Journal of Luminescence 40 & 41 (1988) 491-492 North-Holland, Amsterdam

ninal states is

and the FF band anishes at E_{MF} . If the dispersion of the first anishes at E_{MF} and E_{MF} . The d. An exciton captured into a gluminescence to $\rho'(E)$. We represent the available we find that x(1-x) is the mich measures from the peak calibration of

the US-Israel .C. thanks the esearch for its

still lacks an

s, Sov. Phys.

in, phys. stat.

Wolford and 7 (1985). (1984).

za Ron, Phys.

Lai and M.V. 2 , 5 (1979) TRANSIENT STATE STUDY OF THE POLARIZATION PROPERTIES OF SIDEBAND RECOMBINATION EMISSIONS IN GAN CRYSTALS

Qingcheng BAO*, Fengling ZHANG**, Shengmin PANG, Duolu LI, Nailiang TIAN and Xurong XU Changchun Institute of Physics, Academic Sinica

In this paper, we report that the polarizabilities of near sideband recombination emission I_1 and I_3 in GaN crystal change quadratically with density of bound excitons.

1. INTRODUCTION

Exciton-exciton interaction has been an interesting problem for a long time. With the use of high power and short pulse Laser, intensity exciton system can be easily produced in crystals. This provides a basic experimental way to study interaction between excitons.

We analysed interaction between excitons and presented dispersion—conception of exciton-exciton from dipole interaction 1,2 .

We had reported the experimental result of polarization properties of sideband recombination emission in GaN crystal, with steady state spectra technique³, which give a proof for dispersion theory.

The transient polarization properties of near sideband recombination emission peak I_1 and I_3 in GaN crystal were experimentally studied with decay spectra technique and our results are reported in this paper. According to the result reported by Prof.Dai Rensong et al. 4 that peak I_1 from recombination emission of BED and I_3 from BEA.

The results of transient spectra agree with our previous results of steady state experiments and provides an experiment proof for the dispersion theory of exciton-exciton interaction.

The excitation intensity in our experiments was $1.2 \times 10^5 \text{W/cm}^2$, time precision was 10 ns and the temperature was 77 ± 0.5 K.

2. EXPERIMENTAL SET-UP

An excimer laser EMG-102 was used as excitation light source. Its light quantum energy was 4.023 eV and the peak power can be changed from 0 to 10⁸W/cm² by a group of attenuators. The pulse width was 10 ns. The samples were put in the cryostat ESR-900. A polarizer was put before a double grating monochromator to pick out bound exciton emission polarized in parallel and prependicular directions to the C-axis of GaN wafers respectively. After the monochromator, the light signal was amplified by a photomultiplier C31034 with cooling system. The amplified signal was then sent to Boxcar M-162, and then to an X-Y recorder.

0022-2313/88/\$03.50 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)

^{*} Dpt. of Chem., Univ. of Rochester, USA.

^{**} Dpt. of Phys..Northern Jiaotong Univ., China.

3. EXPERIMENTAL RESULTS

We studied two kinds of samples, one was unintentionally doped GaN crystal, a typical sample was labeled by GaN-15#, the other was Zine doped GaN crystal, a typical sample was labeled by GaN-16#. We recorded the decay spectra of $\rm I_1$ and $\rm I_3$, in two directions, that is, $\rm I_{II}$ and $\rm I_L$, where $\rm I_{II}$ and $\rm I_L$ are the luminescence intensities parallel and perpendicular to C-axis of GaN crystal, respectively. The experimental results for GaN-15# and for GaN-16# are shown in Fig.l and Fig.2 respectively.

Fig.1 Decay spectra of GaN-15#

Fig. 2 Decay spectra of GaN-16#

The polarizability of bound exciton emission P is defined as follows:

$$P(t) = I_{||}(t)/I_{||}(t)$$
 (1)

The following expirical formula $P(t)=(A+B+b(t))^2$ was obtained from our experiment results.

The relation between $P^{.5}$ (t) and b is shown in Fig.3.

Fig.3 The relation between $P^{.5}$ (t) and b

4. CONCLUSIONS

These results supported our previous conclusions presented for exciton-exciton interaction.

REFERENCES

- Bao Qingcheng, Dai Rensong and Xu Xurong, Abstract of "The Fifth Chinese Semiconductor Physics Conference" (1985) 230.
- Bao Qingcheng, Zhang Fengling, Shi Ke, Dai Rensong and Xu Xurong, Solid State Commun., Vol.59, No.9 (1986) 599.
- 3. Zhang Fengling, Bao Qingcheng and Dai Rensong, Chinese J. Luminescence, Vol.7, No.2 (1986) 178.
- 4. R.Dai, et al., J.Phys.C., 15, (1982) 393.

ENHANCED REC

Kensuke OGAW

Department o

Effect of de liquid in Ge recombinatio 7.2 x 10 0 cr for shallow

1. INTRODUCTION

Properties of pure Georystal Impurity effect not clear. Lumbound double effor Zn-doped Geacceptors. Relevel impurities

Under appli a giant strain. In this paper, e-h recombina Recombination Be- or Zn-dope double accept SCEHL.

2. EXPERIMENTAL Dopant conc and 1.0×10^{15} cm⁻³ and 2.1×10^{13} cm⁻³ and Ultra-high-purithan 10^{11} cm⁻³ Sample was

0022-2313/88/\$03 (North-Holland Ph

^{*}Present addr