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This paper presents the topology optimization of steady Navier–Stokes flows with body forces that
influence the optimal shape and topology of fluid flows. Based on the implicit expression of the fluid flow
with the level set method, an optimization problem is formulated and analyzed using the continuous
adjoint method. The shape and topological sensitivities are computed based on the adjoint and asymp-
totic analysis of the optimization problem. In the optimization procedure, the level set surface is evolved
based on the shape sensitivity and nucleated based on the topological sensitivity simultaneously. Three
kinds of body forces that are commonly used in the design of fluid devices, i.e. constant, nonuniform, and
solution-dependent body forces, are considered in the two-dimensional and three-dimensional numeri-
cal examples. Numerical results demonstrate that this method can effectively achieve the topology
optimization of the Navier–Stokes flows with body forces.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Topology optimization method has gained much attention for
the design of mechanisms and functional materials [1]. The goal
of topology optimization is not only to modify the shape of the
structural boundaries but also to allow for a change in the connect-
edness of the structural domain. Several approaches, such as the
evolutionary techniques [2], the homogenization method [3,4],
the density method [5,6] and the level set method [7–10], have
been developed for the implementation of topology optimization.
Topology optimization for fluid problems was pioneered by Steven
et al. using the evolutionary techniques [2]. On the density method,
Borrvall and Petersson performed the first attempt for the Stokes
flow [11]. An artificial friction force that is proportional to the fluid
velocity was added to the Stokes equations in order to smoothly
interpolate between the solid and fluid regions. Recently, this opti-
mization model was extended to the Navier–Stokes flows with low
and moderate Reynolds numbers [12–16]. In the Navier–Stokes
flows, external body forces that relate with the fluid inertia effect,
such as the gravity, centrifugal force and Coriolis force, usually ex-
ist. Therefore, it is necessary to develop a topology optimization
method for the Navier–Stokes flows with body forces. However,
the optimization model proposed by Borrvall and Petersson in
[11] is hard to be extended directly to the flows with external
forces. One of the reasons is that the two kinds of force terms exist
in the Navier–Stokes equations, i.e. external force which has
specific physical meaning, and the artificial friction force which
is used to control the topology of fluid domains. Typically, the
interpolation of artificial friction force must be modified so that
the external body force can drive the motion of fluid and the arti-
ficial friction force can modify the topology of the fluid domain rea-
sonably. A similar problem exists for the topology optimization of
mechanisms using the density method. The standard interpolation
function, such as the solid isotropic material with penalization
(SIMP), has been used successfully for designing mechanisms with
fixed loads. However, the SIMP can not be used directly to design
mechanisms when the body forces (also called design-dependent
loads), such as the self-weight of a structure or centrifugal force,
are used as loads [17–19]. To overcome the above challenge, one
can either modify the interpolation function for the design variable
[20], or implement topology optimization using the level set meth-
od [8]. For both of these strategies, the key point is to choose a suit-
able way to deal with the design-dependent loads. In this paper,
the variational level set method is used to extend the topology
optimization method to the Navier–Stokes flows with body forces.
Naturally, this method is suitable for the flows without body
forces. The level set method pioneered by Osher and Sethian
[21], Osher and Fedkiw [22] and Sethian [23] accomplishes the
change of topology by evolving and merging the level set surface.
This method provides a general way to track the implicit interface
between two phases, and it has been applied to image processing
[24], interface tracking of two-phase flow [25], and shape optimi-
zation [26,27]. In optimization, the major advantage of the level
set method lies in expressing continuously moving interfaces and
abstracting the material domains that correspond to the structural
topology. In some applications, it has been observed that the
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Fig. 1. Schematic of the regions distinguished based on the level set function.
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conventional level set method may be inadequate for the cases in
which the initial shape of the structure has fewer holes than the
optimal geometry [8], especially in the two-dimensional cases.
The above difficulty can be overcome using topological sensitivity,
which was introduced by Sokolowski and Zochowski [28] for linear
elasticity and has been extended to several other linear and nonlin-
ear physical problems [29–32]. In particular, the topological sensi-
tivity has been researched for the Stokes flows [33–36] and
Navier–Stokes flows [37].

This paper considers the topology optimization method for the
Navier–Stokes flows with body forces, where the optimization is
implemented by the variational level set method considering the
shape and topological sensitivities simultaneously. The solid and
fluid domains are distinguished by constraining the fluid velocity
to vanish in solid domain. Based on the continuous adjoint method,
the shape and topological sensitivities for two commonly used
objectives, the dissipation power and the reverse of the kinetic en-
ergy, are considered separately. Flows driven by body forces have
been widespread used in the fluid devices. Therefore, this topology
optimization method can be used to perform the optimal design of
the fluid devices with constant, nonuniform and solution-depen-
dent forces.

The remainder of this paper is organized as follows: in Section
2, the approach of coupling the Navier–Stokes equations with the
level set method is introduced, an optimization problem is formu-
lated and analyzed using the Lagrange multiplier based adjoint
method; in Section 3, the shape and topological sensitivities are
derived for different optimization objectives; in Section 4, several
details on the numerical implementation of the topology optimiza-
tion method are discussed; in Section 5, several numerical exam-
ples are presented for the Navier–Stokes flows with constant
(gravity), nonuniform (centrifugal force) and solution-dependent
body forces (Coriolis force) to demonstrate the feasibility and
necessity of the topology optimization method for the Navier–
Stokes flows with body forces.

2. Topology optimization problem

2.1. Navier–Stokes flow with implicit boundary expressed using level
set method

In order to express the solid–liquid boundary implicitly, the
incompressible Navier–Stokes equations can be coupled with the
level set function that is expressed by a signed distance function
/ defined on an optimization domain X � Rd ! R (d = 2 or 3 is
the spatial dimension, and X is open). The solid and fluid regions
can be distinguished as follows:

/ðxÞ > 0; 8x 2 Xs

/ðxÞ < 0; 8x 2 Xl

/ðxÞ ¼ 0; 8x 2 C

8><
>: ð1Þ

where Xs; Xl and C are the solid region, fluid region and implicit
boundary respectively; Xs and Xl are open, and they satisfy
Xs [Xl ¼ X (Fig. 1). Then the incompressible Navier–Stokes equa-
tions can be modified by constraining the fluid velocity to be zero
in the solid region Xs:

�gDuþ q u � rð Þuþrp ¼ f in X

�r � u ¼ 0 in X

H /ð Þu ¼ 0 in X

ð2Þ

where g is the dynamic viscosity; q is the density of the fluid; u is
the fluid velocity; p is the fluid pressure; and f is the body force.
Particularly, if a domain Xc � X (Xc is open) needs to be a solid
region throughout an optimization procedure, one can constrain
the fluid velocity to be zero in Xc (Fig. 1)

u ¼ 0 in Xc ð3Þ

In the above, Hð/Þ is the Heaviside function [21]:

H /ð Þ ¼
1; / P 0
0; / < 0

�
ð4Þ

and the derivative of Hð/Þ to / is the Dirac function s /ð Þ. In most
cases, the Heaviside function and the Dirac function need to be reg-
ularized from the numerical implementation point of view. In this
paper, Hð/Þ and sð/Þ are approximated by the smoothed Heaviside
function and Dirac function [49]:

H /ð Þ ¼
0; / 6 �h
1
2þ

15/
16h �

5/3

8h3 þ 3/5

16h5 ; �h < / 6 h

1; / > h

8><
>: ð5Þ

s /ð Þ ¼
15

16h 1� /2

h2

� �2
; j/j 6 h

0; j/j > h

8<
: ð6Þ

where h is the support size (Fig. 2). For more details on the regular-
ization of the Heaviside function, one can refer to [38–40]. In this
paper, the support size h of the smoothed Heaviside function and
the Dirac function is kept as constant during the optimization pro-
cedure [7,8,27,31].

Usually, fluid flows have a known velocity or pressure distribu-
tion at the inlet boundary. For the velocity boundary case, the gi-
ven velocity distribution uin imposed on the inlet Cin of the
computational domain X is

u ¼ uin on Cin ð7Þ

where Cin belongs to the Dirichlet boundary CD. For the pressure
boundary case, the given pressure distribution p0 with the zero vis-
cous stress of flow is imposed on the inlet Cin of the computational
domain X:

p ¼ p0 on Cin

g ruþruT
� �

� n ¼ 0 on Cin
ð8Þ

In this case, the pressure condition on Cin belongs to the Dirichlet
boundary condition, and the zero viscous stress condition on Cin be-
longs to the Neumann boundary condition. For both the velocity
and pressure inlet boundary cases, the outlet boundary condition
is usually set to be:

�pIþ g ruþruT
� �� �

� n ¼ g on Cout ð9Þ

where g ¼ 0 corresponds to the open boundary condition and Cout

belongs to the Neumann boundary CN . For the case that the flow
is driven by the body force, the open boundary condition expressed
by Eq. (9) can be imposed on both the inlet and outlet. The other



Fig. 2. Smoothed Heaviside function and Dirac function.
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boundaries of the computational domain X are no-slip type where
u ¼ 0.

For an optimization problem, the objective is chosen according
to the description of the desired result and characteristics of the
forward physical problems. For the flow with a fixed velocity dis-
tribution at the inlet, minimizing the dissipated power is equiva-
lent to minimizing the pressure drop across the fluid system.
Therefore, the characteristic of the flow can be measured by the
dissipation power [11,13,27]:

Jd ru; /ð Þ ¼
Z

X

1
2
gH �/ð Þ ruþruT� �

: ruþruT� �
dX ð10Þ

For the flow with a fixed pressure distribution at the inlet, the opti-
mization of the flow can be preformed by maximizing the kinetic
energy stored in the fluid system. Then the reverse of the kinetic en-
ergy can be chosen to be the objective:

Jkðu; /Þ ¼ �
Z

X

1
2
qH �/ð Þu2 dX ð11Þ

For the body force driven flow, both the expression in Eqs. (10) and
(11) can be used as the objective of the optimization problem.

2.2. Topology optimization problem for Navier–Stokes flow with body
force

Based on the description in Section 2.1, the topology optimiza-
tion problem for the Navier–Stokes flows with body forces can be
expressed as:

Min : J u;ru; p; /ð Þ ¼
Z

X
H �/ð ÞA u;ru;pð ÞdXþ

Z
C

B u;pð ÞdC

S:t:
Z

X
H �/ð ÞdX ¼ V�VX

� gDuþ q u � rð Þuþrp ¼ f in X

�r � u ¼ 0 in X

H /ð Þu ¼ 0 in X

u ¼ 0 in Xc

ð12Þ

where Aðu;ru;pÞ and Bðu;pÞ are the functionals defined on the do-
main X and implicit boundary C, respectively; V� 2 ð0;1Þ is the vol-
ume fraction of the fluid region; and VX is the volume of the
optimization domain X. The objective of the optimization problem
in Eq. (12) can be transformed into the following formulation:

Jðu;ru; p; /Þ ¼
Z

X
Hð�/ÞAðu;ru; pÞ þ sð/Þkr/kBðu; pÞ½ �dX ð13Þ

For the optimization problem in Eq. (12), the evolution of the level
set function is performed by solving the Hamilton–Jacobin equation
[31,41]:
@/
@t
þ Vnkr/k þxG ¼ 0 ð14Þ

where Vn is the normal evolving velocity of the level set function
/; G is the topological sensitivity; and x is the weight of the topo-
logical sensitivity. In this paper, the reasonable weight of topologi-
cal sensitivity is chosen based on numerical experiments. Based on
the empirical insight, the new zero level set can not be nucleated if
the weight of topological sensitivity is too low; numerical instabil-
ity is produced if the weight of topological sensitivity is too high;
and relative large weight should be chosen as the Reynolds number
of the flow is increased. Based on the work of Osher and Sethian
[21], the level set function is evolved along the steepest direction
using the transformed formulation of Eq. (14):

d/þ Vnkr/kdt þxGdt ¼ 0 ð15Þ

where dt is the positive evolution time. As pointed out by Jung et al.
in [42], Eq. (15) is equivalent to Hamilton–Jacobi equation (14) if
the change of the distance function is viewed as occurring continu-
ously in time.

3. Sensitivity analysis

3.1. Shape sensitivity analysis

The algorithm used to update the level set function in this paper
belongs to the gradient descent method. The normal velocity is a
measure of the continuum gradient of objective to the level set
function. In the following, the Lagrangian multiplier based adjoint
method [43–46] are used to perform the sensitivity analysis of the
topology optimization problem in Eq. (12). According to the
Lagrangian multiplier method, the Lagrangian corresponding to
the objective in Eq. (12) is introduced as

Ĵ ¼ J u;ru;p; /ð Þ þ a u;wð ÞX þ b u; u;wð ÞX � p;r �wð ÞX
� f;wð ÞX � r � u; qð ÞX þ H /ð Þu;wð ÞX þ u;wð ÞXc

� k
Z

X
H �/ð ÞdX� V�VX

	 

þK

2

Z
X

H �/ð ÞdX� V�VX

	 
2

�
Z

CN

g �wdCþ
Z

CD

u �wdC ð16Þ

where aðu;wÞX ¼ g
R

Xru :rwdX; bðu; u;wÞX ¼ q
R

Xðu �rÞu �wdX;
�; �ð ÞX is the Hilbert inner product; w and q are the adjoint variables

of the fluid velocity u and the pressure p, respectively. The velocity
u 2 H1

EðXÞ :¼ u 2 H1ðXÞ ju ¼ uD on CD
� �

, where uD is the known
velocity distribution on CD; the adjoint variable w 2 H1

E0
ðXÞ :¼

w 2 H1ðXÞ jw ¼ 0 on CD
� �

, and p; q 2 L2ðXÞ. Therefore, u;wð ÞXc

and
R

CD
u �wdC are equal to zero. The volume constraint is treated

by the augmented Lagrangian method, where k 2 R is the Lagrang-
ian multiplier and K 2 R is the penalty parameter. According to the
Lagrangian multiplier based adjoint method, the adjoint equations
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of the Navier–Stokes equations with body force can be expressed as
(see Appendix A.1 for more details):

�gDwþqw � ruð Þ�q u �rð Þwþrq¼�@
~A

@u
þr� @

~A
@ru

þ @f
@u
�w in X

�r�w¼�@
~A
@p
þ @f
@p
�w in X

w¼ 0 on CD

�qIþg rwþrwT� �� �
�n¼�q u �nð Þw� @~A

@ru
�n on CN

ð17Þ

where ~A ¼ H �/ð ÞAþ s /ð Þ r/k kB. Compared with the adjoint analy-
sis of the Navier–Stokes equations without body force [47,48], Eq.
(17) contains the derivatives of the body force to the unknown vari-
ables u and p. The shape sensitivity for the optimization problem in
Eq. (12) is obtained as (see Appendix A.2 for more details):

d̂J ¼ �
Z

X


AþrB � nC þ Bj� u �w� k

þK
Z

X
Hð�/ÞdX� V�VX

	 
�
sð/Þd/dX ð18Þ

where nC ¼ r/= r/k k and j ¼ r � nC. To ensure the descendant of
the objective, the shape sensitivity should satisfy d̂J < 0. According
to Eq. (15), the variational of the level set function is d/ ¼ �Vn

kr/kdt in the shape sensitivity analysis. Because sð/Þ; kr/k and
dt are all nonnegative, the normal velocity for evolving the level
set function can be set to be

Vn ¼ �A�rB � nC � Bjþ u �wþ k�K
Z

X
H �/ð ÞdX� V�VX

	 

ð19Þ
3.2. Topological sensitivity analysis

Topological sensitivity measures the change of a cost function
with respect to a topological modification of a domain. The most
simple way of modifying the topology consists in creating a small
hole in the domain. In structural optimization, creating a hole
means removing some material. However, in fluid optimization,
where the domain represents the fluid, creating a hole means
inserting an obstacle [35]. In the level set method, topological sen-
sitivity measures the change of the objective value by incorporat-
ing small holes corresponding to the new level set to change the
topology of the fluid domain. Such perturbation is continuous in
the L1-distance of sets [31]. Topological sensitivity is defined as:

dT Ĵ Xð Þ xð Þ ¼ lim
r!0

Ĵ Xr;xð Þ � Ĵ Xð Þ
kBr;x \Xk L

; 8x 2 X ð20Þ

where Br;x ¼ ykky � xkL < r
� �

; Xr;x ¼ X n Br;x and k � kL denotes the
Lebesgue measure of a set. Based on the asymptotic analysis of
Eq. (20) for the Navier–Stokes equations [37], the topological sensi-
tivity can be expressed as:

dT ĴðXÞðxÞ ¼
4pqgu �wþ dT J Xð Þ xð Þ � k�KVð ÞdT V Xð Þ xð Þ; in 2D
6pqgu �wþ dT J Xð Þ xð Þ � k�KVð ÞdT V Xð Þ xð Þ; in 3D

�
ð21Þ

where w is the adjoint variable of u; V ¼
R

X H �/ð ÞdX� V �VX is the
residual of the volume constraint. In Eq. (21), dT J Xð Þ xð Þ depends on
the embody of the objective J. For the topology optimization prob-
lem in Eq. (12), dT JðXÞðxÞ can be determined by the asymptotic
expansion of J:

JðXr;xÞ � JðXÞ ¼ f ðrÞdT J Xð Þ xð Þ þ oðf ðrÞÞ ð22Þ
where f ðrÞ is a positive function satisfying limr!0f ðrÞ ¼ 0. According
to [37], f ðrÞ should be chosen as �1= ln r in two dimensional case or
r in three dimensional case. Therefore, the topological sensitivity for
the objectives in Eqs. (10) and (11) can be expressed as:

dT Jd Xð Þ xð Þ ¼
4pqgu � u; in 2D
6pqgu � u; in 3D

�
ð23Þ

and

dT Jk Xð Þ xð Þ ¼ 0 ð24Þ

respectively. The topological sensitivity related with the residual of
volume constraint can be expressed as:

dT V Xð Þ xð Þ ¼
�p; in 2D
� 4

3 p; in 3D

(
ð25Þ

Therefore, the topological sensitivity for the optimization problem
in Eq. (16) are

dT Ĵd Xð Þ xð Þ ¼
4pqgu � ðwþ uÞ þp k�K

R
X H �/ð ÞdX� V�VX

� �� �
; in 2D

6pqgu � ðwþ uÞ þ 4p
3 k�K

R
X H �/ð ÞdX� V�VX

� �� �
; in 3D

(

ð26Þ

when the objective is the dissipation power in Eq. (10); and

dT Ĵk Xð Þ xð Þ ¼
4pqgu �wþp k�K

R
X H �/ð ÞdX� V�VX

� �� �
; in 2D

6pqgu �wþ 4p
3 k�K

R
X H �/ð ÞdX� V�VX

� �� �
; in 3D

(

ð27Þ

when the objective is the reverse of the kinetic energy in Eq. (11).
The topology of the fluid domain can be modified by nucleating
the level set surface. Numerically, the above procedure can be
implemented by solving Eq. (14) and setting G to be dT ĴðXÞðxÞ.
For more details on the asymptotic analysis of the Navier–Stokes
equations for the topological sensitivity, one can refer to Amstutz’s
work in [32,37].

4. Numerical implementation

The flowchart of the optimization procedure includes the fol-
lowing steps (Fig. 3): (a) the initial distribution of the level set
function /, the initial values of the Lagrangian multiplier k0 and
the penalty parameter K0 are given; (b) the velocity u and the pres-
sure p are computed by solving the Navier–Stokes equation (2),
and the corresponding adjoint variables w and q are computed
by solving the adjoint equation (17); (c) the normal velocity Vn

and the topological sensitivity G are computed; (d) the level set
function / is evolved by solving the Hamilton–Jacobin equation
(14); (e) the level set function / is reinitialized after several itera-
tions; (f) the iterative optimization is stopped when the change of
the objective values and the volume constraint are less than the
user-specified tolerance 1� 10�3 in five consecutive iterations.
The level set function is evolved on a grid mesh with ghost ele-
ments (the composition of the dash and solid mesh in Fig. 4). The
mesh for solving the Navier–Stokes equations is a set of elements
embedded in the grid mesh for evolving the level set function (so-
lid mesh in Fig. 4). The Navier–Stokes equations and the adjoint
equations are solved by the commercial software COMSOL Multi-
physics [49]. One of the advantages of the COMSOL Multiphysics
software is that one can input the user-defined partial differential
equations (PDEs) using the so-called general PDE form in the soft-
ware’s graphic user interface. Therefore, both the Navier–Stokes
equations and the corresponding adjoint equations are defined in
COMSOL and solved using the standard Galerkin finite element dis-
cretization. During the optimization procedure, the Navier–Stokes
equations and the adjoint equations are solved by the Taylor–Hood
Q2-Q1 elements [50], which interpolate the fluid velocity quadrat-



Fig. 3. Flowchart of the optimization procedure for solving the optimization
problem in Eq. (12).

Fig. 4. Meshes used for solving the Navier–Stokes equations (solid mesh) and
evolving the level set function (composition of the solid and dash meshes).
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ically and the fluid pressure linearly. The level set function is inter-
polated by the linear Q1 elements. The Lagrangian multiplier k and
the penalty parameter K are updated as [44,45]:

kk ¼ kk�1 �Kk�1

Z
X

H �/k�1ð ÞdX� V�VX

	 


Kk ¼
1
a

Kk�1; a 2 ð0;1Þ
ð28Þ

To evolve the level set function, the Hamilton–Jacobin equation is
solved by the upwind finite difference method. The time step for
the finite difference scheme is chosen based on the CFL stability
condition [51]:

Dt 6 b
hE

max j Vn jf g ; b 2 ð0;1Þ ð29Þ

where hE is the size of the elements and b is chosen as 0.1 in this
paper. The evolved level set function is reinitialized after several
iterations. The reinitialization of the level set function can be per-
formed by solving the Eikonal equation [52]:

kr/k ¼ 1
sgnð/Þ ¼ sgnð/0Þ

�
ð30Þ
where sgn denotes the sign value, which is either 1, �1 or 0; /0 is
the unreinitialized level set function. Eq. (30) is solved by comput-
ing the Euclidean distance transform of the binary value that corre-
sponds to the level set function [41].
5. Numerical examples

In this section, the topology optimization of the Navier–Stokes
flow by the variational level set method considering the shape
and topological sensitivities is validated firstly. Then the optimiza-
tion is implemented for the Navier–Stokes flows with constant,
nonuniform and solution-dependent body forces respectively.
The density q and the viscosity g are set to be unit in the following
numerical examples. The signed distance function is reinitialized
after every five iterations. The Heaviside function and the Dirac
function are approximated with the support size h ¼ 1:5hE, where
hE is the size of the elements [51]. Based on numerical experi-
ments, the initial values of a, the Lagrangian multiplier k and the
penalty parameter K in Eq. (28) are chosen as 9� 10�1; �1�
10�2 and 1� 10�3, respectively.

5.1. Validation of topology optimization by considering shape and
topological sensitivities for Navier–Stokes flow

To validate the topology optimization of the Navier–Stokes flow
using the variational level set method considering the shape and
topological sensitivities, a four-terminal device is optimized. The
obtained results are compared with those obtained by Olesen
et al. using the density method [13]. For the convenience of com-
parison, all of the data are chosen the same as those in [13], includ-
ing the optimization domain (Fig. 5(a)), the boundary conditions
(parabolic velocity distribution at the inlets, zero pressure and nor-
mal flow at the outlets), the objective function (Eq. (10)), and the
volume fraction (V� ¼ 0:4) for the volume constraint. The optimi-
zation domain is discretized by 70� 100 rectangular elements.
The Reynolds number is defined as Re ¼ qUmaxLg, where Umax is
the maximal value of the parabolic velocity distribution imposed
on the inlet and L is the width of the inlet. The initial level set func-
tion and the corresponding zero contours are shown in Fig. 5(b)
and (c). By solving the optimization problem in Eq. (12) for the
flows with Reynolds numbers 20 and 200 respectively, the opti-
mized results are obtained as shown in Fig. 6. By observing the
evolving procedure of the level set, it is clear that the topological
sensitivity can nucleate new level set effectively (Figs. 7 and 10).
Snapshots for the unitary shape sensitivity and topological sensi-
tivity distributions are shown in Figs. 8, 9, 11 and 12, respectively.
As the Reynolds number is increased, the dissipation of the fluid
stream caused by the bending channel grows. When the inertia ef-
fect dominates the flow with a large Reynolds number, larger
velocity gradients appear in the bend channels. This increases the
dissipation compared to the low Reynolds number case. Therefore,
the optimized four-terminal device has two bending channels for
the flow with low Reynolds number, and has two paralleling
straight channels for the larger Reynolds number case. This is con-
sistent with the conclusion obtained by Gersborg-Hansen et al. in
[12].

5.2. Constant body force

5.2.1. Horizontal channel in gravity
A constant body force, e.g. the gravity, is the simplest body force

in the Navier–Stokes equations. For the constant body force case,
the horizontal flows with velocity and pressure boundary condi-
tions imposed on the inlet are optimized respectively. The optimi-
zation domain are shown in Fig. 13(a), where the domain is



Fig. 5. (a) Optimization domain (gray region) and computational domain (gray region and four ducts) of the four-terminal device; (b) initial distribution of the level set
function; (c) zero level set of the initial level set function.

Fig. 6. Optimized topology of the four-terminal device with Reynolds numbers
equal to 20 and 200, respectively.
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discretized by 360� 120 rectangular elements. The initial level set
function is set to be the solution of Eq. (30), where the initial value
/0 is specified as �1 (Fig. 13(b)). Because the value of /0 is less
than zero, the initial level set function has no zero level set. The
zero level set will be nucleated with the help of the topological
sensitivity. The volume fraction of the fluid region V� is set to be
0.4. The constant body force f is set to be the gravity g ¼
ð0;�10Þ. The optimized channel is shown in Fig. 14(a) for the flow
with a specified parabolic velocity distribution at the inlet, where
the maximal value of the specified velocity is 1 and the objective
is chosen to be the dissipation power (Eq. (10)). The convergent
history of the objective value and the volume constraint is shown
in Fig. 15. By comparing with the optimized channel for the case
without the gravity (Fig. 14(b)), the gravity causes the bending of
the horizontal channel. For the case of inlet boundary with a given
pressure distribution (Eq. (8)), where the value of pressure is cho-
sen to be 30, so that the flux at the inlet is the same as the velocity
Fig. 7. Snapshots for the evolution and nucleation of the level
boundary case. The optimized channel is shown in Fig. 16 by using
the reverse of the kinetic energy (Eq. (11)) as objective. In the
above numerical examples, the weight of the topological sensitiv-
ity x is set to be 2. The results in Figs. 14(a) and 16 show that the
optimized channels bend to the direction of the gravity, where ex-
tra work is imposed on the fluid. For the flow with velocity bound-
ary condition, the work decreases the pressure drop between the
inlet and outlet. This is equivalent to decrease the value of the dis-
sipated power inside the optimized channel. For the flow with
pressure boundary condition, the work done by the gravity is
translated into the kinetic energy of the fluid partly, which helps
to increase the kinetic energy of the flow. Therefore, similar topol-
ogies are obtained for both the cases of inlet boundary with known
velocity and pressure distribution.

5.2.2. Four-terminal device in gravity
This numerical example performs the optimization of a four-

terminal device in the gravity. The four-terminal device has two in-
lets with given parabolic velocity distributions, and the other two
terminals are outlets with open boundary condition (Fig. 17(a)).
The maximal value of the velocity imposed on the inlets is 1. The
optimization domain is discretized by 60� 60 rectangular ele-
ments. The initial level set function is set to be the solution of
Eq. (30), where the initial value /0 is specified as �1 (Fig. 17(b)).
Because the value of /0 is less than zero, the initial level set func-
tion has no zero level set. The zero level set will be nucleated with
the help of the topological sensitivity. The weight of the topological
sensitivity x and the volume fraction of fluid V� are set to be 2 and
0.4, respectively. After solving the optimization problem in Eq. (12)
with dissipation power (Eq. (10)) as objective, the optimized topol-
set in the optimization procedure of the result in Fig. 6(a).



Fig. 8. Snapshots for the shape sensitivity in the optimization procedure of the result in Fig. 6(a).

Fig. 9. Snapshots for the topological sensitivity in the optimization procedure of the result in Fig. 6(a).

Fig. 10. Snapshots for the evolution and nucleation of the level set in the optimization procedure of the result in Fig. 6(b).
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ogy of the four-terminal device and the corresponding distribution
of the level set function are shown in Fig. 18(a) and (b). By solving
the optimization problem with the same parameter settings for the
four-terminal device without body force, the optimal topology is
shown in Fig. 18(c). The comparison between the optimized topol-
ogies in Fig. 18(a) and (c) demonstrates that the existence of the
gravity results in the change of the topology of the optimized chan-
nel. The fluid prone to flow along the direction of the gravity.
Therefore, it is really necessary to consider the body force when
the design domain has multiple inlets and outlets.



Fig. 11. Snapshots for the shape sensitivity in the optimization procedure of the result in Fig. 6(b).

Fig. 12. Snapshots for the topological sensitivity in the optimization procedure of the result in Fig. 6(b).

Fig. 13. (a) Optimization domain of the flow in the gravity; (b) initial distribution of the level set function.

Fig. 14. Optimized topologies of the horizontal channel with or without the gravity.
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5.2.3. Siphon in gravity
In the following, a siphon is designed using the topology opti-

mization method. A siphon is a device in which the flow is driven
by the gravity. The optimization domain, used for evolving the le-
vel set function, includes two parts Xs and Xc . Xc is the region
that is specified as the solid domain (u ¼ 0), and Xs is the free



Fig. 15. Convergent histories of the objective value and volume constraint for the
optimized flow in the gravity as shown in Fig. 14(a).

Fig. 16. Optimized topology of the horizontal channel for the flow with a given
pressure distribution imposed on the inlet of the optimization domain in the
gravity.
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optimization region during the optimization procedure. The com-
putational domain for the distribution of the fluid velocity and
Fig. 18. (a) Optimized topology of the four-terminal device considering the gravity and
corresponding to the optimized topology; (c) optimized topology of the four-terminal
vectors.

Fig. 17. (a) Optimization domain of the four-terminal device in
pressure includes four parts, Xd; Xs; Xc and Xr (Fig. 19(a)), where
Xr is the reservoir and Xd is the outlet duct. Based on the above set-
up, the Hamilton–Jacobin equation (14) can be solved by the finite
difference method on the regular rectangular domain. The optimi-
zation domain, the reservoir and the outlet duct are discretized by
100� 100; 25� 50, and 50� 10 rectangular elements, respec-
tively. The initial level set function is set to be the solution of Eq.
(30), where the initial value /0 is specified as �1 (Fig. 19(b)). By
setting the weight of the topological sensitivity x and the volume
fraction of the siphon V� to be 5 and 0.2 respectively, the optimized
siphon (Fig. 20(a)) is obtained by solving the optimization problem
in Eq. (12), where the objective is the reverse of the kinetic energy
(Eq. (11)). The velocity and level set function distribution in the
optimized results are shown in Fig. 20(b) and (c), respectively. Be-
cause the inlet of the reservoir is specified to be higher than the
outlet duct, a pressure drop is produced by the height difference
in the gravity. The pressure drop results in the fluid flowing from
the inlet of the reservoir to the outlet duct. This is the siphonal flow
occurring in the gravity. Because the solid domain Xc is higher than
the inlet of the reservoir, the optimized channel balances the effect
between the uphill flow and the maximal kinetic energy by tuning
the shape and length of the fluid channel. In the siphonal flow, the
gravitational potential energy of the fluid is translated into the ki-
netic energy of the fluid and dissipation of the flow. Therefore,
more kinetic energy of the fluid means lower dissipation of the
flow. Because the optimization objective is to maximize the kinetic
energy, the dissipation power of the flow in the optimized siphon
is minimized automatically.
the corresponding distribution of the fluid velocity vectors; (b) level set function
device without the gravity and the corresponding distribution of the fluid velocity

the gravity; (b) initial distribution of the level set function.



Fig. 19. (a) Optimization domain of the siphon in the gravity. Xr is a reservoir to supply the liquid flowing in the siphon; Xd is a duct connected to the outlet of the siphon;
Xs [Xc is the optimization region; the gap Xc is a solid region, which is used to ensure the tiptop of the siphon higher than the inlet of the reservoir Xr ; Cin and Cout are the
inlet and outlet respectively; Cinner and the left exterior boundaries are set to be no slip type; (b) initial distribution of the level set function defined in Xs [Xc .

Fig. 20. (a) Optimized topology of the siphon in the gravity; (b) distribution of the fluid velocity; (c) distribution of the level set function.
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5.3. Nonuniform and solution-dependent body forces

Optimization of the Navier–Stokes flows with nonuniform and
solution-dependent body forces is considered in this section. The
nonuniform and solution-dependent body forces are usually used
as the driven force in fluid devices, such as the centrifugal chips
in microfluidics [53,54]. The nonuniform body force is a function
of the spacial coordinate. Because the derivatives of the nonuni-
form body force with respect to the velocity and pressure are zeros,
the nonuniform body force has no appearance in the adjoint
equations. The solution-dependent body force depends on the un-
knowns of physical problems, such as the fluid velocity. Therefore,
the adjoint equations have the corresponding terms for the
derivatives of the solution-dependent body force with respect to
the fluid velocity and pressure as shown in Eq. (17).

5.3.1. Four-terminal device with centrifugal and Coriolis body force
Centrifugal force is a typical body force used to drive fluid flows.

In the centrifugal force field, the Coriolis force exists and compa-
nies with the centrifugal force. The centrifugal force and the Cori-
olis force are expressed as fcen ¼ -� rð Þ �- and fcor ¼ 2u�-
respectively, where - is the angular velocity vector and r is the ra-
dial vector of the point inside the flow relative to the rotating cen-
ter [55]. The centrifugal force and the Coriolis force are nonuniform
body force and solution-dependent body force respectively. A four-
terminal device in the centrifugal and Coriolis force field is opti-
mized in this numerical example. The optimization domain and
the boundary conditions imposed on the inlets and outlets of the
four-terminal device are shown in Fig. 17(a). The rotating center
is set to be the point with the coordinate (0.5,0.5) which is the cen-
ter of the optimization domain. The scalar value of the angular
speed - is set to be 20. The other optimization settings are the
same as that in Section 5.2.2. After solving the optimization prob-
lem in Eq. (12), the optimized topologies of the four-terminal de-
vice are obtained corresponding to the centrifugal force and the
centrifugal–Coriolis force respectively (Figs. 21(a) and 22(a)). The
corresponding level set functions are shown in Figs. 21(b) and
22(b). In this numerical example, the rotating center is set to be
the center of the optimization domain. Therefore, the centrifugal
force distributes symmetrically in the outward direction of the ra-
dius vector (Fig. 21(c)). However, because the Coriolis force vector
is vertical to the direction of the fluid velocity and along the rotat-
ing direction, the distribution of the Coriolis force is not symmetri-
cal (Fig. 22(c)). When only the centrifugal force is considered, the
symmetrical optimization domain and symmetrical distribution
of the body force determine the symmetrical result in Fig. 21(a)
commonly. As the centrifugal force and the Coriolis force are con-
sidered simultaneously, the Coriolis force results in the unsymmet-
rical topology of the four-terminal device in Fig. 22(a).

5.3.2. Double channel with centrifugal and Coriolis body force
A double channel in the centrifugal and Coriolis force field is

optimized in the following. Fig. 23(a) is the optimization domain
which is discretized by 120� 120 rectangular elements. The inlets
and outlets of the flow are all set to be open boundaries (Eq. (9)).
The initial level set function is set to be the solution of Eq. (30),
where the initial value /0 is specified as �1 (Fig. 23(b)). The rotat-
ing center is set to be the point with coordinate of (0.5,2). The sca-
lar value of the angular speed - in the clockwise direction is set to
be 30. The volume fraction of the fluid is set to be V� ¼ 0:3, and the
weight of the topological sensitivity x is set to be 2. The optimized
results for the cases with only centrifugal force and with both the
centrifugal force and the Coriolis force are shown in Figs. 24(a) and
25(a) where the optimization objective is the dissipation power in



Fig. 21. (a) Optimized topology of the four-terminal device in centrifugal force field; (b) level set function corresponding to the optimized topology; (c) distribution of the
centrifugal force.

Fig. 22. (a) Optimized topology of the four-terminal device in the centrifugal-Coriolis force field; (b) level set function corresponding to the optimized topology; (c)
distribution of the Coriolis force (To manifest the direction of the Coriolis force, the arrows has a different scaling from the centrifugal force).

Fig. 23. (a) Optimization domain of the flow in the centrifugal force field; (b) initial distribution of the level set function. The angular speed - is set to be 30 in the clockwise
direction, and the rotating center O is set to be the point with coordinate (0.5,2).

316 Y. Deng et al. / Comput. Methods Appl. Mech. Engrg. 255 (2013) 306–321
Eq. (10). The convergent histories of the objective value and vol-
ume constraint are shown in Fig. 26. Snapshots for the evolving
procedure of the level set are shown in Fig. 27. Similar to the
numerical example of the four-terminal device in Section 5.3.1,
the Coriolis force results in the change of the topology of the opti-
mized fluid channel. Therefore, the Coriolis force deserves to be
considered in the design of rotational fluid system.

5.4. Three-dimensional numerical examples

5.4.1. 3D channel with constant body force
For the 3D flow driven by constant body force, the flow in a

hexahedron with constant body force is optimized. The optimiza-
tion domain (Fig. 28(a)) is a hexahedron with length, width and
height equal to 1, 1 and 0.5, respectively. And it is discretized by
30� 30� 10 hexahedral elements. The inlet and outlet of the de-
sign domain are set to be open boundaries. The initial level set
function is set to be the solution of Eq. (30), where the initial value
/0 is specified as �1. The constant body force is given as
f ¼ ð10;10;0Þ. The weight of the topological sensitivity is set to
be 3 and the volume fraction of fluid is set to be 0.4. The optimized
channel is shown in Fig. 28(b) for the objective of the kinetic en-
ergy in Eq. (11). Snapshots for the evolving procedure of the level
set are shown in Fig. 29. Fig. 28(b) shows that the optimized chan-
nel has a definite lean to the direction of the constant body force,
and this results in the work done by the body force. As has been



Fig. 24. (a) Optimized topology of the channel in the centrifugal force field; (b)
distribution of the centrifugal force vector.
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discussed in Section 5.2 for the optimization of the flows in the
gravity, the work of the constant body force helps to increase the
kinetic energy of the fluid in this example too.
Fig. 25. (a) Optimized topology of the channel in the centrifugal and Coriolis force field;
force, the arrows has a different scaling from the centrifugal force); (c) composition of t

Fig. 26. Convergent histories of the objective value and volume constraint for the top

Fig. 27. Snapshots for the evolution and nucleation of the level set in the procedure of t
5.4.2. 3D siphon in centrifugal–Coriolis force field
For the 3D flow that is driven by the nonuniform and solution-

dependent body forces, a siphon driven by the centrifugal and Cori-
olis forces is optimized [53,54]. The optimization domain is
Xs [Xc , where Xc is a gap filled with solid and enveloped by Xs

(Fig. 30(a) and (b). Similar to the 2D siphon example in Section
5.2, Xc is specified as a solid region by constraining the fluid veloc-
ity to be zero. The optimization domain, the reservoir and the duct
are discretized by 100� 100� 10; 25� 50� 6 and 50� 10� 6
hexahedral elements, respectively. The inlet and outlet of the flow
are set to be open boundaries. The rotating axis is set to be the axis
vertical to the xOy plane at the point (2.25,2,0) and the angular
velocity is set to be (0,0,�100). The initial level set function is
set to be the solution of Eq. (30), where the initial value /0 is spec-
ified as �1. By solving the optimization problem with the weight of
the topological sensitivity x and the volume fraction of fluid equal
to 20 and 0.2 respectively, the optimized siphon is obtained as
shown in Fig. 30(c) and (d) from the different viewpoints,
where the objective is the kinetic energy of the flow (Eq. (11)).
(b) distribution of the Coriolis force vector (To manifest the direction of the Coriolis
he centrifugal and Coriolis forces.

ology optimization of the flow with the centrifugal or centrifugal-Coriolis force.

he topology optimization of the Navier–Stokes flow with centrifugal-Coriolis force.



Fig. 28. (a) Optimization domain of the 3D channel in the constant body force field; (b) optimized topology of the channel. The artificial constant body force is set to be
f ¼ ð10;10;0Þ.

Fig. 29. Snapshots for the evolution and nucleation of the level set in the procedure of the topology optimization of the 3D flow with constant body force.

Fig. 30. Optimization domain for the siphon in the centrifugal and Coriolis force field from two different viewpoints (a) and (b). Xr is a reservoir to supply the liquid flowing in
the siphon; Xd is a duct connected to the outlet of the siphon; Xs [Xc is the optimization domain; the gap Xc is a solid domain, which is used to ensure the tiptop of the
siphon higher than the inlet of the reservoir Xr ; Cin and Cout are the inlet and outlet respectively; Cinner and the left exterior boundaries are set to be no slip type. The
optimized 3D siphon in the centrifugal and Coriolis body force field is shown in (c) and (d) from two viewpoints corresponding to (a) and (b).
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The siphonal flow in the centrifugal force field is similar to that in
the gravity. Fig. 30(a) and (b) show that there is a radius difference
between the inlet and outlet of the siphon. A pressure drop is pro-
duced by the centrifugal force loaded on the fluid. This pressure
drop drives the fluid flowing in the siphon. In the siphonal flow,
the potential energy of the fluid is translated into the kinetic en-
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ergy and viscous dissipation. Therefore, the optimized siphon tends
to increase the kinetic energy and decrease the viscous dissipation
in the optimization procedure.

6. Conclusion

Topology optimization method is extended to the Navier–Stokes
flows with general body forces by the variational level set method
considering the shape and topological sensitivities. The optimiza-
tion problem is analyzed by the continuous adjoint method. Com-
pared with the discretized adjoint method, the continuous adjoint
equations make the optimization procedure more flexible in choos-
ing numerical computational methods that are available to the user.
The implicit boundary of the fluid flow is evolved and nucleated by
solving the Hamilton–Jacobin equation considering both shape and
topological sensitivities. The body forces of the Navier–Stokes flows
are considered by categorizing them into constant, nonuniform and
solution-dependent types. The numerical examples demonstrated
that this method accomplishes the topology optimization of the
Navier–Stokes flows with body forces. In this paper, the mainly
considered body forces are brought out by the inertia of fluid flow.
This topology optimization method is held for the flows of the New-
tonian fluid with low and moderate Reynolds numbers. For the high
Reynolds number flows or non-Newtonian fluid flows with body
forces caused by multiphysical effect, the topology optimization
problem needs to be investigated furthermore in the future.
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Appendix A

A.1. Adjoint equations of Navier–Stokes equations with body force

The derivation of the adjoint equations of the Navier–Stokes
equations is exhibited in this appendix. According to the
Karush–Kuhn–Tucker conditions [48], the variational of Ĵ in Eq.
(16)

d̂J ¼ @ Ĵ
@u
� duþ @ Ĵ

@ru
: r duð Þ þ @ Ĵ

@p
dpþ @ Ĵ

@/
d/ ð31Þ

should be zero corresponding to the optimal distribution of the le-
vel set function. This means that the variational of Ĵ to the velocity
u, the pressure p and the level set function / are all zero

@ Ĵ
@u
� duþ @ Ĵ

@ru
: r duð Þ ¼ 0;

@ Ĵ
@p

dp ¼ 0;
@ Ĵ
@/

d/ ¼ 0 ð32Þ

Because u ¼ 0 in Xc; ðu;wÞXc
in Eq. (16) is equal to zero. Based on

the first two formulas of Eq. (32), one can obtain
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where ~A ¼ Hð�/ÞAþ sð/Þ r/k kB.

aðdu;wÞX ¼ �g Dw; duð ÞX þ g ðrwþrwTÞ � n; du
� �

CN
ð37Þ

bðdu; u;wÞX ¼ qw � ðruÞ; duð ÞX ð38Þ

bðu; du;wÞX ¼ � qðu � rÞw; duð ÞX þ qðu � nÞw; duð ÞCN
ð39Þ

r � du; qð ÞX ¼ � rq; duð ÞX þ qn; duð ÞCN
ð40Þ

where CN ¼ @X n CD is the Neumann boundary. According to the
third equation in Eq. 2, one can obtain

u ¼ 0) du ¼ 0; / > 0
Hð/Þ ¼ 0; / < 0

�
ð41Þ

In addition, the measure of the implicit boundary C in X is zero.
Therefore,

Hð/Þdu;wð ÞX ¼ 0 ð42Þ

By combining Eq. (33) with the above equations, one can obtainZ
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For the variational of u 2 H1
EðXÞ and p 2 L2ðXÞ have arbitrariness,

the adjoint equations of the Navier–Stokes equations with body
force for the topology optimization problem (12) can be obtained as
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A.2. Calculus of shape sensitivity

The shape sensitivity for the topology optimization problem in
Eq. (12) can be obtained by the adjoint analysis of the augmented
functional in Eq. (16):
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Based on the first two formulas of Eq. (32), the shape sensitivity can
be reduced to
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In addition,
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Based on the similar transformation in [27] and Eq. (48), the follow-
ing transformation can be obtained:

@J
@/

d/¼�
Z

X
sð/ÞAd/dXþ

Z
X

d sð/Þ r/k kð ÞBdX

¼�
Z

X
sð/ÞAd/dXþ

Z
X

d sð/Þð Þ r/k kþ sð/Þd r/k k½ �BdX

¼�
Z

X
sð/ÞAd/dXþ

Z
X

d sð/Þð Þ r/k kþ sð/Þr/ � rðd/Þ
r/k k

 �
BdX

¼�
Z

X
sð/ÞAd/dXþ

Z
X

d sð/Þð Þ r/k kþr � sð/Þ r/
r/k kd/

	 


�r � sð/Þ r/
r/k k

	 

d/

�
BdX

¼�
Z

X
sð/ÞAd/dXþ

Z
X

d sð/Þð Þ r/k kþr � sð/ÞnC d/ð Þ½

�d/sð/Þr �nC � d sð/Þð Þ r/k k�BdX

¼�
Z

X
sð/ÞAd/dXþ

Z
X
r � sð/ÞnC d/ð Þ � d/sð/Þr �nC½ �BdX

¼�
Z

X
sð/ÞAd/dX�

Z
X
sð/ÞBr �nC d/dX

þ
Z

X
r � sð/ÞnCBd/ð Þ �rB �nCsð/Þd/½ �dX

¼�
Z

X
sð/ÞAd/dXþ

Z
@X

sð/ÞBd/nC �ndC

�
Z

X
rB �nCsð/Þd/dX�

Z
X
sð/ÞBr �nC d/dX

¼�
Z

X
sð/ÞAd/dX�

Z
X
rB �nCsð/Þd/dX�

Z
X
sð/ÞBjd/dX

ð49Þ

where nC ¼ r/= r/k k and j ¼ r � nC. Substituting Eq. (49) into Eq.
(46), the shape sensitivity for the topology optimization problem in
Eq. (12) can be obtained as
d̂J ¼�
Z

X
sð/ÞAd/dX�

Z
X
rB �nCsð/Þd/dX�

Z
X
sð/ÞBjd/dX

þ
Z

X
sð/Þu �wd/dXþ k

Z
X
sð/Þd/dX

�K
Z

X
H �/ð ÞdX�V�VX

	 
Z
X
sð/Þd/dX

¼�
Z

X
AþrB �nC þ Bj�u �w� kþK

Z
X

H �/ð ÞdX�V�VX

	 
 �

� sð/Þd/dX ð50Þ
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