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Exciton-Neutral-Donor Complexes in Semiconductor Quantum Dots
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The quantum states of exciton-neutral-donor complexes in semiconductor quantum dots are computed
using a numerical matrix-diagonalization scheme. The results predict an increasing binding energy of

exciton to neutral donor with decreasing dot size.
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1. Introduction

The size quantization of electronic states in semi-
conductor microcrystallites has been extensively inves-
tigated 1=%). When the size of the crystallites is of the
order of or less than the exciton Bohr radius, the quan-
tum confinement effects lead to pronounced changes in
their electronic and optical properties. The quantum
confinement effects will also influence the interaction of
electrons and holes with impurities in the quantum dots.

In this paper we present a theoretical calculation of
the quantum states for exciton-neutral-donor complexes
in quantum dots.
of the binding energy of exciton to donor, both the

In order to obtain reliable results

exciton-neutral-donor complex state and the free exciton
state must be calculated accurately. We do this using a
matrix-diagnolization scheme.

2. Theoretical Formulation

The system of exciton-neutral-donor complex in a
quantum dot is modeled as three particles, two electrons
and one hole, moving in a spherical quantum well with
a fixed charge located at the center of the sphere. The
motion of the particles is described in effective mass ap-
proximation and the confinement is assumed to be an
infinitive barrier. The Hamiltonian of the system is
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where U = 0 if all the particles are inside the sphere, and
U = +oo otherwise. We have denoted the electron coor-
dinates by the subscripts 1 and 2, and the hole coordinate
by 3. ¢ = m./my is the electron-to-hole effective-mass
ratio. In eq (1), and throughout this paper, the unit of
length is the donor Bohr radius a4 = a-:hz/mee2 and the
unit of energy is the donor Rydberg Fy 5 = mee'*/2€2h2
with € being the dielectric constant.
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To compute the energies and eigenfunctions of Hamil-
tonian (1) we expand the eigenfunctions in a complete
set of basis functions {|K)}. The basis functions are
chosen as

|K) = A1+ Pr)|K) , 2

where
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and 1312 is the permutation operator on the electron 1
and electron 2; A=1/2if ny =ng and l; = l3,and A =

\/5/2 otherwise. From the properties of the Clebsch-
Gordan coefficient we have
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The single-particle orbital functions |nlm) in egs. (2)-(5)
are defined by

(e[nim) = Rai(r)Yim (6, ¢) ,
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Yim is a spherical harmonic function, a is the radius of

(6)

where

the sphere, z,; is the nth zero of the I-degree spherical
Bessel function j;(z). The total angular momentum is a
constant of motion and therefore provides a good quan-
tum number, L. In computing the states we can consider
each L separately.
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The matrix elements of the kinetic part of the Hamil-
tonian (1) on the base defined by eq. (2) can be obtained
directly from

-VIR) = (BEPER), i=1,23. (8
For the matrix elements of the Coulomb interactions we

derive, using the tensor operator techniques, the follow-
ing formulas
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for ¢ = 1,2,3 (11)
where
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abe abe . .
(def) and {def} are the 3-j and 6-j symbols re-

spectively. The A; in eq. (11) is equal to one if |K) is
identical to |K’) or different only in n; and n}; otherwise
A; = 0. We have also used the notations

[a,b,--]=(2a+1)(26+1)--- . (14)
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By virtue of eq. (5), all the Coulomb interaction matrix
elements can be obtained from egs. (9)-(14).

The binding energy of the exciton to neutral donor is
defined by

By = E; + Eq4 — de (15)

where Eg4, is the ground state energy of the con-
fined exciton-neutral-donor complex, E, and E; are the
ground state energies of the exciton and the donor sep-
arately confined in quantum dots. We compute E, by
diagonalizing the matrix of the exciton Hamiltonian®
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on the two particle basis functions,

I(nelcynhlh)LzMz) (17)

The single-donor states are easily computed by diagonal-
izing the donor Hamiltonian

Hd=—V2—§+U (18)

on the single-particle basis functions, |nlm).

3. Numerical Results and Discussion

In order to obtain reliable exciton-neutral-donor bind-
ing energy, the exciton ground state energy E; and the
donor ground state energy E4 must be calculated accu-
rately. In computing E, we include 270 two-particle or-
bitals of the type specified by eq. (17) as basis functions
for the exciton Hamiltonian H,. The lowest eigenvalue
E; obtained from the diagonalization of the 270 x 270 H,
matrix is believed to be accurate enough when a < 6a,
where a, is the bulk exciton Bohr radius. In computing
E; we use 200 single-particle basis functions with [ = 0
for the Hy matrix, exceeding the accuracy requirement.

For exciton-neutral-donor complex states, the number
of basis functions needed is much larger. We use 341
three-particle basis functions specified by eq. (1) for our
explicit calculations. The angular integrals, products of
3-j and 6-j symbols, in eq. (9) and (10) are programmed
efficiently. For the large number of radial integrals we
make use of the symmetry properties

I(nylynilinglanblok) = I(nglynylyng lynf k)
:I(n'll'lnlllnzlzn;l'zk) (19)

to simplify the numerical calculations.



24 Jpn. J. Appl. Phys. Vol. 34 (1995) Suppl. 34-1

N WN =

o L L L 1 L
0 1 2 3 4 5 ]

a/a‘

Fig.1. Exciton-neutral-donor binding energy Bq; as function
of dot radius a for five different electron-hole mass ratios,
me/mp = 0.1 (curve 1), 0.15 (curve 2), 0.24 (curve 3), 0.69
(curve 4) and 1 (curve 5).

In practice, we evaluate the integrals I for all con-
cerned combinations of (nylynfl{nalanylsk), store the re-
sults in a data file, and use that data file repeatedly
in calculating the Coulomb interaction matrix. The to-
tal Hamiltonian matrix of the confined exciton-neutral-
donor complex is then diagonalized to obtain energy Eg,
and correspond eigenvectors.
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The size dependence of the exciton-neutral-donor
binding energy Bg, is calculated for a number of
electron-hole mass ratios. Figure 1 shows the variations
of the binding energy By, with the dot radius a for the
mass ratios m./my, = 1, 0.69, 0.24, 0.15 and 0.1. The
parameters m,/my, =0.69, 0.24, 0.15 and 0.1 are chosen
for ZnS, CdS, ZnTe and GaAs respectively.

From fig. 1 one can see that the exciton-neutral-donor
binding energy is always positive and increases with the
decrease of the dot size. When the radius of the sphere is
about a4 the binding energy of exciton to neutral donor is
an order of larger than that of in bulk sample!®). For the
physically unrealistic, but theoretically interasting limit
a — 0, we see that the exciton-to-neutral-donor energy

approches values around the donor binding energy in the
bulk.
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