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The Surface or Interface Polaron in Polar Crystals
II. Strong-Coupling Limit?)
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The effective Hamiltonian and effective potential are given for the surface strong coupling polaron
in polar crystals. Their binding energy and effective mass are also evaluated. When a piece of
a polar crystal contacts with a piece of another non-polar material, and the high frequency di-
electric constant ex2 of the non-polar material is larger than that (i.e.e001) of the polar erystal,
or is larger than a certain critical value (eco2)min, polarons can exist in the interface. Reversely,
when o2 < (£002)min, the polaron is not able to exist near the interface. If the non-polar material
is metallic (i.e. 002 = 00), there is a deeper potential well near the interface in which the polaron
may be trapped.

IIpencrasaserca sdderTupHbil [aMUIBbTOH 1 3(¢eKTUBHBLA NOTeHIUAN, KOTOpPLIEe NPH-
HajJIerKaT NOBePXHOCTHOMY TIOJIAPOHY CHJBHOH CBA3M B LIOJAPOHHX KUpCTANIaX. BI-
YHCJeHBl X DHePTMA CcBA3M M 3P PeKTHBHAA Macca. B0o3MoKHO CyIecTBOBATh OJAPOHEL
Ha IpaHMLe pasfeia, KOraa MoJdAPHBI KPUCTAJNJ conpuKacaeTca ¢ APYTUM HellOIAPHBIM
MaTepualioM, ¥ Ge3BIHEPIIMOHHBIX [HUAIEKTPUYECKUX IPOHUIIaeMOCTel &xog HENOJIAPHBIX
MaTepualioB G0Jbllle, YeM &col IMOJAPHLIX KPUCTANIOB, MU sz 60JblIe, 94eM HEKOTOPHIX
KPUTHYECKUX 3HAYEHMI (£co2)min. VI HATIDOTUB, TIOJAPOHLI He MOryT 00pa3oBaTh Ha I'pa-
HYIE, MPHA Eoo2 << (Eco2)min. ECIN HeNONAPHBIA MaTepuall fABIAETCA METANIOM (£coz =
= 00), TO IOABILAETCA IPYOOKaA MOTEHIINANbHAA AMA, B KOTOPOIl BO3MOMKHO JOBUTH 110-
JAPOHHL.

1. The Strong-Coupling Limit

In the previous paper [1], I have derived the expression of the expectation value of
(U Up)H{H — wy - Py} (U, U, for the surface polaron (henceforward, I will denote the
results oft he previous paper as I). They are, in principle, usable for arbitrary coupling
strength. However, as there is anunknown parameter 4 characterizing the coupling
strength in this expression, we can obtain some useful results only for the strong-coupl-
ing and weak-coupling limits. In the previous paper, we have accounted for the weak-
coupling limit, the case of 4 = 1. Now, I will account for the case of A = 0 which
corresponds to the strong-coupling limit. Then, putting 4 = 0 in (I, 15), we have
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where H{Y and P, are the new Hamiltonian and momentum obtained after twice unitary
transformation which are (U U,)~* H(U,U,) and (U,U,)™ Pyr (U U,) in (I.11) and
(I.1,3) respectively. u| is the Lagrange’s multiplier, fq, f, and their complex conjugate
forms are the variational functions, p, andA the variational parameters. In addition, V¢
and V, are the coupling strength coefficients which are also given in (I.2) and (I.3).

Minimizing (1) with respect to fq, f;, ..., we can obtain these functions. Inserting
these functions into (1), ¥ becomes

hA hl m*hl p2 e2 (8 — ¢ 0)
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where we have expanded [1 — (uy - jfwe)]~" and [1 — (u) + Qfw,)]~" contained in
fos f; and their square expressions (n = 1 or 2) in the series of ) - Q and w; - q;,
and only the second-order terms are retained. Carrying out the variation of (2) with
respect to p, gives

omE\1/2
Po = (_ITZ\J) w; . 3)

Inserting this py into (2) and changing the summation over Q and ¢ to integration,
we finally have
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|V¢l2 and | V,|? have been replaced by the values given in (1.2) and (I.3). (4) does not
contain terms of odd order in Q and ¢, because these terms vanish in integrating over
Q and q. It is evident from (4) that, as A occurs in the error function, it is quite difficult
to get an analytic experession for it. If we take z(2m*wd/A)V2>1 and z(2m* X
X wgh/h)H% < 1 as two extremum cases, the problem may be greatly simplified and an
approximate expression for 4 can be also obtained. However, this will result in the
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region of z ~ (2m*wgA/A)!/2 which is most important for the surface polarons out of
account, so we will apply the iteration method instead.

In the variation of (4) with respect to A, we assume that the contribution of the
terms containing «{f can be ignored and 1 in the integrand of f,(z) may be regarded as
a constant 1. Performing the variation of (4) with respect to A, we get

B i 1/221/7?0‘ mf; 1/2 4 1 8
e — (Zc) e (m*> {1 o {Al - 5] fl(z)}- (®)

1, may be regarded as a value of the zero-order approximation, or, if necessary, may
be also considered as a value of the first-order approximation. If A in £,(2) is taken to
be a zero-order value, i.e. 3, = (wa®mf;/16m*)1/2, 4, determined from (8) is a first-order
value.

Inserting all the variational functions and parameters determined above into (1.13),

the expectation value of P, for the ground state |0) is obtained to be (henceforth,
denoted by #)
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It is evident from (9) that the factor before u
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can be interpreted as the effective mass of the polaron, and u;; has the meaning of
the velocity which can be interpreted as the translation velocity of the polaron in the
2y plane.
Similarly, inserting these variational functions and parameters determined above
into (I.11), the expectation value of H® for the ground state |0) is obtained to be
(hence-forth, denoted by H )
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(11)
It may be called the effective Hamiltonian. An inspection of (11) shows that the first

term represents the kinetic energy of the polaron for the motion in 2-direction and the
rest of the terms, namely,
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can be interpreted as effective potential function for the motion in z-direction.
Taking the expectation value of the effective Hamiltonian (11) with respect to y,
the ground state energy E, is obtained to be
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Comparing (15b) and (15¢), one can see that there is a formal resemblance between
these two expressions, only their numerical values differ a little. Therefore, we may
safely assume that (11/2) as given by (15¢) is applicable to the whole region of z > 0.
Making use of the trial function (16) and inserting (A}/2) represented by (15¢) into
(13a), after some simple calculations we find the ground state energy to be (putting
(mfj/m*) = 1)

— JJ'T ’9 80(5001 — 3002) , it-
E,= 2M:ff+§ hog - Y r——— C'ahmy — - 82wy —
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Here we have used f, = (2m*w,/#)1/% as a unit of length, i.e. {’ = {/f,. For convenience
of writing, let us put

& (5001 - 8002)
A, = o . .
: (g6 — &a01) (€001 - Ecoz) (17

Then, the extremum condition for the ground state energy, (8E;/06(") = 0, gives
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From this equation [’ can be found. But the last term in the above equation is small
compared with the other terms. If we ignore it, an approximate analytic ex pression
for £’ can be obtained,

{'=n X

b s et

{’ has the meaning of the reverse state radius of the surface polaron. Evidently, {’
cannot be smaller than zero, or else it will lose its meaning. It means that the inter-
face polaron can be formed only in satisfying the following condition:

4, — (4, —3) <0. (20)

X

(19)

In fact, this condition can be satisfied as long as g2 is larger than & certain critical
value (£q02)min- From (20) and (17) this critical value is given by
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This (£co2)min 18 also the critical value for the dead layer of the polarons, i.e. when
€002 < (6co2)mins POlarons cannot exist near the interface.
Substituting (19) into (13b), we finally obtain

PR @ oc2{ B2 7B B 4,B }

S —_— a2 _ _
oty 2% T Bla+ BT @t B i — D & -1
22)

0

where we have used Aw, as energy unit and

B— —[AZ(AI - —;—)+32”~]+
+{[A2 (Al - —;—)+%] — 2 (Al - %) [A2 —~ (A] —~ %)]}m. (23)

From the above results we come to the conclusion that the ground state energy of the
interface polaron is as that of the bulk polaron proportional to &2, but its value is
much Jarger than that of the bulk polaron. In general, the binding energy of the surface
polaron is defined as the difference of the ground state energy of surface polaron and
bulk polaron. Taking the ground state energy of the bulk polaron as (x2%/3x), and taking
the average kinetic energy of the surface polaron parallel to the xy plane as zero, the
binding energy of the interface polaron is

7 1 1 hd -
Al =352 — 3z +E“2BZ{(n + B 44 —%)2}+
1 m 4o
P {(n +B) (4 —7) } (24)

The values of {’ and AE calculated from (19) and (24) for some alkali halides and
cuprous oxide (Cu,0) are given in Table 1.

Now, we return to discuss the effective potential of the polarons. Because the image
potential is inversely proportional to z (the distance from the interface), it is evident
from the effective potential (12) that when go2 < £c01, OT £oc2 is smaller than a critical
value (¢co2)min, the effective potential may be a positive value within a certain z range.
In this case there is no polaron near the surface which is called the dead layer for the
polaron. As we pointed out in the previous paper, we can assume that the effect of
the kinetic energy will decrease the polarization potential energy 1/4 of its original
value [5]. Then, from (12) we have the equation determining the thickness of the dead
layer which is given by (putting (mff/m*) = 1)

3 4 1 2 , 80(8001 - 8002) .
aoc {1 ‘!—; (A] - E) fl(z)} 2 — (80 — 8001) (8001 + 8002) =0 ] (25)

where 2’ = fiz, and f,(z) is approximately given by (14}, but in which 4 is replaced by
the value given in (15a). After some simple calculations, {25) becomes

Loz’ + 8 (4; — DF + [ (4 — 3) — 4] [naz’ -+ 8(4, — P —
—3{4, — 3P [maz’ + 8(4; — )] — 24(4, — DR =0, (26a)

The calculation shows that when the polar crystal is in contact with vacuum, i.e.
£x2 = 1, the polaron cannot exist within a certain range near the interface. The thick-
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Table 1

The calculated values of the dead layer z, binding energies AE, and the reverse state
radius £’ for the interface polarons*)

m* &g wg £ €001 €002 2, (1071°m) AE, ¢
(mq) (1013 871) from (Rog)  (Bo)

(26a) (26D)

1 0.35 0.56
NaCl 2.78 55 4.9 526 225 20 0.927 1.7
24.53 4.65
1 0.85 1.05
KCl1 1.85 56 3.87 468 213 2.0 0.607 0.89
19.04 4.13
1 0.73 0.73
NaBr 2.96 50 3.84 599 262 23 1.014 1.05
24.33 4.61
1 0.87 0.75
Nal 3.25 48 331 6.6 291 25 1.158 1.08
25.36 4.68
1 2.7
K1 2.11 4.6 276 494 269 23 0.381 0.71
19.94 4.61
1 1.7
Cu,O 1.81 25 81 10.5 4.0 3.0 0.213 0.42

3.53 1.71

*) The values of m*, &, wy, & and ex1 are taken from [4]. m, is the mass of the free electron, «,
the Frohlich constant for m* = 1.

nesses of the dead layer calculated from (26a) for some alkali halides and cuprous oxide
(Cu,0) are given in Table 1. One can see from this table that the thicknesses of the
dead layer are rather small for these materials, They are about 0.1 nm. However, as
the values of z are small, if we put z = 0 in f,(2), from (25) we can easily obtain

\ — 164,
3mxA%.

For comparison, the values calculated from (26 b) for some alkali halides are also given
in Table 1. It is shown that the thicknesses of the dead layer obtained from (26a) and
(26b) are nearly consistent.

Reversely, when the high frequency dielectric constant gz of the non-polar material
is larger than e, or larger than a certain critical value (£os2)min, according to (12),
the effective potential of the polaron is negative. In this case, the polarons can be
trapped near the interface. Let us assume that the non-polar material contacted with
a piece of polar crystal is a metal, i.e. g2 = 00, substituting (15a) into f,(z) of (12), we

have
Ph e2 T, { 8(4, — 1) 2
= —_— . 27

Verr aM¥%  Aewrz 32 &P 1 + anByz + 8(4; — 1) @7

(26b)
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the possible gap befween the metal
@ and strong polar crystal

Fig. 1. The potential well for the electron polarons and
hole polarons near the interface of a metal and a
strong polar crystal, @ the electron polaron, O the
hole polaron

A

Fig. 1 shows the typical behaviour of this potential function near the interface. The
upper and lower branches in this graph are the potential energies of the electron
polarons and the hole polarons, respectively. This graph shows that near the inter-
face there exist two kinds of potential well in which the electron polarons and the hole
polarons, respectively, can be trapped. It is worth mentioning that the potential
wells for the electron polaron and the hole polaron are completely dipped by them-
selves. They exist with the polarons and disappear with them.

In the polar crystal contacted with metal, if the electrons are excited from the
valence band to the conduction band by a radiation with apposite wavelength, under
the action of the surface potential, the electrons and holes have a strong tendency to
move towards the interface. Recombinations between the electron polarons and hole
polarons are also possible to happen near the interface. Since the sum of the depth of
both the potential wells is much larger than the binding energy of the bulk polaron
and the bulk exciton, the position of the radiative spectrum line emitted at the recom-
bination between them is on the long-wave side of the absorption band and the bulk
exciton line. If such radiation can be observed (I think, it should be observed), this
phenomenon possibly provides a method for investigating the surface or the interface
properties and the behaviour of the polarons near the interface.

Finally, we examine the effective mass of the surface polaron. However, it is difficult
to calculate the function f,(z) in the expression of the effective mass. We can only
approximately evaluate it. For the case of z < 0.1 nm we may simply take z — 0 in
fa(z), then from (10) we have

%\ 1/2 2
=ty 5 (0o

Inserting 21/2 denoted by (15b) into the above expression gives

e = o {14 2 (20 (2 . @

Reservely, in the case of z > 0.1 nm from (7) f,(z) may be approximately expressed as
1 mﬁ 25
fhlz) = e (E‘T‘) oA -
Inserting this result into (10) and averaging it over z gives

mj| 1.~ we\® 1
e o (e e (2 1]
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Inserting 7 given in (15¢) and {’ given in (19) into the above expression, we finally
obtain (putting (mfj/m*) = 1)

® .k ﬁt NES Ay (4]eg)* — (3)
Meff—m”{l —|—128 (n+2B) [2 (71+2B)+B4_(A1_%) . (29)
Thus, we come to the conclusion that the effective mass of the interface polaron is as
that of the bulk polaron proportional to «?, but its value is much larger than that of
the bulk polaron.
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