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Abstract: We propose an interpretation of moiré phenomenon in the image 
domain. The interpretation is basically based on the analysis of the 
waveform of the line families. The period, angle, and intensity profile of 
moiré fringes can be obtained directly in the image domain according to 
this interpretation. Moreover, pseudo-moiré can be interpreted visually with 
the consideration of the illusional contrast of the human visual system. The 
interpretation, which is consistent with the Fourier theory when the two 
superposed gratings are periodic, involves only the image domain and 
shows remarkable simplicity, just like the indicial equation method. 
©2011 Optical Society of America 
OCIS codes: (070.0070) Fourier optics; (050.2770) Gratings; (120.4120) Moiré techniques. 

References and links 
1. M. Abolhassani and M. Mirzaei, “Unification of formulation of moiré fringe spacing in parametric equation and 

Fourier analysis methods,” Appl. Opt. 46(32), 7924–7926 (2007). 
2. L. Rayleigh, “On the manufacture and theory of diffraction gratings,” Philos. Mag. 4, 81–93 (1874). 
3. G. Oster, M. Wasserman, and C. Zwerling, “Theoretical Interpretation of Moiré patterns,” J. Opt. Soc. Am. A 

54(2), 169–175 (1964). 
4. A. J. Durelli and V. J. Parks, Moiré Analysis of Strain (Prentice-Hall, Englewood Cliffs, New Jersey, 1970). 
5. K. Patorski, Handbook of the Moiré Fringe Technique (Elsevier, Amsterdam, 1993). 
6. O. Bryngdahl, “Moiré: formation and interpretation,” J. Opt. Soc. Am. A 64(10), 1287–1294 (1974). 
7. O. Bryngdahl, “Moiré and higher grating harmonics,” J. Opt. Soc. Am. A 65(6), 685–694 (1975). 
8. I. Amidror and R. D. Hersch, “The role of Fourier theory and of modulation in the prediction of visible moiré′ 

effects,” J. Mod. Opt. 56(9), 1103–1118 (2009). 
9. I. Amidror, The Theory of the Moiré Phenomenon (Springer-Verlag, London, 2009), Chap.2. 
10. G. Lebanon and A. M. Bruckstein, Designing Moiré Patterns (Springer-Verlag, Berlin, 2001). 
11. K. Patorski, S. Yokozeki, and T. Suzuki, “Moiré profile prediction by using Fourier series formalism,” Jpn. J. 

Appl. Phys. 15(3), 443–456 (1976). 
12. I. Amidror and R. D. Hersch, “Mathematical moiré models and their limitations,” J. Mod. Opt. 57(1), 23–36 

(2010). 

1. Introduction 

The moiré phenomenon has been known for a long time. The term moiré comes from French, 
where it refers to watered silk. The moiré silk consists of two layers of fabric pressed 
together. As the silk bends and folds, the two layers shift with respect to each other, causing 
the appearance of interfering patterns. Generally, superposition of two or more periodic (or 
quasi-periodic) structures leads to a coarser structure, named moiré pattern or moiré fringe 
[1]. 

Modern scientific research into the moiré phenomenon and its application started only in 
the second half of the 19th century with pioneering woks, such as Lord Rayleigh pointed out 
that two overlapped 1D-gratings can produce a set of low-frequency fringes which is relevant 
to quality of the gratings in 1874 [2]. 

Various methods are reported in the literature for modeling and analyzing the moiré 
phenomenon. Among these methods, the indicial equation method and the Fourier theory are 
used most widely. The simplest and probably also the oldest method for analyzing the 
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geometric shape of moiré fringes in the superposition of two given curvilinear gratings is the 
indicial (or the parametric) equation method [3–5]. This method, which involves only the 
image domain, is based on the curve equations of the original curvilinear gratings: If each of 
the original layers is regarded as an indexed family of lines (or curves), the moiré fringe that 
results from their interaction forms a new indexed family of lines (or curves), whose 
equations can be deduced from the equations of the original layers. 

The first significant step in the introduction of the Fourier theory to moiré phenomenon 
can be traced back to the 1960s. The Fourier theory which can systematically interpret the 
properties of moiré fringes in overlapped repetitive structures was eventually shown to be 
more effective due to the complexity of the previous classical algebraic and geometric 
analysis [6,7]. The Fourier theory approach enables us to analyze properties not only in the 
original layers and their superposition but also in their spectral representations, and thus 
offers a more profound insight into the problem. Therefore, the Fourier theory provides 
indispensable tools for exploring moiré phenomenon. 

The high-frequency moiré fringe, which cannot be seen by human eyes (namely, outside 
the visibility circle), can be obtained through theoretical calculation of the Fourier theory, 
which indicates the superiority of utilizing mathematical model in explaining physical or 
experimental phenomenon. However, the pseudo-moiré, whose frequency cannot be captured 
by the Fourier theory [8], can be seen by human eyes. Therefore, the limitation of the Fourier 
theory is obvious for the pseudo-moiré. 

Pseudo-moiré may occur in various circumstances, even in multiplicative superposition. 
Some plausible classical answers are given in [8] (Issac Amidror’s work) as follows: 

• The effect of non-linearity; 

• Microstructure versus macrostructure; 

• The human visual system; 

• Modulation. 

In this work, we propose an interpretation for moiré phenomenon, which differs from the 
indicial equation method and Fourier theory, in the image domain. Based on the variation 
characteristic of the superposition of two unidimensional waves with different phases, we can 
find out the family of parallel straight lines, whose average intensity in the direction normal 
to the family of parallel straight lines varies periodically. This family of lines corresponds to 
the real moiré in the Fourier theory. At the same time, there exists the family of lines, which 
possess the illusional average intensity variation in the direction normal to the family of 
parallel straight lines. This causes illusional contrast in human visual system and produces the 
pseudo-moiré. The pseudo-moiré, which is firstly studied in 2009 [8], can be explained 
visually in the image domain through the proposed interpretation. Coincident with the 
traditional Fourier theory [9], the interpretation of moiré phenomenon applies visible and 
quantitative analysis to pseudo-moiré from two aspects: one is the crest distribution and 
envelope profile of average intensity, while the other is the human visual system. 

2. Theoretical framework of the interpretation in the image domain 

2.1 Multiplication of two unidimensional cosinusoidal waves 

Generally, superposition of two and more periodic (or quasi-periodic) structures leads to 
moiré fringes. It is well known that the superposition of two cosinusoidal gratings is the 
simplest way to produce moiré fringes. For simplicity, our proposed interpretation will be 
explained mostly based on the superposition of two cosinusoidal gratings. The interpretation 
is fundamentally based on the analysis of fluctuations of average intensity of the line families, 
so the waveform of the arbitrary line in the superposition of two cosinusoidal gratings can be 
expressed as the superposition of two unidimensional cosinusoidal waves. Thus, we firstly 
analyze the waveform of the superposition of two unidimensional waves. 
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The profile and average intensity of the multiplication of two unidimensional cosinusoidal 
waves relate to their frequencies and the relative phase shift ϕ . The two unidimensional 
cosinusoidal waves and their multiplication are given by 
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Because of the reciprocity between T1 and T2, we only focus on the circumstance, where t 
is a rational number that greater than or equal to 1. According to Eq. (2), we can conclude 
that T is a periodic function. Here, M is designated as the period of T, and the value of M is 
discussed for two circumstances. 

When t = 1, 
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So M = 1. The average intensity Iavr of T is given by 
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average intensity Iavr of T is given by 
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Fig. 1. The waveform of the function T with the variable t when 0ϕ =  and 0.5ϕ = . 
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It can be seen that: when t = 1, the average intensity Iavr relates to ϕ ; when 1t > , the average 
intensity is constant with different ϕ . The simulations of the waveforms that vary with t are 
shown in Fig. 1 (the regular threads correspond to 0ϕ =  and the bold threads correspond 
to 0.5ϕ = ). 

It is seen from Fig. 1 that when t = 1, the average intensity Iavr varies due to ϕ ; when t is a 
rational number greater than 1, the average intensities Iavr with different ϕ  are the same, but 
the distribution and envelope of the wave crests are different. Here, we introduce a parameter 
defined by human-eye recognition: the illusional contrast. In the circumstance, where t > 1 
and if human eyes can distinguish the wave crests and the envelope of the crests with 
different ϕ , we define that there exists an illusional contrast for the t. 

2.2 The physical meaning of the interpretation 

The simplest and oldest model for analyzing the geometric shape of moiré fringes in the 
superposition of two curvilinear gratings is the indicial (or parametric) equation method. This 
model is based on the curve equations of the original curvilinear gratings. If each of the 
original layers is regarded as an indexed family of curves, the moiré fringe of the 
superposition forms a new indexed family of curves, whose equations can be inferred from 
the equations of the original gratings [10]. 

Similar as the indicial equation method, we propose an interpretation, which involves only 
the image domain, to explain the formation of moiré fringe. As shown in Fig. 2, the pitches of 
the two gratings are P1 and P2 respectively, and the included angle of two gratings is α  ( α  is 
a small angle). The arbitrary line A is drawn and the included angles between A and the two 
gratings are β  and γ  respectively ( α β γ π+ + = ). The equivalent periods of the two gratings 
along the orientation A are '

1 1
sinP P γ=  and '

2 2
sinP P β=  respectively. So the waveform AT  in 

the direction to the line A is the superposition of two unidimensional waves whose periods 
are '

1
P  and '

2
P  respectively. The line B parallels to A at a distance of h, as shown in Fig. 2. 

According to the Fig. 2, we can conclude that the waveform BT  in the direction to the line B 
has the relative phase shift R + L comparing to the waveform AT . Thus the waveform of every 
single line, which parallels to the orientation A, has different relative phase shift. When 
average intensity of the line family varies periodically in the direction normal to line A, the  
 

 
Fig. 2. Schematic of the interpretation of the moiré phenomenon in the image domain 
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fluctuation of average intensity as the macrostructure is captured by human eyes namely 
moiré phenomenon. Accordingly, the orientation of moiré corresponds to the direction along 
the line A and the period of moiré is the distance between two lines whose average intensity 
is equal at their maximum (or minimum). In addition, the intensity profile of moiré can be 
obtained from the fluctuation of average intensity of the line family. The waveform along the 
direction C or D is a superposition of a constant wave and periodic wave, so the waveforms, 
which vary periodically in the orientation perpendicular to C and D, correspond to the two 
original gratings. 

Based on the results of the superposition of two unidimensional waves, and the 
interpretation of moiré phenomenon in the image domain and references [8] [9], three 
inferences are given as shown below: 

• The moiré fringes seen by human eyes are divided into two types: real moiré and 
pseudo-moiré. Real moiré describes the circumstance where exists the periodic 
variation of average intensity of the line family. Pseudo-moiré describes the 
circumstance where exists the illusional average intensity variation namely the 
illusional periodic fringe. 

• As a transformation from the whole image domain to the frequency domain, the Fourier 
transform only reflects the periodic information of the holistic average intensity 
namely the periodic fringe of real moiré. When t = 1, there exists the periodic 
variation of the average intensity, and the moiré effects correspond to the frequency 
of the Fourier theory. When t ≠ 1, the illusional intensity distribution corresponds to 
the pseudo-moiré with illusional contrast. 

• In the orientations which are perpendicular respectively to the original gratings C or D, 
there also exists the periodic variation of average intensity. Thus the two orientations 
belong to the real moiré. In this paper, we only focus on the newly generated real 
moiré fringes (namely the 

1 2
( )f f± −
 

 and 
1 2

( )f f± +
 

in Fourier theory). 

In the following, the real moiré and pseudo-moiré are calculated from the interpretation of 
moiré phenomenon in the image domain. Because of the reciprocity between
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In a like manner ( 'α α π+ = ), 
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When 'R L P+ = , the perpendicular distance between line A and line B is 
r

P  (namely the 
period of real moiré): 
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We obtain 
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The above angular and periodic expressions correspond to 
1 2

( )f f± −
 

 and 
1 2

( )f f± +
 

 in 
Fourier theory. 

(b) Pseudo-moiré 

Here ' '

1 2
mP P=  ( m  is an integer and greater than 1), in a like manner, 
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When '

1
R L P+ = , the perpendicular distance between line A and line B is '

p
P  (namely the 

period of pseudo-moiré): 
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The general moiré formulas of two cosinusoidal gratings are given by 

 1 1 2
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Generally speaking, the real moiré, which corresponds to 
1 2

( )f f± −
 

 and 
1 2

( )f f± +
 

 in the 
Fourier theory, is obtained when m = 1. The pseudo-moiré is produced when m is a rational 
number, greater than 1. 

3. Simulations and verification 

3.1 Little inclined cosinusoidal gratings with frequency ratios 1:1 (P1 = P2 = P) 

The transmittance functions of two gratings are given by 

 
1 1 1 2 2 2

1 1 1 1
( , ) cos(2 ) ( , ) cos(2 [ cos sin ])

2 2 2 2
, ,r x y f x r x y f x yπ π θ θ= + = + +  (18) 

where
1 2

1f f P= = ; the superposition of two gratings is given in Fig. 3. 
Here the real moiré formula in Eq. (17) coincides with the Fourier theory. Besides the 

original frequencies 
1

f


 and 
2

f


, there are four frequency items which are vector sums  
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Fig. 3. The multiplicative superposition of two little inclined cosinusoidal gratings with 
frequency ratio 1:1 

1 2
( )f f± −
 

 and vector differences 
1 2

( )f f± +
 

. The items 
1 2

( )f f± −
 

 correspond to the low-
frequency moiré fringes in Fig. 3. The orientation of the fringes is at one-half the relative 
inclination of the two cosinusoidal gratings, and the period Pm of the fringes equals to 

/ 2 | sin( / 2) |P α . Based on the interpretation in section 2.2, we can also infer that equivalent 
pitches of the two gratings are equal in the orientation of one-half the relative inclination of 
the two gratings. 

3.2 Little inclined cosinusoidal gratings with frequency ratios 1:2 

Here P2 = 2P1, f1 = 1/P1, f2 = 1/P2. 
Based on the analysis of the Fourier theory, there are four frequency items which are 

vector sums 
1 2

( )f f± +
 

 and vector differences 
1 2

( )f f± −
 

 besides the original frequencies 

1
f


and
2

f


. But the low-frequency fringe is not captured in the Fourier theory as shown in Fig. 
4(a). In the following, we analyze the phenomenon utilizing the interpretation in section 2.2. 

 
Fig. 4. (a)The multiplicative superposition of two little inclined cosinusoidal gratings with 
frequency ratio 1:2(b) The multiplicative superposition of two little inclined cosinusoidal 
gratings with frequency ratio 1:3 

Considering the pseudo-moiré of m = 2, we substitute m into Eq. (17) and obtain 

 1tan tan( ),
2 2 | sin( 2) |

.
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P
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The angle of the low-frequency fringe of the obtained pseudo-moiré coincides with that in 
Fig. 3. But the pseudo-moiré in Fig. 4(a) is a little more difficult to discern than the real moiré 
shown in Fig. 3. In this circumstance, there also exists a high frequency conjugate pseudo-
moiré (corresponding to 'α ). Because of its high frequency and poor illusional contrast, it’s 
difficult to discern by human eyes. Therefore, the high-frequency pseudo-moiré will not be 
discussed in this paper. 

In the like manner, the pseudo-moiré of m = 3 appears in the case of the superposition of 
two little inclined cosinusoidal gratings that one has three times the pitch of the other. The 
angle of the low-frequency fringe of the obtained pseudo-moiré in Fig. 4(b) coincides with 
that in Fig. 3. Obviously, the pseudo-moiré of m = 3 is hard to be discerned by human eyes. 
Thus in the following discussion, we will mainly focus on the pseudo-moiré when m = 2. 

3.3 Little inclined cosinusoidal gratings where one has non-integral times the pitch of the 
other 

For the situation of non-integral frequency, some simple examples are given and compared. 
According to the simulation mentioned in section 3.2, it is easy to figure out that the low-
frequency moiré fringe is hard to be discerned neither in real moiré nor pseudo-moiré when 
P2/P1>3, so the real moiré and pseudo-moiré are analyzed in three circumstances: P2 = 1.1P1, 
P2 = 1.5P1, P2 = 1.9P1. Here

1
5 ' 175 30, , Pα α= = =  .The fringes are shown below. 

(a) P2 = 1.1P1 and P2 = 1.9P1 

 
Fig. 5. (a) The multiplicative superposition of two little inclined cosinusoidal gratings with 
frequency ratio 1:1.1 (b) The multiplicative superposition of two little inclined cosinusoidal 
gratings with frequency ratio 1:1.9 

Angles and periods of real and pseudo-moiré in the case of frequency ratio 1.1 and 1.9 are 
shown in Table 1. As seen from Fig. 5(a), the low-frequency fringe of real moiré is most 
prominent. While seen from Fig. 5(b), the low-frequency fringe of pseudo-moiré becomes 
most prominent. 

Table 1. Angles and periods of real and pseudo-moiré in the case of frequency ratio 1.1 
and 1.9 

Frequency 
ratio 

  Real moiré   Pseudo-moiré 

    
r

P  ( )
r

γ   '

r
P  ' ( )rγ   p

P  
p

γ  ' ( )
p

P   ' ( )pγ   
1.1   243.5 40 15.7 2.3 36.3 169 10.7 3.2 
1.9   62.8 5.5 19.7 1.7 289.1 117.9 14.6 2.6 
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 (b) P2 = 1.5P1 

 
Fig. 6. The multiplicative superposition of two little inclined cosinusoidal gratings with 
frequency ratio 1:1.5 

Angles and periods of real and pseudo-moiré in the case of frequency ratio 1.5 are shown in 
Table 2. As shown in Fig. 6, the low-frequency fringes of the real moiré and pseudo-moiré 
have equal strength and both cannot be discerned readily. 

Table 2. Angles and periods of real and pseudo-moiré in the case of frequency ratio 1.5 

Frequency ratio   Real moiré   Pseudo-moiré 
    

r
P  ( )

r
γ   '

r
P  ' ( )rγ   p

P  ( )
p

γ   '

p
P  ' ( )pγ   

1.5   88 9.8 18 2 86.2 160.5 12.9 2.9 

From the above comparison, we can conclude the coexistence of real moiré and pseudo-
moiré. Moreover, the sensitivity of human eyes to real moiré and pseudo-moiré is different in 
different circumstances. It is easy to conclude that when P2/P1 approaches 1, the real moiré is 
more prominent; when P2/P1 approaches 2, the pseudo-moiré becomes more prominent; when 
P2/P1 = 1.5, real moiré and pseudo-moiré seem equally to human eyes. 

The above discussions on pseudo-moiré produced by two cosinusoidal gratings were 
carried out in the circumstances of 

1 2
P P<  and ' '

1 2
P P≤ . A universal interpretation can be given 

below: for any arbitrary 
1

P and 
2

P ,in the case of ' '

1 2
/ /P P r s=  (r and s are integers and 

irreducible to each other), when r = s = 1, it is real moiré; when r≠s, it is pseudo-moiré. The 
corresponding items in the Fourier theory are 

1 2
)(r f s f± −

 

. 

4. Discussion on the superposition of two binary gratings 

The superposition of two binary gratings relates to four parameters: two periods and two 
opening ratios. The multiplication of two unidimensional binary waves is complicated, so in 
the case of the superposition of two binary gratings we list several examples firstly. Finally, 
the corresponding inferences are given by combining the foregone conclusions with the 
Fourier theory [6,7,9]. 

4.1 The superposition of two binary gratings with frequency ratio 1:1 (P1 = P2 = P) 

To analyze the binary gratings’ moiré effects based on section 2.2, we first assume the 
average intensity of the superposition of two periodic square waves having an opening ratio 
0.5 and amplitude 1. Therefore, it is easy to figure out that the average intensity of the  
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Fig. 7. (a)the multiplicative superposition of two little inclined binary gratings with frequency 
ratio 1:1(b) The multiplicative superposition of two binary gratings where the frequency ratio 
is 1:2 and with little included angle. 

superposition with the variation of phase shift ϕ  is 0.5 / pϕ− . When 0ϕ = , the average 
intensity reaches its maximum value; when / 2Pϕ = , the average intensity is observed at its 
minimum. Thus the waveform of the average intensity with variable ϕ  is a triangular wave. 
So the intensity profile of low-frequency moiré fringe in the Fig. 7(a) is a triangular wave. 

Based on partial sum extraction in the Fourier expansions [5,11], the items 

1 2
( )

n

n nn
a b n f f

−
−∑
 

 in the frequency domain corresponds to a triangular wave. The orientation of 
the moiré fringe is at one-half the relative inclination of the two gratings. Therefore we can 
conclude that the waveform of 

1 2
( )

n

n nn
a b n f f

−
−∑
 

 is the same as the waveform, which is 
calculated by the interpretation in the image domain. In this case, the interpretation of moiré 
phenomenon in the image domain coincides with the Fourier theory. 

4.2 The superposition of two binary gratings with frequency ratio 1:2 (2P1 = P2) 

According to the Fourier theory, the low-frequency moiré fringe in the Fig. 7(b) reflects the 
distribution of the superposition of 

1 2 1 2
( 2 )n

n n n
a b n f f

−
−∑
 

. However, 
2 n

b  equals to zero when the 
opening ratio is 0.5 [9]. Thus the moiré fringe corresponds to the pseudo-moiré. Utilizing the 
analysis in section 2.2, we infer that in the orientation of the low-frequency fringe in Fig. 
7(b), the equivalent period of the one binary grating is twice the other’s. Moreover the 
average intensity of the superposition of the unidimensional waves is a constant with the 
variable ϕ . So the low-frequency fringe that we see is the pseudo-moiré. 

The superposition of two binary gratings with an opening ratio 0.5 is similar to the 
superposition of cosinusoidal gratings. The moiré fringe generated by cosinusoidal gratings is 
expressed as 

1 2
r f s f−
 

. When r = s = 1, it corresponds to real moiré; when r≠s, it corresponds 
to pseudo-moiré. Similarly, the moiré fringe generated by binary gratings is expressed as 

1 2
( )

n

rn snn
a b n r f s f

−
−∑
 

. For the opening ratio 0.5, the real moiré occurs when r and s are both odd 
numbers, while the pseudo-moiré is produced when r or s is an even number. 

4.3 The superposition of two binary gratings with arbitrary periods and opening ratios 

Based on discussion mentioned above, the inferences are obtained: 
The periods and openings of the two gratings are denoted respectively to 

1
T 、

2
T 、

1
τ 、

2
τ , 

where 
1 1 1 1

T l kτ = , 
2 2 2 2

T l kτ =  (
1
l  and 

1
k  are integers and irreducible to each other, and so 
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are 
2

l  and 
2

k ). In an arbitrary orientation with an included angle γ , the equivalent periods of 
the two binary gratings are '

1 1
sinT T γ=  and '

2 2
sinT T β=  with ' ' ' '

1 2
T T l k=  ( 'l and 'k  are 

integers and irreducible to each other). According to the Fourier theory, the corresponding 
superposition of the family of vectors is ' '

' '

1 2
( )

n

n l n k n
a b n l f k f

−
−∑
 

. When '

1
l k=  or '

2
k k=  (namely, 

' 0
l n

a =  or 
' 0

k n
b = ), the superposed fringe is pseudo-moiré. When '

2
k k≠  and '

1
l k≠ (namely, 

' 0
l n

a ≠  or 
' 0

k n
b ≠ ), it is real moiré. 

Utilizing the interpretation it is impossible to analyze every single frequency components 
of binary gratings. Therefore, calculation is only performed on the waveform of 

' '

' '

1 2
( )

n

n l n k n
a b n l f k f

−
−∑
 

 in the image domain, but the interpretation can still explain the pseudo-
moiré effects of binary gratings visually. 

5. Conclusions 

In the case of two periodic gratings where frequency ratio and opening ratio are arbitrary, the 
indicial equation method and Fourier analysis methods are consistent [1]. Indicial equation 
method involves only the image domain, and only takes into account only the geometric 
layout of the centerlines of the curvilinear gratings and of the resulting moiré, but it totally 
ignores their intensity profiles [3,12]. The biggest advantage of the indicial equation method 
is in its remarkable simplicity, which is particularly welcome in cases where the derivations 
in the spectral approach become complicated. 

The Fourier analysis methods involve the frequency domain and can provide all moiré 
information including the period, the angle and intensity profile [6,7]. Fourier analysis 
methods also provide an easy moiré explanation in the case of three or more gratings, 
including the more complex cases where indicial equation method becomes too complicated. 
However, in the case of nonlinear gratings, the spectrum of the gratings no longer consists of 
impulses and may be continuous. It is then impossible to analyze the superposition spectrum 
with the same ease as before. 

Based on the analysis of fluctuations of average intensity of the line families in the image 
domain, the interpretation of moiré phenomenon in the image domain was proposed. This 
interpretation explains the pseudo-moiré phenomenon directly in the image domain, with 
considering both illusional distribution of the average intensity and the human visual system. 
In the case of two periodic gratings the interpretation of moiré phenomenon has the same 
meaning as indicial equation method in the image domain. In addition, the interpretation can 
also provide the information of the phase and the intensity profile of the moiré which cannot 
be obtained from indicial equation method. Furthermore, our proposed interpretation is 
consistent with the Fourier theory when two superposed gratings are periodic and provides a 
visible and understandable analysis method in the image domain. 
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