
Computation of the diffracted field of a toothed occulter
by the semi-infinite rectangle method

Mingzhe Sun,1,2 Hongxin Zhang,1,* Heyang Bu,1 Xiaoxun Wang,1 Junlin Ma,1 and Zhenwu Lu1

1Opto-electronics Technology Center, Changchun Institute of Optics, Fine Mechanics and Physics,
Chinese Academy of Sciences, Changchun, Jilin 130033, China

2University of Chinese Academy of Sciences, Beijing 100049, China
*Corresponding author: firsthongxin@163.com

Received April 10, 2013; revised September 1, 2013; accepted September 2, 2013;
posted September 5, 2013 (Doc. ID 188592); published September 30, 2013

To observe the solar corona, stray light in the coronagraph, arising primarily from an external occulter and dia-
phragm illuminated directly by the Sun, should be strongly suppressed. A toothed occulter and diaphragm can be
used to suppress stray light because they diffract much less light in the central area than a circular disk. This study
develops a method of computing the light diffracted by a toothed occulter and diaphragm, obtaining the optimum
shape using this method. To prove the method’s feasibility, the diffracted fields of circular and rectangular disks
are computed and comparedwith those calculated by a conventional method. © 2013 Optical Society of America
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http://dx.doi.org/10.1364/JOSAA.30.002140

1. INTRODUCTION
Since the first coronagraph flew to space in 1963 [1], many
solar observing satellites have been equipped with corona-
graphs, including Skylab [2], Solar Maximum Mission
(SMM) [3], Solar and Heliospheric Observatory (SOHO) [4],
and Solar TErrestrial RElations Observatory (STEREO) [5].
The elimination of stray light is the key problem in corona-
graph manufacturing because the corona is much less bright
than the Sun, typically on the order of 10−5 to 10−13B⊙ [4],
where B⊙ is the mean solar brightness. An external occulter
and diaphragm are used in an externally occulted corona-
graph. Figure 1 shows a schematic diagram of a typical exter-
nally occulted coronagraph [4,6]. It is composed of four stops,
two occulters, three groups of lenses, and a Lyot spot. The
external occulter D1 is used to block the photospheric light
from the entrance aperture A1. The objective lens O1 images
the corona at the position of the field stop, and at the same
time images the external occulter D1 onto the internal
occulter D2. The external diaphragm blocks the light from
neighboring instruments and other sources outside the field
of view. The field stop is not located exactly at the conjugate
position of A0, but it can still block the light diffracted from A0,
as shown in Fig. 1. The Lyot stop is located at the conjugate
position of the entrance aperture A1 and blocks the light dif-
fracted from A1. The relay lens O3 reimages the corona image
onto a CCD camera positioned at the focal plane F.

The external occulter and diaphragm in the coronagraph,
which are directly illuminated by photospheric light, are
the primary contributors to the diffracted light. Although they
are blocked by the field stop and internal occulter, respec-
tively, the diffracted light can still illuminate the objective
lens, producing scattered light strong enough to overwhelm
the outer coronal signal. Therefore, suppressing this dif-
fracted light becomes a key problem in coronagraph fabrica-
tion. Many occulters have been developed to limit stray light
since Evans [7] invented the externally occulted coronagraph,

such as the two-disk occulter [8], three-disk occulter [8,9],
multiple-disk occulter [8], toothed disk occulter [9,10], multi-
threaded occulter [9], polished cone occulter [9], spider web
mask [11], and petal occulter [12]. Apparently, different
shapes, including those of teeth, spider webs, and petals,
can be used for the diaphragm. Among these three shapes,
the latter two are too hard to fabricate. Only the toothed shape
combines efficient diffracted light reduction with ease of fab-
rication. Because the toothed diaphragm and the occulter are
the same in theory, we discuss only the toothed occulter in
the following.

Along with the shape design, many methods have been de-
veloped to compute the diffracted field, for example, the ana-
lytically approximate method [13], Fresnel zone plate method
[14–17], rectangular diffraction method [18], Fourier trans-
form method [19], and boundary diffraction method [20].
Among them, the analytically approximate method is not pre-
cise enough to calculate the optimum shape of the occulter.
The Fourier transform and rectangular diffraction methods
are based on Fraunhofer diffraction, but the diffraction in
an occulter usually falls within the scope of Fresnel diffrac-
tion. Therefore, these twomethods are not appropriate for cal-
culating the diffraction in an occulter in most circumstances.
The Fresnel zone and boundary diffraction methods are two
generic and reliable ways of computing the diffracted field of a
toothed occulter. However, obtaining the optimized shape of
toothed occulters is complicated in both of them. This paper
aims to determine the optimum shape of external occulters
and diaphragms. To do this, we propose an algorithm for
calculating the diffracted field of occulters on the basis of
Fresnel integration theory [21,22]. We call this algorithm
the semi-infinite rectangular method and prove that it is fast
enough to optimize the shape of the toothed occulter.

The algorithm has the following three steps. First, consider
the diffraction at every side of a polygon acting as a semi-
infinite rectangular aperture, as illustrated in Fig. 2. Next,
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calculate the diffracted field at each side of the polygon.
Finally, take a coherent superposition of the diffracted field
at all sides of the polygon. For instance, the diffraction by
a square mask can be regarded as the superposition of the dif-
fracted fields of four semi-infinite rectangles corresponding to
the four sides of the square, as illustrated in Fig. 3. In fact, the
diffracted fields generated by the four corners are relatively
weak, so they can be ignored. In Section 2.B, it is proved that
the ignored parts are much smaller than the four parts calcu-
lated. Theoretically, the strongest diffracted light in the receiv-
ing plane is along the direction perpendicular to the edge of
the diffracted aperture. The direction perpendicular to the
edge of the corner part is always farther away from the center
than that of the side part, so the diffracted field due to the
corner part is always lower than that due to the side part.

Similarly, the diffraction of a dodecagon mask can be re-
garded as the superposition of the diffraction of twelve
semi-infinite rectangles (Fig. 4). A circular disk can be consid-
ered as a polygon with N sides, where N is large enough that
the polygon is close to a circle. Figure 5 shows a four-toothed
mask and the semi-infinite rectangles that are calculated.
Some of the semi-infinite rectangle areas overlap. However,
the effect of these areas is small compared to the entire dif-
fraction, so these overlaps are ignored.

To prove the feasibility of this algorithm, the diffracted
fields of both square and circular masks were calculated
using the proposed method and conventional methods for
comparison. For a square mask, the diffracted field can be
calculated directly by Fresnel integration. However, for a

Fig. 1. Schematic of the externally occulted coronagraph. A0, external diaphragm; D1, external occulter; A1, entrance aperture; O1, objective lens;
D2, internal occulter; O2, field lens; O3, relay lens with Lyot spot; F, focal plane [4].

Fig. 2. Semi-infinite rectangle; the rectangle extends infinitely to the
left.

Fig. 3. Square mask. Only the central square part is opaque; the rest,
including the blue corners, transmits light. Parts 1–4 are the calculated
parts of the semi-infinite rectangle. Infinite dimension always points
outward. Parts 5–8 are ignored.

Fig. 4. Dodecagon mask. Only the central dodecagon is opaque; the
rest, including the white triangles, transmits light. Parts 1–12 are the
calculated parts of the semi-infinite rectangle. Infinite dimension al-
ways points outward. Diffraction due to Part 14 can be obtained
by symmetric transformation of that due to Part 13 with respect to
the θ0 � θ1 axis. Diffraction due to Part 15 can be obtained by sym-
metric transformation of that due to Parts 13 and 14 with respect to
the θ0 � θ2 axis. Diffraction due to Part 16 can be obtained by sym-
metric transformation of that due to Parts 13, 14, and 15 with respect
to the θ0 � θ3 axis. Diffraction due to Part 17 can be obtained by
symmetric transformation of that due to Part 16 with respect to
the θ0 � θ4 axis.
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circular mask, the diffracted field should be calculated by the
Fresnel–Kirchhoff formula. This paper includes five sections
and two appendices. In Section 2, the feasibility of the algo-
rithm is demonstrated. In Section 3, the diffracted field of the
toothed occulter is calculated. Section 4 presents the results
and discussion, and the conclusions are drawn in Section 5.
The diffracted field of a single semi-infinite rectangle is de-
rived in Appendix A, and the feasibility of the method for
other shapes is demonstrated in Appendix B.

2. FEASIBILITY DEMONSTRATION
A. Calculation of the Diffraction of a Semi-infinite
Rectangle
Figure 6 shows a schematic diagram of the diffraction of
a single semi-infinite rectangle. The incident light is con-
sidered to be a plane wave. From the Fresnel integration
formula, the diffracted field in the screen is given by (see
Appendix A) [21,22]

U�x0; y0� �
U0eikz

2j

��
C�α2� �

1
2

�
� j

�
S�α2� �

1
2

��

× f�C�β2� − C�β1�� � j�S�β2� − S�β1��g; (1)

where U0 is the amplitude of the incident plane wave in the
mask plane, α2��2∕�λz��1∕2�−R−x0�, β1�−�2∕�λz��1∕2�w�y0�,
β2 � �2∕�λz��1∕2�w − y0�, x0 and y0 are the coordinates
in the screen, and z, w, and R are illustrated in Fig. 6. C�x�
and S�x� represent the two basic integrations of the
Fresnel integration formula [20,21] and are also shown in
Appendix A.

B. Demonstration of the Feasibility of the Method for a
Square Mask
Here, the diffraction of a square mask computed by the semi-
infinite rectangle method is compared with that obtained by
the conventional Fresnel integration formula. Figure 7 shows
a schematic diagram of the diffracted set of a square mask.
In the semi-infinite rectangle method, the calculation needs
to superpose the diffracted field from each side of the
square mask. As the square mask is symmetric, the coherent

Fig. 5. Four-toothed mask. Only the central four-toothed part is
opaque; the rest, including the white parts, transmits light. Parts
5–12 are the calculated parts of the semi-infinite rectangle. Infinite
dimension always points outward. Diffraction due to Parts 3 and 4
can be obtained by symmetric transformation of that due to Part 1.

Fig. 6. Schematic diagram of diffraction of the semi-infinite rectangle (the left-hand screen is opaque except for the semi-infinite rectangle).

Fig. 7. Schematic diagram of diffraction of the square mask.
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superposition calculation can be simplified. To make a
symmetrical transformation, it is convenient to change
Eq. (1) to polar coordinates using x0 � r0 cos�θ0�, y0 �
r0 sin�θ0�. According to Eq. (1), the diffracted field from
region 1 in Fig. 3 is

U1�r0; θ0� �
U0eikz

2j

��
1
2
− C�α1�

�
� j

�
1
2
− S�α1�

��

× f�C�β2� − C�β1�� � j�S�β2� − S�β1��g; (2)

where α1 � �2∕�λz��1∕2�wx − r0 cos�θ0��, β1 � �2∕�λz��1∕2�−wy−

r0 sin�θ0��, and β2 � �2∕�λz��1∕2�wy − r0 sin�θ0��. Further,
2wx and 2wy are the lengths of the sides of the square along
the x and y axes, respectively, and r0 and θ0 are the polar co-
ordinates on the receiving screen. Owing to the symmetry of
the square mask, we can obtain the diffracted field from the
square mask using

Fig. 8. Diffracted field of the square mask calculated by the semi-
infinite rectangle method.
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Fig. 9. Diffraction intensities of the squaremask calculated by the semi-infinite rectangle method (dashed line) and the Fresnel integration formula
(solid line). Intensities are calculated along the direction of θ0 � θ1 (Fig. 3), where the corner problem is largest.
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Fig. 10. Ratio of diffraction intensity from the corner to that from the entire square. Calculation is along θ0 � θ1 (Fig. 3), where the corner problem
is largest.
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Us�r0; θ0� � U1�r0; θ0� � U1�r0; 2θ1 − θ0�
� U1�r0; 2θ2 − θ0� � U1�r0; 2θ2 − 2θ1 � θ0�: (3)

Figure 8 shows the diffracted field on the receiving screen.
By using the Fresnel integration formula, the diffracted field
from the square mask can be given directly,

I�r0; θ0� �
I0
4
f�C�α2� − C�α1��2 � �S�α2� − S�α1��2g

× f�C�β2� − C�β1��2 � �S�β2� − S�β1��2g; (4)

where α1��2∕�λz��1∕2�−wx−r0 cos�θ0��, α2��2∕�λz��1∕2�wx−

r0 cos�θ0��, β1��2∕�λz��1∕2�−wy−r0 sin�θ0��, β2 � �2∕�λz��1∕2
�wy − r0 sin�θ0��, 2wx and 2wy are the lengths of the sides
of the square along the x and y axes, respectively, and r0
and θ0 are the polar coordinates on the receiving screen.

The diffraction intensity along the radial direction calcu-
lated by the two methods is illustrated in Fig. 9. The calcula-
tions were made under the following conditions. The distance
between the receiving screen and the mask plane, z, is
450 mm. The side lengths of the square,wx andwy, are 15 mm.
The incident wavelength λ is 550 mm. The results calculated
by the two methods agree very well.

Actually, it can be proved that the diffracted fields from the
four corners are much smaller than that from the square. Us-
ing the Fresnel integration formula, the diffracted fields from
region 5 can be calculated by the formula

U�r0; θ0� �
U0eikz

2j

��
1
2
− C�α1�

�
� j

�
1
2
− S�α1�

��

×
��

1
2
− C�β1�

�
� j

�
1
2
− S�β1�

��
; (5)

where α1 � �2∕�λz��1∕2�wx − r0 cos�θ0��, β1 � �2∕�λz��1∕2�wy−

r0 sin�θ0��. The ratio of the diffraction intensity due to region
5 in Fig. 3 to that from the entire square was calculated; the
results are shown in Fig. 10. The diffraction intensity from
the entire square is almost 104 times higher than that from
region 5. Hence, the diffracted field from the corners can
be ignored.

C. Demonstration of the Feasibility of the Method for a
Circular Disk
The diffracted field from a circular disk was calculated by the
proposed method, and the result was compared with that cal-
culated by the Fresnel–Kirchhoff formula. In the semi-infinite
rectangle method, a circular disk occulter can be regarded as
a polygon of N sides, where N is very large. The results ob-
tained by this method and by the Fresnel–Kirchhoff formula
are compared in Fig. 11. The conditions of the calculation
are as follows. The distance between the occulter and the re-
ceiving screen z is 450 mm. The radius of the circular disk r is
7.5 mm, the incident wavelength λ is 550 μm, and N � 256.
Again, the results obtained by these two methods agree well.
However, the calculation by the semi-infinite rectangle
method required much less time (360.109169 s) than that by
the Fresnel–Kirchhoff formula (29,601.084674 s), so the
latter method is about 82 times slower than the proposed
method.

The diffracted fields of other shapes are also compared and
illustrated in Appendix B.
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Fig. 11. Diffracted intensities of a circular disk calculated by the semi-infinite rectangle method (N � 256) and the Fresnel–Kirchhoff formula.

Fig. 12. Diagram of the toothed occulter or diaphragm [8].
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3. CALCULATION OF THE DIFFRACTED
FIELD OF A TOOTHED OCCULTER
Theoretically, the strongest diffracted light in the receiving
plane is along the direction perpendicular to the edge of
the diffracted aperture. The toothed occulter is designed such
that all the lines perpendicular to the edge of the occulter do
not fall in the center part. Thus, the diffracted light in the
center is effectively suppressed (Fig. 12) [9]. Figure 13

shows a schematic diagram of the diffraction from a toothed
disk.

Note that when the diffracted field of a toothed occulter is
calculated, the sides of the calculated rectangle must be par-
allel to the coordinate axis. Therefore, a coordinate transfor-
mation is needed. The diffracted field of the semi-infinite
rectangle is calculated under x00 − y00 coordinates as illustrated
in Fig. 12. It is then transformed to x0 − y0 coordinates. If the

Fig. 13. Schematic diagram of diffraction from the toothed disk.

Fig. 14. Toothed occulter with four teeth and its diffracted field.

Fig. 15. Toothed occulter with 16 teeth and its diffracted field.
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angle between the two coordinate systems is δ, the relation
between them is given by

�
x00
y00

�
�

�
cos δ
− sin δ

sin δ
cos δ

��
x0
y0

�
: (6)

An equilateral toothed occulter can be described by three
factors: the number of teeth N and the radii of the internal
envelope ri and the external envelope re (Fig. 12). When
N , ri, and re are known, we obtain

8>>>>>>><
>>>>>>>:

φ � 2π∕N
L �

����������������������������������������������
r2i � r2e − 2rire cos φ

q
� 2wx

sin ie � ri sin φ∕L
R � re sin ie
T �

����������������
r2e − R2

p
− L

δ � arccos�T∕ri�

; �7�

where φ, R, and T are illustrated in Fig. 12.
According to the above equation, the diffracted field from

the side is given by

~U�r0; θ0� �
U0eikz

2j
f�C�α2� − C�α1�� � j�S�α2� − S�α1��g

× f�C�β2� − C�β1�� � j�S�β2� − S�β1��g; (8)

where α1 � �2∕�λz��1∕2�T − r0 cos θ0 cos δ − r0 sin θ0 sin δ),
α2 � �2∕�λz��1∕2�T �L− r0 cos θ0 cos δ − r0 sin θ0 sin δ�, β1 �
−∞, and β2 � �2∕�λz��1∕2�−R� r0 cos θ0 sin δ− r0 sin θ0 cos δ�.

Finally, by a symmetric superposition, the diffracted field of
the toothed occulter is obtained. The calculated diffracted
fields of occulters with 4, 16, and 32 teeth are illustrated in
Figs. 14–16, respectively.

The diffracted fields of a toothed occulter and circular disk
were calculated; the results are shown in Fig. 17. The diffrac-
tion intensity of the toothed occulter is much lower than that
of the circular disk. The average diffraction intensity of the
circular disk is about 353 times that of the toothed disk. In
fact, with a proper selection of the height and number of teeth,
the scale can be improved to 103.

4. DISCUSSION
To obtain the optimal shape of the toothed occulter, the
diffracted field of the occulter with different numbers N
and heights of teeth was calculated.

Fig. 16. Toothed occulter with 32 teeth and its diffracted field.
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Fig. 17. Comparison of diffraction intensities of toothed occulter (lower curve) and circular disk (upper curve).
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Figure 18 shows the average diffraction intensity as a func-
tion of the number of teeth N . The calculation was made
under the following conditions. The distance between the
occulter and the receiving screen, z, is 840 mm, and the radius
of the internal envelope, ri, is 40 mm. The diffraction intensity
for teeth with a height of 2 mm declines first and then rises
with increasingN beyond a critical point, whereas for a height
of 0.5 mm, it declines with increasing N and then remains con-
stant when N is larger than a critical value. The critical point
for 0.5-mm-high teeth is larger than that for 2-mm-high teeth.
The slope after the critical point is larger for the height of
2 mm. In fact, the value of the critical point and the slope
are determined by the ratio of the height to the radius of
the occulter. As the ratio decreases, the critical point value
increases and the slope decreases. The diffraction intensity
reportedly became flat for large N and the critical point
was about 200 [15]. This is similar to our results for the
0.5-mm-high tooth, except that in our case the ratio of the
height to the radius is even larger. We also calculated the dif-
fraction intensity under the same conditions as in [15] with our
proposed method, and the result agrees well with that of [15].

When N is smaller than the critical value, the diffraction
intensity of the occulter for the tooth height of 2 mm is 103

orders of magnitude lower than that for the height of 0.5 mm,
as shown in Fig. 18. Figure 19 shows the diffraction intensity
of the toothed occulter as a function of the tooth height with
N � 32. The diffraction intensity initially decreases quickly
with increasing tooth height and then tends to remain un-
changed. In addition, the amount of vignetting increases with
the tooth height. Therefore, the selection of the height is a
trade-off between the diffraction intensity and the vignetting.

5. CONCLUSION
This paper proposes a method for computing the diffracted
field of a toothed occulter or external diaphragm and proves
that the method is feasible. The diffracted field of a toothed
occulter decreases quickly as the number of teeth N increases
when N is smaller than the critical value, and then it increases
or becomes constant when N is larger than the critical value.
The critical value increases as the ratio of the tooth height and
occulter radius decreases. The number of teeth should be op-
timized considering that it becomes more difficult to fabricate
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the occulter as the number of teeth increases. In addition, the
diffraction intensity decreases with increasing tooth height
when the height is lower than a certain value and then remains
unchanged when the height is higher than that value. If the
number N and height of the teeth are properly chosen, the
diffraction intensity can be reduced by a factor of 103.

APPENDIX A: DERIVATION OF THE
DIFFRACTED FIELD OF A SINGLE
SEMI-INFINITE RECTANGLE
According to the theory of Fresnel integration, if the incident
light is a plane wave, the complex form of the disturbance at
P�x0; y0� in Fig. 6 is [21]

U�x0; y0� �
U0

λz

Z
y2

y1

Z
x2

x1

ejkrdxdy

≈
U0

λz
ejkz

Z
y2

y1

Z
x2

x1

ejk
�x−x0 �2��y−y0�2

2z dxdy; (A1)

where U0 is the amplitude of the incoming light in the mask
plane, and k � 2π∕λ. Equation (A1) does not consider the
time factor of exp�−iwt�. For convenience, we introduce
two dimensionless variables α and β:

α≡

�
2
λz

�1
2�x − x0�; β ≡

�
2
λz

�1
2�y − y0�: (A2)

By substituting Eq. (A2) into Eq. (A1), we obtain

U�x0; y0� �
U0

2
ejkz

Z
α2

α1

ej
πα2
2 dα

Z
β2

β1

ej
πβ2

2 dβ: (A3)

The Fresnel integrals are defined by

C�x� �
Z

x

0
cos

�
πξ2

2

�
dξ; S�x� �

Z
x

0
sin

�
πξ2

2

�
dξ: (A4)

Then Eq. (A3) becomes
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Fig. 20. Diffraction intensity of the hexagonal mask calculated by the Fresnel–Kirchhoff formula (solid line) and the semi-infinite rectangle
method (dashed line). Lines are plotted along one perpendicular bisector of the side line of the hexagon.
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Fig. 21. Diffraction intensity of the decagonal mask calculated by the Fresnel–Kirchhoff formula (solid line) and the semi-infinite rectangle
method (dashed line). Lines are plotted along one perpendicular bisector of the side line of the decagon.
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U�x0; y0� �
U0

2
ejkz�C�α� � jS�α��jα2α1�C�β� � jS�β��jβ2β1 : (A5)

For the semi-infinite rectangle in Fig. 6, we have x1 � −∞,
x2 � −R, y1 � −w, and y2 � w. Consequently, α1 � −∞,
α2 � �2∕�λz��1∕2�−R − x0�, β1 � �2∕�λz��1∕2�−w − y0�, and β2 �
�2∕�λz��1∕2�w − y0�. Because C�−∞� � S�−∞� � −1∕2, the
diffracted field becomes

U�x0; y0� �
U0ejkz

2j

��
C�α2� �

1
2

�
� j

�
S�α2� �

1
2

��

× f�C�β2� − C�β1�� � j�S�β2� − S�β1��g: (A6)

APPENDIX B: DEMONSTRATION OF THE
FEASIBILITY OF THE METHOD FOR OTHER
SHAPES
The diffracted light intensities of hexagonal and decagonal
masks were calculated by the Fresnel–Kirchhoff formula
and the semi-infinite rectangle method; the results are shown
in Figs. 20 and 21, respectively. The calculations were made
under the following conditions: the distance between the
center and the side of the mask, r, is 7.5 mm, and the distance
between the occulter and the receiving screen, z, is 450 mm.

The diffracted light intensity from the four-toothed occulter
was calculated by the Fresnel–Kirchhoff formula and semi-
infinite rectangle method; the results are shown in Fig. 22.
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Fig. 22. Diffracted fields of the four-toothed occulter by the Fresnel–Kirchhoff formula (dashed line) and the semi-infinite rectangle method
(solid line).
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