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Abstract By means of Temperley–Lieb Algebra and topological basis, we make a
new realization of topological basis, and get sixteen complete orthonormal topological
basis states which are all maximally entangled for four quasi-particles. Then we present
an explicit protocol for teleporting an arbitrary two-qubit state via a topological basis
entanglement channel. We also show that four bits of classical information can be
encoded into a topological basis state by two-particle unitary operations.

Keywords Quantum teleportation · Dense coding · Topological basis

1 Introduction

Quantum teleportation [1], which is one of the most surprising features of quantum
mechanics, has been researched by many authors theoretically [2–8] and experimen-
tally [9–11] since Bennett et al. firstly presented the protocol of teleportation. As is
known, the standard teleportation protocol of Bennett et al., the state of the qubit A1
to be teleported from Alice to Bob is

|ψ〉A1 = a|0〉A1 + b|1〉A1 . (1)
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3370 T. Hu et al.

with a, b ∈ C1 and |a|2 + |b|2 = 1, from one place to another, by a sender, Alice, who
knows neither the state |ψ〉A1 to be teleported nor the location of the intended receiver,
Bob. And the entanglement channel between Alice and Bob is one of four maximally
entangled Bell states

|�1,2〉A2 B = 1√
2
(|00〉A2 B ± |11〉A2 B)

|�3,4〉A2 B = 1√
2
(|01〉A2 B ± |10〉A2 B) (2)

If Alice and Bob use entanglement channel |�1〉A2 B , the initial state of the qubits
A1, A2 and B can be expressed as

|ψ〉A1 ⊗ |�1〉A2 B = 1

2

4∑

i=1

|�i 〉A1 A2 ⊗ |ψi 〉B . (3)

where |ψi 〉B = U (i)−1|ψ〉B , the state |ψ〉B of the qubit B is just the state to be
teleported as shown in Eq. (1), and

U (1) = I ; U (2) = σ z

U (3) = σ x ; U (4) = iσ y (4)

Alice and Bob can complete the teleportation through Alice’s measurements on
the qubits A1 and A2 with four Bell states |�i 〉A1 A2(i = 1, 2, 3, 4) and Bob’s unitary
rotation U (i) on his qubit B corresponding to the Alice’s measurement outcome i,
respectively.

Bennett and Wiesner [12] also showed a special feature of Einstein-Podolsky-Rosen
(EPR) states (Bell states), i.e. dense coding. It was presented that two bits of classical
information can be encoded into an Bell state by one-partical unitary operations.
Specifically, if Alice and Bob respectively hold one particle from an Bell state, Alice
can send two bits to Bob through performing one of four unitary operations on her
particle and transmitting it to Bob. One particle carries two bits of information, which
is just the reason why it is called dense coding.

The Topological Quantum Computation (TQC) [13,14] is an intriguing proposal to
use the braiding operations of non-Abelian quasiparticles in certain strongly correlated
electron systems, also such as the fractional quantum Hall (FQH) liquids and quantum
gates. In the topological quantum computation theory, the two-dimensional (2D) braid
behavior under the exchange of anyons [15,16] has been investigated based on the
ν = 5

2 fractional quantum Hall effect (FQHE) [17–21]. The orthonormal topological
basis states read [17–20]

123



Quantum teleportation 3371

|e1〉 = 1
d
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1 0

= 1√
d2−1

(
2 31 4 − 1 2 3 4

)
.

(5)

where the parameter d represents the value of a loop. In the middle fusion chains
(called conformal block), at each trivalent vertex the internal edges obey the fusion
rules as follows:

1

2
× 1

2
= 0 + 1,

1

2
× 1 = 1

2
, 1 × 1 = 0,

0 × 0 = 0, 0 × 1

2
= 1

2
, 0 × 1 = 1.

It is worth noting that there are two different fusion channels for two 1
2 anyons. From

the conformal basis to the Kauffman graph on the right-hand sides, Jones–Wenzl
projector operators have been applied, i.e.,

�0 = 1

d

i j

, �1 = − 1

d

i j

. (6)

Recently, it is found that topological basis has some important physical applications
in topological quantum computation, quantum entanglement and topological quantum
teleportation [22–25]. Based on the topological basis, ref. [22] nested the TLA into the
four-dimensional (4D) Yang-Baxter Equation (YBE) and reduced it to the 2D YBE.
Then they pointed out that the YBE can be tested in terms of quantum optics. In ref.
[24], authors connected the topological basis states with a Heisenberg XXX spin chain.
On the other hand, an experimental results for a small-scale approximate evaluation
of the Jones polynomial by nuclear magnetic resonance (NMR) was presented in ref.
[26]. The authors could obtain the value of the Jones polynomial via measuring the
nuclear spin state of the molecule.

Our aim in this work is to connect the topological basis states with quantum telepor-
tation and dense coding. In ref. [22], Ge et al. got and used two topological basis states
which are not complete for four quasi-particles. In our paper, we will generate sixteen
complete orthonormal topological basis states which are all maximally entangled for
four quasi-particles. Consequently, we can make use of all of these topological basis
states to realize a protocol for teleporting an arbitrary two-qubit state and we show
that four bits of classical information can be encoded into a topological basis state by
two-particle unitary operation.

This paper is organized as follows: In Sect. 2, we recall the Temperley–Lieb algebra
and get part of topological basis states. In Sect. 3, we make a new realization of topo-
logical basis, and get sixteen maximally entangled complete orthonormal topological
basis states for four quasi-particles. In Sect. 4, we present an explicit protocol for
teleporting an arbitrary two-qubit state via a topological basis entanglement channel.
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In Sect. 5, we show how the dense coding happens via the topological basis states. We
end with a summary.

2 Temperley–Lieb algebra and topological basis

We first briefly review the theory of TLA [27]. For each natural number m, the TLA
T Lm(d) is generated by {I,U1,U2...Um−1} with the TLA relations:

⎧
⎨

⎩

U 2
i = dUi 1 ≤ i ≤ m − 1

UiUi±1Ui = Ui 1 ≤ i ≤ m
UiUi+1 = Ui+1Ui | i − j |≥ 2

(7)

where the notation Ui ≡ Ui,i+1 is used. The Ui represents 11 ⊗ 12 ⊗ 13 ⊗ · · · ⊗
1i−1 ⊗ U ⊗ 1i+2 · · · 1m , and 1 j represents the unit matrix in the jth space Vj . In
addition, the TLA is easily understood in terms of knot diagrams in ref. [26,28,29].
Using Kauffman’s graphs, it can be expressed as,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ui −→ , U 2
i = dUi −→ =

UiUi±1Ui = Ui −→ =

UiUi+1 = Ui+1Ui −→ =

(8)

The 4 ⊗ 4 Temperley–Lieb matrix U with d = √
2 which satisfies TLA in Eq. (7)

has the representation,

U = 1√
2

⎛

⎜⎜⎝

1 0 0 eiϕ

0 1 iε 0
0 −iε 1 0

e−iϕ 0 0 1

⎞

⎟⎟⎠ (9)

where ϕ is real and ε = ±.
When d1 = d2 = 2, correspondingly the 4 ⊗ 4 Temperley–Lieb matrices U (1) and

U (2) have forms as follows,

U (1) =

⎛

⎜⎜⎝

1 0 0 eiϕ

0 0 0 0
0 0 0 0

e−iϕ 0 0 1

⎞

⎟⎟⎠ ,U (2) =

⎛

⎜⎜⎝

0 0 0 0
0 1 eiϕ 0
0 e−iϕ 1 0
0 0 0 0

⎞

⎟⎟⎠ (10)
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Here the Temperley–Lieb matrices U, U (1) and U (2) all satisfy TLA in Eq. (7). It
is easy to see that the Temperley–Lieb matrices U, U (1) and U (2) have the relation as
follows:

U = 1√
2

(
U (2) + U (1)

)
(11)

For the following convenience, we use the solid lines, dash lines and solid (dash)
lines with labels (1), (2) to distinguish different graph states. Then we can introduce
a set of |cup〉 and 〈cap| states and their spin realization as following:

i j

(1) = √
d1|ψ(1)d 〉i j =

√
d1
2

[| ↑↑〉i j + e−iϕ | ↓↓〉i j
] = √

d1

[
i j 〈ψ(1)d |

]† =
[

i j

(1)

]†

,

i j

(2) = √
d2|ψ(2)d 〉i j =

√
d2
2

[| ↑↓〉i j − iε| ↓↑〉i j
] = √

d2

[
i j 〈ψ(2)d |

]† =
[

i j

(2)

]†

,

i j

(1) = √
d1|ψ(1)0 〉i j =

√
d1
2

[| ↑↑〉i j − e−iϕ | ↓↓〉i j
] = √

d1

[
i j 〈ψ(1)0 |

]† =
[

i j

(1)

]†

,

i j

(2) = √
d2|ψ(2)0 〉i j =

√
d2
2

[| ↑↓〉i j + iε| ↓↑〉i j
] = √

d2

[
i j 〈ψ(2)0 |

]† =
[

i j

(2)

]†

,

(12)

where the notation ↑ (↓) denotes spin-up(spin-down) corresponding to 0(1) as above,
and the notation |αβ〉i j is the abbreviated form of |α〉i ⊗ |β〉 j (α, β =↑,↓). The

topological parameter(the single loop) d1 = (1) = (1) = 2, d2 = (2) =
(2) = 2. In terms of CAP-CUP language, the T-L matrix in Eqs. (9), (10) can be

recast as following,

U (1)
i j =

i j

(1)

i j

(1) , U (2)
i j =

i j

(2)

i j

(2) (13)

Ui j = 1√
2

⎛

⎜⎜⎜⎜⎜⎝

i j

(1)

i j

(1) +

i j

(2)

i j

(2)

⎞

⎟⎟⎟⎟⎟⎠
. (14)
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Following Ge et al. [22], to reduce the 4 ⊗ 4 Temperley–Lieb matrix, we can
introduce a set of topological basis states for four quasi-particles. The topological
basis states have the following form,

|e1〉 = 1
d
√

2

[
1 2 3 4

(1) (1) +
1 2 3 4

(2) (2)

]
,

|e2〉 = −iε
d
√

2

[
eiφ

1 2 3 4

(1) (1) + e−iφ
1 2 3 4

(2) (2)

]
,

|e3〉 = 1
d
√

2

[
1 2 3 4

(1) (1) −
1 2 3 4

(2) (2)

]
,

|e4〉 = iε
d
√

2

[
eiφ

1 2 3 4

(1) (1) − e−iφ
1 2 3 4

(2) (2)

]
.

(15)

This set of topological basis states are orthonormal basis, (i.e. 〈ei |e j 〉 = δi j ).
By means of Eqs. (12), (13) and (15), we can verify that the Temperley–Lieb
matrix can be reduced to two identical 2-dimensional representations through topo-
logical calculation. The basis of subspace are {|e1〉, |e2〉} and {|e3〉, |e4〉}. The
2D representations on the subspace {|e1〉, |e2〉} ({|e3〉, |e4〉}) have the following
form:

UA =
(

d 0
0 0

)
; UB =

(
d−1

√
1 − d−2√

1 − d−2 d − d−1

)
(16)

where (UA)i j = 〈ei |U12|e j 〉 and (UB)i j = 〈ei |U23|e j 〉 (i,j = 1,2). We can verify
that UA and UB also satisfy the 2D Temperley–Lieb relations, U 2

A = dUA,U 2
B =

dUB,UAUBUA = UA and UBUAUB = UB .

3 A new realization of orthogonal complete topological basis

As Sect. 2, we have got four orthonormal topological basis which are not complete for
four quasi-particles. On the subspace {|e1〉, |e2〉} and the subspace {|e3〉, |e4〉} respec-
tively, the Temperley–Lieb matrix can be reduced to two identical 2-dimensional
representations while the subspace representation UA is diagonal and the UB is
non-diagonal which are same as the usual result in Ge et al. [22]. Based on this,
we make a new realization, we let the representation UA on the subspace is non-
diagonal while the UB is diagonal and let every subspace be minimal, then we
generate sixteen complete orthonormal topological basis states through topological
calculation:
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|E1〉 = 1
2d

[
1 2 3 4

(1) (1) +
1 2 3 4

(2) (2) +
1 2 3 4

(1) (1) +
1 2 3 4

(2) (2)

]
,

|E2〉 = 1
2d

[
1 2 3 4

(1) (1) +
1 2 3 4

(2) (2) −
1 2 3 4

(1) (1) −
1 2 3 4

(2) (2)

]
,

|E3〉 = 1
2d

[
1 2 3 4

(1) (1) −
1 2 3 4

(2) (2) +
1 2 3 4

(1) (1) −
1 2 3 4

(2) (2)

]
,

|E4〉 = 1
2d

[
1 2 3 4

(1) (1) −
1 2 3 4

(2) (2) −
1 2 3 4

(1) (1) +
1 2 3 4

(2) (2)

]
,

|E5〉 = 1
2d

[
1 2 3 4

(1) (2) +
1 2 3 4

(2) (1) +
1 2 3 4

(1) (2) −
1 2 3 4

(2) (1)

]
,

|E6〉 = 1
2d

[
1 2 3 4

(1) (2) +
1 2 3 4

(2) (1) −
1 2 3 4

(1) (2) −
1 2 3 4

(2) (1)

]
,

|E7〉 = 1
2d

[
1 2 3 4

(1) (2) −
1 2 3 4

(2) (1) −
1 2 3 4

(1) (2) −
1 2 3 4

(2) (1)

]
,

|E8〉 = 1
2d

[
1 2 3 4

(1) (2) −
1 2 3 4

(2) (1) +
1 2 3 4

(1) (2) +
1 2 3 4

(2) (1)

]
,

|E9〉 = 1
2d

[
−

1 2 3 4

(1) (2) −
1 2 3 4

(2) (1) +
1 2 3 4

(1) (2) −
1 2 3 4

(2) (1)

]
,

|E10〉 = 1
2d

[
−

1 2 3 4

(1) (2) −
1 2 3 4

(2) (1) −
1 2 3 4

(1) (2) +
1 2 3 4

(2) (1)

]
,

|E11〉 = 1
2d

[
−

1 2 3 4

(1) (2) +
1 2 3 4

(2) (1) +
1 2 3 4

(1) (2) +
1 2 3 4

(2) (1)

]
,

|E12〉 = 1
2d

[
1 2 3 4

(1) (2) −
1 2 3 4

(2) (1) −
1 2 3 4

(1) (2) −
1 2 3 4

(2) (1)

]
,

|E13〉 = 1
2d

[
1 2 3 4

(1) (1) +
1 2 3 4

(2) (2) +
1 2 3 4

(1) (1) +
1 2 3 4

(2) (2)

]
,

|E14〉 = 1
2d

[
1 2 3 4

(1) (1) +
1 2 3 4

(2) (2) −
1 2 3 4

(1) (1) −
1 2 3 4

(2) (2)

]
,

|E15〉 = 1
2d

[
1 2 3 4

(1) (1) −
1 2 3 4

(2) (2) −
1 2 3 4

(1) (1) +
1 2 3 4

(2) (2)

]
,

|E16〉 = 1
2d

[
1 2 3 4

(1) (1) −
1 2 3 4

(2) (2) +
1 2 3 4

(1) (1) −
1 2 3 4

(2) (2)

]
.

(17)

where for the following convenience, we have let the parameter ϕ = 0. Also by
means of Eqs. (12), (13) and (17), we can verify that the Temperley–Lieb matrix
can be reduced to eight identical 2-dimensional representations through topological
calculation. The basis of subspace are {|Ei 〉, |Ei+1〉}, (i = 1, 3, 5 . . . 15). The 2D
representations on the subspace {|Ei 〉, |Ei+1〉} have the following form:
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UA =
(

d−1
√

1 − d−2√
1 − d−2 d − d−1

)
; UB =

(
d 0
0 0

)
(18)

It is worth noting that we get eight 2-dimensional subspaces, and the corresponding
2D representations on the subspace are all uniform while the 2D Temperley–Lieb
matrix representation UA = UB is diagonal and UB = UA is non-diagonal. It is
easy to verify that UA and UB also satisfy the 2D Temperley–Lieb relations, U

2
A =

dUA,U
2
B = dUB ,UAUBUA = UA and UBUAUB = UB .

According to Eqs. (12) and (17), we can get the spin realization of these topological
basis states as follows:

|E1〉 = 1

2
(| ↑↑↑↑〉 + | ↑↓↑↓〉 − | ↓↑↓↑〉 + | ↓↓↓↓〉)

|E2〉 = 1

2
(| ↑↑↓↓〉 − iε| ↑↓↓↑〉 − iε| ↓↑↑↓〉 + | ↓↓↑↑〉)

|E3〉 = 1

2
(| ↑↑↑↑〉 − | ↑↓↑↓〉 + | ↓↑↓↑〉 + | ↓↓↓↓〉)

|E4〉 = 1

2
(| ↑↑↓↓〉 + iε| ↑↓↓↑〉 + iε| ↓↑↑↓〉 + | ↓↓↑↑〉)

|E5〉 = 1

2
(| ↑↑↑↓〉 + | ↑↓↓↓〉 − iε| ↓↑↑↑〉 − iε| ↓↓↓↑〉)

|E6〉 = 1

2
(−iε| ↑↑↓↑〉 + | ↑↓↑↑〉 − iε| ↓↑↓↓〉 + | ↓↓↑↓〉)

|E7〉 = 1

2
(−iε| ↑↑↓↑〉 − | ↑↓↑↑〉 + iε| ↓↑↓↓〉 + | ↓↓↑↓〉)

|E8〉 = 1

2
(| ↑↑↑↓〉 − | ↑↓↓↓〉 + iε| ↓↑↑↑〉 − iε| ↓↓↓↑〉)

|E9〉 = 1

2
(−iε| ↑↑↓↑〉 − | ↑↓↑↑〉 − iε| ↓↑↓↓〉 − | ↓↓↑↓〉)

|E10〉 = 1

2
(−| ↑↑↑↓〉 + | ↑↓↓↓〉 + iε| ↓↑↑↑〉 − iε| ↓↓↓↑〉)

|E11〉 = 1

2
(| ↑↑↑↓〉 + | ↑↓↓↓〉 + iε| ↓↑↑↑〉 + iε| ↓↓↓↑〉)

|E12〉 = 1

2
(iε| ↑↑↓↑〉 − | ↑↓↑↑〉 − iε| ↓↑↓↓〉 + | ↓↓↑↓〉)

|E13〉 = 1

2
(| ↑↑↑↑〉 + | ↑↓↑↓〉 + | ↓↑↓↑〉 − | ↓↓↓↓〉)

|E14〉 = 1

2
(−| ↑↑↓↓〉 + iε| ↑↓↓↑〉 − iε| ↓↑↑↓〉 + | ↓↓↑↑〉)

|E15〉 = 1

2
(|− ↑↑↓↓〉 − iε| ↑↓↓↑〉 + iε| ↓↑↑↓〉 + | ↓↓↑↑〉)

|E16〉 = 1

2
(| ↑↑↑↑〉 − | ↑↓↑↓〉 − | ↓↑↓↑〉 − | ↓↓↓↓〉) (19)
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we can see that these topological basis states are not reducible to a pair of Bell states,
it means that these topological basis states are genuine four-qubit entangled states. In
ref. [30,31], the collective measures of multipartite entanglement are given as,

Q = 2 − 2

nq

nq∑

i=1

Tr [ρ2
i ]. (20)

According to Eqs. (19) and (20), we can get Qi = 1, (i = 1, 2, 3 . . . 16), so we get
sixteen maximal entangled complete orthonormal topological basis states.

4 Teleporting an arbitrary two-qubit state via a topological basis entanglement
channel

In this section, we will present an explicit protocol for teleporting an arbitrary two-
qubit state |ψ〉A1 A2 = a| ↑↑〉 + b| ↑↓〉 + c| ↓↑〉 + d| ↓↓〉 from Alice to Bob via one
of sixteen maximally entangled topological basis states. We choose the topological
basis state |E1〉 in Eq. (19) as the entanglement channel |�〉A3 A4 B1 B2 between Alice
and Bob. Alice has original particles A1 A2 whose unknown state |ψ〉A1 A2 she seeks
to teleport to Bob while Alice and Bob share a priori two pairs of particles, A3 A4 and
B1 B2, the entanglement channel is the state,

|�〉A3 A4 B1 B2 = |E1〉A3 A4 B1 B2

= 1

2
(| ↑↑↑↑〉 + | ↑↓↑↓〉 − | ↓↑↓↑〉 + | ↓↓↓↓〉) (21)

thus the initial complete state of the six particles, A1, A2, A3, A4,B1 and B2 is,

|ψ〉A1 A2 ⊗ |�〉A3 A4 B1 B2 = |ψ〉A1 A2 ⊗ |E1〉A3 A4 B1 B2 (22)

It is a pure product state. If Alice performs a complete projective measurement jointly
on A1 A2 A3 A4 in the above maximally entangled complete orthonormal topological
basis in Eq. (19), then we obtain

|ψ〉A1 A2 ⊗ |E1〉A3 A4 B1 B2 = 1

4

16∑

i=1

|Ei 〉A1 A2 A3 A4 ⊗ |ψi 〉B1 B2 (23)

where |ψi 〉B1 B2 = U (i)−1|ψ〉B1 B2 , the state |ψ〉B1 B2 of particles B1, B2 is just the
state to be teleported as |ψ〉A1 A2 , and the unitary rotation operations,

U (1) = I1 ⊗ I2; U (2) = σ z
1 ⊗ σ z

2

U (3) = σ z
1 ⊗ I2; U (4) = I1 ⊗ σ z

2

U (5) = 1

2
N1 ⊗ M+

2 ; U (6) = 1

2
M1 ⊗ N+

2
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U (7) = i

2
M1 ⊗ M+

2 ; U (8) = − i

2
N1 ⊗ N+

2

U (9) = 1

2

(
N+

1 ⊗ I2 + I1 ⊗ M2 − M1 ⊗ σ z
2 + σ z

1 ⊗ N+
2

)

U (10) = 1

2

(−N+
1 ⊗ I2 + I1 ⊗ M2 + M1 ⊗ σ z

2 + σ z
1 ⊗ N+

2

)

U (11) = 1

2

(
M1 ⊗ I2 − I1 ⊗ N+

2 − N+
1 ⊗ σ z

2 − σ z
1 ⊗ M2

)

U (12) = 1

2

(
M1 ⊗ I2 + I1 ⊗ N+

2 − N+
1 ⊗ σ z

2 + σ z
1 ⊗ M2

)

U (13) = 1

2

(
N1 ⊗ I2 + I1 ⊗ M+

2 − M+
1 ⊗ σ z

2 + σ z
1 ⊗ N2

)

U (14) = 1

2

(
N1 ⊗ I2 − I1 ⊗ M+

2 − M+
1 ⊗ σ z

2 − σ z
1 ⊗ N2

)

U (15) = 1

2

(−M+
1 ⊗ I2 − I1 ⊗ N2 + N1 ⊗ σ z

2 − σ z
1 ⊗ M+

2

)

U (16) = 1

2

(
M+

1 ⊗ I2 − I1 ⊗ N2 − N1 ⊗ σ z
2 − σ z

1 ⊗ M+
2

)
(24)

where M1 = ei π4 (σ x
1 + σ

y
1 ), N1 = ei π4 (σ x

1 − σ
y
1 ),M2 = ei π4 (σ x

2 + σ
y
2 ), N2 =

ei π4 (σ x
2 − σ

y
2 ), we have let ε = 1 for convenience. It follows that, regardless of the

unknown state |ψ〉A1 A2 , the sixteen measurement outcomes are equally likely, each
occurring with the probability 1/16. Alice gains no information about the state |ψ〉A1 A2

from her measurement. She is left with particles A1, A2, A3, A4 in some maximally
entangled topological basis states, without any trace of the original |ψ〉A1 A2 . The
outcome of Alice’s measurement constitutes the second purely classical part of the
full information encoded in |ψ〉A1 A2 . Thus an accurate teleportation can be achieved
in all cases by having Alice tell Bob the classical outcome of her measurement on
the qubits A1, A2, A3, A4 with sixteen topological basis states |Ei 〉A1 A2 A3 A4(i =
1, 2, 3, 4 . . . 16), after which Bob applies the corresponding unitary rotation operation
to transform the state |ψi 〉B1 B2 of his particles B1, B2 into an accurate replica of the
original state |ψ〉A1 A2 of Alice’s particles A1 A2.

5 Dense coding via topological basis

As Eqs. (17) and (19) in Sect. 3, we have got sixteen maximal entangled complete
orthonormal topological basis states. We will show how the dense coding happens via
the topological basis states in this section.

Here we let |Ei 〉 = |Ei 〉1234, (i = 1, 2, 3 . . . 16), where the subscripts 1,2,3,4
denote different particles. These states are orthonormal with each other and constitute
a complete basis, i.e topological basis. We get sixteen two-particle unitary operations
(for particles 1 and 2): I1 I2, I1σ

x
2 , i I1σ

y
2 , I1σ

z
2 ,−σ x

1 σ
x
2 , iσ x

1 σ
y
2 ,−σ x

1 σ
z
2 ,−σ x

1 I2,

−iσ y
1 σ

x
2 ,−σ y

1 σ
y
2 ,−iσ y

1 σ
z
2 ,−iσ y

1 I2, σ
z
1σ

x
2 , iσ z

1σ
y
2 , σ

z
1σ

z
2 , σ

z
1 I2, where
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σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(25)

Without loss of generality, suppose Alice and Bob share an topological basis state
|E5〉, that is, Alice has particles 1,2 and Bob holds 3,4. Alice can encode four bits
of information into the state by performing one of the above sixteen operations on
particales1,2, under which this state changes as,

I1 I2|E5〉 → |E5〉; I1σ
x
2 |E5〉 → |E3〉; i I1σ

y
2 |E5〉 → |E2〉; I1σ

z
2 |E5〉 → |E7〉

−σ x
1 σ

x
2 |E5〉 → |E10〉; iσ x

1 σ
y
2 |E5〉 → |E12〉; − σ x

1 σ
z
2 |E5〉 → |E13〉;

−σ x
1 I2|E5〉 → |E16〉 − iσ y

1 σ
x
2 |E5〉 → |E11〉;

−σ y
1 σ

y
2 |E5〉 → |E9〉; − iσ y

1 σ
z
2 |E5〉 → |E15〉;

−iσ y
1 I2|E5〉 → |E14〉 σ z

1σ
x
2 |E5〉 → |E1〉;

iσ z
1σ

y
2 |E5〉 → |E4〉; σ z

1σ
z
2 |E5〉 → |E6〉; σ z

1 I2|E5〉 → |E8〉 (26)

where the superscript of these operations represents the qubit on which the operations
are performed. Afterwards Alice sends particles 1,2 to Bob. Bob can distinguish which
operation is chosen by Alice via a topological basis measurement on particles 1,2 and
3,4. If I1 I2, I1σ

x
2 , i I1σ

y
2 , I1σ

z
2 ,−σ x

1 σ
x
2 , iσ x

1 σ
y
2 ,−σ x

1 σ
z
2 ,−σ x

1 I2,−iσ y
1 σ

x
2 ,−σ y

1 σ
y
2 ,−iσ y

1 σ
z
2 ,−iσ y

1 I2, σ
z
1σ

x
2 , iσ z

1σ
y
2 , σ

z
1σ

z
2 , σ

z
1 I2 represent 0000, 0001, 0010, 0011, 0100,

0101, 0110, 01111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111 respectively, Bob
can obtain four bits from Alice. For example, Bob knows Alice’s message is 1000 if
his measurement result is |E11〉. Similarly, any one of the sixteen topological basis
states in Eqs. (17) and (19) can be used as the original state in this communication.
It is worth noting that we can also get operations for any two particles in particles
1,2,3,4, to realize the dense coding via the topological basis states. It means that Alice
can encode much more classical information into a topological basis state by choosing
unitary operation for different two particles.

6 Summary

In summary, by means of Temperley–Lieb Algebra(TLA) and topological basis, we
have made a new realization of topological basis, and have got sixteen complete
orthonormal topological basis which are genuine four-partite entangled states and are
all maximally entangled for four quasi-particles. Based on this, faithful teleportation
of an arbitrary two-qubit state via a topological basis entanglement channel has been
studied in detail. We also show that four bits of classical information can be encoded
into a topological basis state by two-particle unitary operation.

Eventually, people have currently found that topological basis has some important
physical applications in topological quantum computation and quantum entanglement,
how to reveal the role of the topological parameter d is also an interesting and signif-
icant topic. We shall investigate this subject subsequently.
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