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Abstract In this paper, it is shown that the Heisenberg model of spin-1 chain can
be constructed from the Birman–Wenzl algebra generator while we have got that
the Heisenberg model of spin- 1

2 chain can be constructed from the Temperley–Lieb
algebra generator in our previous work (Sun et al. in EPL 94:50001, 2011). Here, we
investigate the topological space, we find that the number of topological basis states
raise from the previous two to three, and they are also the three eigenstates of a closed
four-qubit Heisenberg model of spin-1 chain. Specifically, all the topological basis
states are also the spin single states and one of them is the energy single state of the
system. It is worth noting that all conclusions we get in this paper are consistent with
our previous work (Sun et al. in EPL 94:50001, 2011). These just indicate that the
topological basis states have particular properties in the system.
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1 Introduction

In the integrable quantum spin systems, the one-dimensional Heisenberg model under
the periodic boundary conditions is one of the fundamental models. In 1931, it was
originally introduced by Bethe [2] for the purpose of solving the isotropic Heisenberg
spin chain, the Bethe Ansatz, and has been proven an invaluable tool in the field of
exactly solved models because of its numerous generalizations and refinements. Vari-
ety of physical models and problems [3,4] has also illustrated the versatility of this
method and proved it useful. In ref. [5], entanglement control in an anisotropic two-
qubit Heisenberg XYZ model with external magnetic fields has been explored, and
ref. [6] has investigated the evolution equation of entanglement for bipartite systems.
In statistical mechanics, the Temperley–Lieb algebra (TLA) first appeared as a tool
to analyze various interrelated lattice models [7], and it was related to link and knot
invariants [8]. Up to now, there have been many more models based on the TLA repre-
sentations, such as the graph models [9–11], the RSOS models [12], and certain vertex
models [13,14]. The Temperley–Lieb equivalence has also been naturally extends to
the corresponding quantum counterparts of the above statistical mechanical models,
such as the quantum RSOS models and the quantum spin-S chains [13,15–19], and it
is worth noting that all of which are related to the spin- 1

2 Heisenberg chain with partial
anisotropy (XXZ chain). Recently, our team have also got that the Heisenberg model
of spin- 1

2 chain can be constructed from the TLA generator [1]. However, for spin-1
chain, we need to combine TLA with braid group algebra (BGA), the combination of
these two algebra is just the Birman–Wenzl algebra (BWA) [20,21].

In the topological quantum computation theory, based on the ν = 5
2 fractional quan-

tum Hall effect (FQHE) [22–25], reference [26,27] investigated the two-dimensional
(2D) braid behavior under the exchange of anyons. The orthogonal topological basis
states have the form as [22–25],
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where the parameter d represents the value of the unknotted loop. At each trivalent
vertex, in the middle fusion chains (called conformal block), the internal edges obey
the fusion rules as follows,
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2
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It is worth pointing out that there are two different fusion channels for two 1
2 anyons.

On the right-hand sides, from the conformal basis to the Staffman graph, Jones–Wenzl
projector operators have been applied, i.e.,
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�0 = 1

d

i j

, �1 = − 1

d

i j

. (4)

Recently, many work have shown that topological basis has some important phys-
ical applications in topological quantum computation, quantum reexportation, and
quantum entanglement [1,28,29]. In ref. [28], based on the topological basis, authors
nests the TLA into the four-dimensional (4D) Yang–Baxter equation (YE) and reduces
it to the 2D YE, and then they noted that the YE can be tested in terms of quantum
optics. Reference [1] connected the topological basis states with a Heisenberg spin- 1

2
chain. On the other hand, ref. [30] presented an experimental results for a small-scale
approximate evaluation of the Jones polynomial via nuclear magnetic resonance (NM).
They could obtain the value of the Jones polynomial by measuring the nuclear spin
state of the molecule.

Our aim in this work is to connect more topological basis states with a Heisenberg
model of spin-1 chain and also study some particular properties of the topological
basis states in this system. This paper is organized as follows: in the second section, we
recall the TLA, BGA, BWA, and get three new topological basis. Through acting on the
subspaces, we get the new nontrivial three-dimensional (3D) Temperley–Lieb matrix
representations and braid group matrix representations, which satisfy the 3D TLA and
3D BGA, respectively. In the third section, we show that the Heisenberg model of spin-
1 chain can be constructed from the BWA generator. Then, in the topological space,
we present a graphic method of constructing the exact solutions for a closed four-qubit
Heisenberg model of spin-1 chain. It is interesting that the topological basis states we
get are also the three eigenstates of the system. Specifically, all the topological basis
states are also the spin single states and one of them is the energy single state of the
system.

2 TLA, BGA, BWA, and topological basis

In order to keep the paper self-contained, we first briefly review the theory of
the TLA [7]. For each natural number m, the TLA T Lm(d) is generated by
{I, E1, E2, . . . , Em−1} with the TLA relations:

⎧⎪⎨
⎪⎩

E2
i = d Ei 1 ≤ i ≤ m − 1

Ei Ei±1 Ei = Ei 1 ≤ i ≤ m

Ei E j = E j Ei | i − j |≥ 2,

(5)

where d is the unknotted loop in the knot theory, which does not depend on the
sites of the lattices. The notation Ei ≡ Ei,i+1 is used. The Ei represents 11 ⊗ 12 ⊗
13 ⊗···⊗1i−1 ⊗ E ⊗1i+2 · · ·1m , and 1 j represents the unit matrix in the j th space Vj .
In addition, the TLA is easily understood in terms of knot diagrams in Ref. [30–32].
Using Staffman’s graphs, it can be expressed as
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ei −→
i 1i +

, E2
i = d Ei −→

i 1i +

=
i 1i +

Ei Ei±1 Ei = Ei −→
i 1i + 2i +

=
1i + 2i +i

Ei E j = E j Ei −→
i 1i + j 1j +

=
i 1i + j 1j +

(6)

Then, we review the theory of braid groups. Let Sn denotes the braid group on
n strands. Sn is generated by elementary braids {S1, S2, . . . , Sn−1} with the braid
relations as follows:

{
Si Si+1Si = Si+1Si Si+1 1 ≤ i < n − 2
Si S j = S j Si |i − j | ≥ 2

(7)

where the notation Si ≡ Si,i+1 is used, Si,i+1 represents 11⊗12 ⊗13⊗···⊗1i−1⊗S⊗
1i+2 · · ·1m , and 1 j is the unit matrix of the j th particle. Using Staffman’s graphs [32],
Si can be expressed as

Si −→
i 1i +

(8)

The BWA is generated by the unit I, the braid operators Si and the operators Ei

with the BWA relations as follows [33,34],

Si − S−
i = ω(I − Ei ),

Si Si+1Si = Si+1Si Si+1; Si S j = S j Si , |i − j | ≥ 2

Ei Ei+1 = Ei+1 Ei ; Ei E j = E j Ei , |i − j | ≥ 2

Ei Si = Si Ei = σ Ei ;
Si+1Si Ei+1 = Ei Si+1Si = Ei Ei+1,

Si+1 Ei Si+1 = S−
i Ei+1S−

i ,

Ei+1 Ei Si+1 = Ei+1S−
i ; Si+1 Ei Ei+1 = S−

i Ei+1,

Ei Si+1 Ei = σ−Ei ;
E2

i =
(

I − σ − σ−

ω

)
Ei (9)

where σ and ω are two independent parameters. The 9 × 9 Hermitian matrix E with
d = q + 1 + q−, which satisfies the TLA relations in Eq. (5), and 9 × 9 Hermitian
matrix S, which satisfies the braid relations in Eq. (7), respectively, take the following
form,

E = blockdiag
(

E (1)
1 , E (2)

2 , E (3)
3 , E (4)

2 , E (5)
1

)
(10)
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with the block submarines,

E (1)
1 = E (5)

1 = 0; E (2)
2 = E (4)

2 = 0,

E (3)
3 =

⎛
⎜⎝

q q
1
2 1

q
1
2 1 q− 1

2

1 q− 1
2 q−1

⎞
⎟⎠ , (11)

and

S = blockdiag
(

S(1)
1 , S(2)

2 , S(3)
3 , S(4)

2 , S(5)
1

)
, (12)

with the block submarines,

S(1)
1 = S(5)

1 = q, S(2)
2 = S(4)

2 =
(

0 1
1 q − q−1

)

S(3)
3 =

⎛
⎜⎝

0 0 q−1

0 1 −ωq− 1
2

q−1 −ωq− 1
2 ω(1 − q−1)

⎞
⎟⎠ (13)

Here, block diag represents the matrix in block form. The form is E = ⊕5
i=1 E (i)

k (E (i)
k

is k × k matrix), So do the latter matrices, and ω = q − q−1.
In this paper, for the purpose of constructing the Heisenberg model from the BWA

operator, we choose q = 1 and d = q + 1 + q− = 3. So the orthogonal topological
basis states in Eq. (1) have the form

|e1〉 = 1
3

1 2 3 4

,

|e2〉 = 1
2
√

2

(
2 31 4 − 1

3

1 2 3 4

)
.

(14)

For BWA, we also get another new topological basis state as follows,

|e3〉 =
√

30
15

(
1 2 3 4 − 1

4

1 2 3 4 − 1
4

2 31 4

)
. (15)

Here, the new topological graph
1 2 3 4

comes from the BGA in the BWA, it means
that four spaces 1, 2, 3, and 4 cross-connect. So we get the topological subspaces for
the BWA, the topological basis states read
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Acting the operator E of Eq. (11) and S of Eq. (13), respectively, on the topological
subspace spanned by |e1〉, |e2〉, and |e3〉, we can get the 3D representations of the
operator E and S:
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⎛
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and
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where (E A)i j = 〈ei |E12|ei 〉, (EB)i j = 〈ei |E23|ei 〉, (EC )i j = 〈ei |E34|ei 〉, (ED)i j =
〈ei |E41|ei 〉, so do the matrix S. It is worth noting that these representations in Eqs. (17)
and (18) are the new 3D Temperley–Lieb matrix and 3D braid group matrix representa-
tions while they all satisfy the 3D TLA and 3D BGA relation. The 3D Temperley–Lieb
matrix representations E A = EC , EB = ED and the 3D braid group matrix represen-
tations SA = SC , SB = SD also indicate that there is symmetry of exchanging pair
indices 12 ↔ 34 and 23 ↔ 41 for the 3D subspace {|e1〉, |e2〉, |e3〉}.

3 The graphic solutions and the topological basis

In ref. [1], authors connected the topological basis states with a Heisenberg spin-
1
2 chain. In this section, we will show a graphic method of constructing the exact
solutions for a four-qubit Heisenberg model of spin-1 chain and then also investigate
the particular properties of the topological basis states in this system.

For the i th and (i + 1)th lattices, the matrix of (S − E) in Eqs. (11) and (13) can
be expressed in terms of spin-1 operators

Si,i+1 − Ei,i+1 = 1

2
(L+

i L−
i+1 + L−

i L+
i+1) + L3

i L3
i+1

= Hi,i+1 (19)
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where Li is the spin-1 operator,

L3
i = |1〉i i 〈1| − | − 1〉i i 〈−1|,

L+
i = √

2(|1〉i i 〈0| + |0〉i i 〈−1|) = (L−
i )+ (20)

and Hi,i+1 is of the form

Hi,i+1 = 1

2
(L+

i L−
i+1 + L−

i L+
i+1) + L3

i L3
i+1 = �Li �Li+1. (21)

It is worth noting that the Hamiltonian Hi,i+1 is just the Heisenberg spin-1 model. So
the Heisenberg spin-1 model can be constructed from the BWA generator as follows:

Hi,i+1 = Si,i+1 − Ei,i+1. (22)

Next, we discuss the Hamiltonian of a closed four-qubit Heisenberg model of spin-1
chain under the periodic boundary conditions given by

H = J
4∑

i=1

Hi,i+1. (23)

where J is the real coupling coefficient. The coupling constant J < 0 corresponds
to the ferromagnetic case, and J > 0 corresponds to the antiferromagnetism case.
According to Eq. (22), it is easy to verify that the eigenstates of the Hamiltonian H are
the same as the eigenstates of Γ = ∑4

i=1(Si,i+1 − Ei,i+1). So through combining the
above three topological basis states {|e1〉, |e2〉, and|e3〉}, we can construct the exact
solutions for the Hamiltonian H in Eq. (23) as follows:
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√
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,
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3
|e1〉 +

√
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6
|e1〉 +

√
30

6
|e3〉 = 1

3

1 2 3 4

(24)

with the corresponding eigenvalues E1 = −6J, E2 = −2J, E1 = 0. As is known, the
generators of the Lie algebra of the Heisenberg model are �I = �L = ∑4

i=1
�li , where

�I is the total spin-1 operator satisfying [Iλ, Iμ] = iελμν Iν(λ, μ, ν = 1, 2, 3) and �li
are the spin-1 operators. It is easy to verify that these eigenstates in Eq. (24) are also
the eigenstates of �L2 (i.e., �L = ∑4

i=1
�li ) and Lz (i.e., Lz = ∑4

i=1 lz
i ). Corresponding

to the three eigenstates {|�1〉, |�2〉, |�3〉} in Eq. (24), the eigenvalues of �L2 all are
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0, and the eigenvalues of Lz also all are 0. It is worth mentioning that the eigen-
states {|�1〉, |�2〉, |�3〉} in Eq. (24), which are constructed through the combination
of the topological basis states {|e1〉, |e2〉, |e3〉}, can also be considered as topolog-
ical basis states. So the first important point we get is that topological basis states
{|�1〉, |�2〉, and|�3〉} are the three eigenstates of the closed four-qubit Heisenberg
model of spin-1 chain. The second important point is that the three topological basis
states all are the spin single states of this system (i.e., the eigenvalues of �L2 and Lz all
are 0), and the number of the topological basis states is equal to the number of the spin
single states of the system. The third important point is that the energy single state
of the system falls on one of the three topological basis states (i.e., |�1〉). Namely,
the ground state of the antiferromagnetism system (i.e., J > 0) falls on one of the
three topological basis states (i.e., |�1〉). It is worth noting that all conclusions we get
in this paper are consistent with our previous work [1]. These just indicate that the
topological basis states have particular properties in the system.

4 Summary

In conclusion, through constructing the Heisenberg model from the BWA operator,
we have connected the topological basis states with a Heisenberg model of spin-1
chain and have studied some particular properties of the topological basis states in
this system. For BWA, we get a new topological basis state |e3〉, and it is shown
that the three topological basis states are the three eigenstates of a closed four-qubit
Heisenberg model of spin-1 chain. Specifically, the three topological basis states all
are the spin single states of the system, and the number of the topological basis states
is equal to the number of the spin single states of the system. And we also get that
the energy single state of this system falls on one of the three topological basis states.
Namely, the ground state of the antiferromagnetism system (i.e., J > 0) falls on one
of the three topological basis states. It is worth noting that all conclusions we get in
this paper are consistent with our previous work [1].

While according to some recent research work [1,28,29], it is known that topolog-
ical basis has some important physical applications in topological quantum compu-
tation, quantum reexportation, and quantum entanglement. In ref. [28], based on the
topological basis, authors nests the TLA into the nondirectional (4D) Yang–Baxter
equation (YE) and reduces it to the 2D YE, and then they noted that the YE can be
tested in terms of quantum optics. Reference [1] connected the topological basis states
with a Heisenberg model of spin-1/2 chain. On the other hand, ref. [30] presented an
experimental result for a small-scale approximate evaluation of the Jones polynomial
via nuclear magnetic resonance (NM). They could obtain the value of the Jones poly-
nomial by measuring the nuclear spin state of the molecule. From these aspects, we
could think that the topological basis states have particular properties in the physical
system.

However, what we have been discussing in this paper is still an open problem that
will require a deal of further investigations. When the number of particle spreads to 2N-
qubit (N = 2, . . .) for closed Heisenberg model of spin-1 chain, if all the topological
basis states for 2N particles are also the spin single states of the system, if the number
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of the topological basis states is also equal to the number of the spin single states of the
system, and the study of application of more topological basis in quantum information
processing, these are work in progress.
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