���
. �3�

f exposure time T and the pixel size of the CCD/CMOS c
re given, the displacement of general blurred points asso-
iated with the view angle � can be calculated as follows:

Fig. 1 Side-oblique image motion compensation analysis.
ournal of Electronic Imaging 023005-
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L = f ·
1

c
· � V

H
� · T ·

sin�� − ��
cos���

= f ·
1

c
· � V

H
� · T�sin �

− cos � tan �� . �4�

From Eq. �4� it can be seen that when � is determined, L̃

will decrease as � increases in the range of �–� ,��. One L̃

may produce one PSF, and many different L̃s will produce
many different PSFs. To restore the single blurred image
with many different PSFs, we segment the entire blurred
image into many slices to match each PSF.

2.2 Image Segmentation

2.2.1 Point spread function configuration
From the monotone decreasing relationship between dis-

placement L̃ and view angle � in Eq. �4�; the image dis-
placement of the near point in the side-oblique aerial im-
ages is known as the maximal one, and the far point
displacement is the minimum. The expression is as follows:

Lmin = LF = f ·
1

c
· � V

H
� · T · �sin � − cos � tan �� , �5�

Lmax = LN = f ·
1

c
· � V

H
� · T · �sin � + cos � tan �� . �6�

For digital image processing, L̃, L̃min, and L̃max in Eqs.
�4�–�6� are rounded to the nearest integer value and marked
as L, Lmin, and Lmax, respectively. The difference �L is
defined as follows:

�L = Lmax − Lmin. �7�

From GPS/INS systems in aircraft, we can obtain the pa-
rameters of aircraft velocity V, altitude H, and depression
angle �, live. Also, with camera focal length f and camera
FOV half angle �, L, Lmin, Lmax, and �L can be calculated
immediately. Hence, we can get �L+1 different displace-
ments in each frame dynamically:

Ln = Lmin + n �0 � n � �L� . �8�

From Eq. �8�; the �L+1 PSFs in the same frame are ob-
tained as:

h�x,n� = � 1

Ln
, x = 0,1 ¯ Ln − 1

0, elsewhere
� . �9�

n in h�x ,n� shows that the current PSF is number n+1 PSF
in the frame. The range of n is �0,�L�.

2.2.2 Image segmentation and point spread
function distribution

As described in the last section, L̃ in Eq. �4� is discretized

to L, and all L̃s values among �L−1 /2, L+1 /2� are rounded
to L, forming a region with same displacement in the
blurred image. In accordance with Eq. �4�, the view angle
�1 and �2 can be calculated to match the corresponding
displacement L−1 /2 and L+1 /2, respectively. Between
Apr–Jun 2009/Vol. 18(2)2
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iew angles �1 and �2, the image point will form a rect-
ngle image zone that has an identical image displacement.
n light of that, we segment the side-oblique aerial image
nto �L+1 parallel image slices �as in Fig. 2�, with each
mage slice having a unique PSF function based on Eq. �9�.

From Fig. 3, the width of each slice can be calculated as
ollows:

=
f

c
· �tan �1 − tan �2� , �10�

here d is the count of pixels contained in the width length.
rom Eq. �4�, it can be deduced that:

L +
1

2
� − �L −

1

2
� = f ·

1

c
· � V

H
� · T cos ��tan �1 − tan �2�

= 1. �11�

inally, we obtain Eq. �12� from both Eqs. �10� and �11�,

=
1

� V

H
� · T cos �

. �12�

t can be seen from Eq. �12� that the width of slices is
etermined by aircraft speed V, altitude H, depression angle
, and exposure time T. The four parameters in one aerial
rame are treated as constant values. Therefore the width of
ach slice is equal in the same image.

Fig. 2 Segmentation of side-oblique image.

Fig. 3 Segmentation width analysis.
ournal of Electronic Imaging 023005-
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When segmentation and the PSF of each slice are ob-
tained, each image slice can be restored independently by a
Wiener filter. However, the width of the slices in different
frames may be different, leading to a dynamical configura-
tion for 2-D fast-Fourier transform �FFT�, which is the base
of the Wiener filter. If the transform size of the FFT is
uncertain, the FFT transform will be very inefficient and
the efficiency of restoration must be limited.

2.3 Fast Processing

2.3.1 One-dimensional Wiener filter
To avoid dynamical configuration of the 2-D FFT, we use a
1-D Wiener filter, which is based on 1-D FFT, to replace
the 2-D Wiener filter �WF� to restore the blurred image.7

Here, we use 1-D WF to distinguish from the traditional
2-D Wiener filter.5,6

Each slice in the blurred image will be decomposed into
pixel lines continuously, and each pixel line in the same
slice has the same PSF function. Therefore, we can utilize a
1-D WF to restore each pixel line based on its own PSF:

F�u� =
H�u�*

H�u�H�u�* + k
G�u� , �13�

where F�u�, H�u�, and G�u� denote the FFT of the restored
pixel line f�x�, the PSF h�x�, and the blurred pixel line g�x�,
respectively. The asterisk in Eq. �13� represents a complex
conjugate, and k in Eq. �13� is the reciprocal of the signal-
to-noise ratio �SNR� of the image.

When 1-D WF restoration is finished, all the resulting
pixel lines will be combined to form the final restored im-
age. It can be easily proved that the restoration algorithm
based on 1-D FFT is 2� faster than the algorithm based on
2-D FFT.7,8

Fig. 4 Parallel computing.

Fig. 5 MTF performance.
Apr–Jun 2009/Vol. 18(2)3
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2.3.2 Parallel computing
In the proposed algorithm, there is no correlation between
each of the pixel lines. Hence, each pixel line can be pro-
cessed independently. Figure 4 is the parallel computing
design for the algorithm. g�n�, G�n�, F�n�, and f�n� in Fig.
4 denote the blurred pixel line, transformed blurred pixel
line, transformed restored pixel line, and restored pixel line
of the n’th pixel line, respectively. 1-D WF�n� represents
the 1-D Wiener filter to the corresponding data in the n’th
pixel line.

2.4 Algorithm Accuracy

In Sec. 2.2, all L̃ among �L−1 /2, L+1 /2� are rounded to L
for discretization. Obviously, the discretization error is in-
troduced, and the restoration accuracy is limited by the
modulation transfer function �MTF� associated with the
discretization error. It is easy to calculate the difference
between the displacement at the very edge of any slice and
the one at the center of any slice. And the maximal discreti-
zation error �L is sure to be 0.5 pixels. The MTF due to the
discretization error is defined by:

MTF =
sin�	 · �L · c · f�

	 · �L · c · f
, �14�

where c is the pixel size of the CCD/CMOS �
m�, and f is
the spatial frequency �lp/mm�. The MTF in our algorithm
will not be affected by any other parameters, which are not

Fig. 8 Sample of Fig. 7.

Fig. 9 Sample of the blurred image.
ig. 6 Side-oblique blurred image synthesis. �a� The original image.
b� The blurred image with different rates of image motion. �c� The
mage restored by the proposed algorithm.
Fig. 7 Original image �2�2k�.
Apr–Jun 2009/Vol. 18(2)4
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hown in Eq. �14�. The MTF performance of the proposed
lgorithm is shown in Fig. 5.

Experiments and Results
irst, we use a blur image synthesis, shown in Fig. 6, to

llustrate the different rates of image motion in side-oblique
erial images. The synthesized image in Fig. 6�b� shows
hat the upper part of the blurred image is more distinguish-
ble than the lower part of the blurred image. It means that
he displacement of image motion on the upper part of the
lurred image is smaller than the one on the lower part of
he blurred image. Namely, the higher the position is, the
maller displacement it takes place, and vice versa. This
ind of blur is hard to restore by most general algorithms.
rom Fig. 6�c�, the proposed algorithm shows good resto-
ation for this blur.

In the next step of the experiment, the parameters of the
igital camera are as follows: camera focal length 180 mm;
amera FOV half angle 3.31 deg; CCD pixel size 7.2
7.2 
m; and CCD pixel count 2048�2048.
The parameters of the experimental environment are de-

ned by: the ratio of velocity and altitude �V /H�
0.3 rad /s; camera exposure time=5 ms; and camera de-
ression angle=30 deg.

From Eqs. �5� and �6�, we can obtain L̃min=16.87 and

max=20.63, then discretize them to Lmin=17 and Lmax
21, and get �L=4 according to Eq. �7�. Based on Eqs. �8�
nd �9�, we obtain five image displacements �such as
7,18,…,21� and five corresponding PSFs.

Figure 7 is the 2048�2048 original image used in the
imulation experiment. In the aerial side-oblique image mo-
ion simulation, Fig. 7 is simultaneously blurred by the five
SFs mentioned before. From Eq. �12�, it is known that the
idth of each slice is equal. Hence, we segment the blurred

Table 1 Image estimation.

mage Size MSE PSNR

lurred image 68.438 19.771

2048�2048

estored image 46.825 31.426

Fig. 10 Sample of the restored image.
ournal of Electronic Imaging 023005-
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image into five slices equally to match the five unique
PSFs, and utilize the parallel computing scheme, as Fig. 4
described, to restore the blurred image.

Figures 8–10 are a group of image samples from the
original image, the blurred image, and the restored image
of Fig. 7, respectively. These three sample images are from
the same position on their own original images. The posi-
tion is marked by a rectangle in Fig. 7. Compared to Fig. 8,
the airplanes and other details in Fig. 9 cannot be recog-
nized any more. Figure 10 is the restored image where most
details are restored and the image sharpness is greatly en-
hanced. Visual inspection reveals that no noticeable inter-
fering noise is introduced and the frame is clear. To provide
an objective quality estimation, the mean square error
�MSE� and peak signal-to-noise ratio �PSNR�, before and
after restoration, is listed in Table 1.

In the third part of the experiment, the proposed algo-
rithm is applied on the real side-oblique motion blurred
image �Fig. 11�. The restored image is shown in Fig. 12.
The details in Fig. 11 are well restored in Fig. 12. From
Fig. 12 it can be seen that the restoration result of the real
blurred image is not worse than the simulation result. It
indicates that the proposed algorithm can work on the prac-
tical application.

In the experiment, the general purpose graphics process-
ing unit �GPGPU�9 technology is applied, and the algorithm
is parallel operated on a GPU as Fig. 4 described. The GPU
we used is an nVidia GeForce8800GTS �512 M�. We use
2048 parallel threads in the program. The restoration time
for the blurred images of different sizes is listed in Table 2.
The results show good performance for real-time process-
ing.

Fig. 11 The real side-oblique motion blurred image.

Fig. 12 Restored image of Fig. 11.
Apr–Jun 2009/Vol. 18(2)5
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Discussion and Conclusions
n the algorithm, restricting the blur directions to be parallel
o the rows of the image is not necessary. The blur direc-
ions can be arbitrary. As long as the blur pixel lines are
btained, the proposed algorithm can work. But according
o the way in which the current devices access data, reading
mage data in a series in a row direction is more efficient.

hen the motion blur is precisely aligned with the image
ows, motion blur pixels can be read in a row. It is easy to
lign the motion blur with the image rows by controlling an
erial camera moving precisely. Hence, row direction pro-
essing is advocated in practical restoration applications for
estoration speed improvement.

In Sec. 2.2, there is a discretization to the displacements
n each slice, and the discretization error is inevitable.
owever, it can be seen that the difference is no more than
.5 pixels between the displacement at the very edge of any
lice and the one at the center of any slice, so the restora-
ion error is less than one pixel. This is totally acceptable.
ur algorithm is based on 1-D FFT. By processing the

ame number of data, 1-D FFT can halve the computation
equirements compared to 2-D FFT. Consequently, our al-
orithm is 2� faster than the scheme with 2-D FFT. The
xperiment results show that the proposed algorithm can
ealize real-time processing based on the GPU platform,
nd it can restore side-oblique image motion blur effi-
iently.
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