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We have studied the transmissivity of one-dimensional photonic crystals quantum well (QW) with quantum theory approach. By
calculation, we find that there are photon bound states in the QW structure (𝐵𝐴)6(𝐵𝐵𝐴𝐵𝐵)𝑛(𝐴𝐵)6, and the numbers of the bound
states are equal to 𝑛 + 1. We have found that there are some new features in the QW, which can be used to design optic amplifier,
attenuator, and optic filter of multiple channel.

1. Introduction

Photonic crystals (PCs) are artificial structures with a peri-
odic dielectric constant in one, two, or three dimensions [1, 2].
They are characterized by photonic band structures owing to
themultiple Bragg scatterings [3, 4]. Between photonic bands
there may exist a photonic band gap (PBG), in which the
propagation of electromagnetic waves or photons is strongly
inhibited [5]. This facilitates the manipulation and control of
the flow of electromagnetic waves or photons as well as the
design of high-performance optoelectric devices [6, 7].

The concept of super lattice and quantum well (QW)
stemmed from the pioneering work of Shimuzu and Ishihara
[8]. It is well known that there are many interesting and new
phenomena for electrons in semiconductor QW structures
[9]. The QW structures and super lattices can be used to
tailor the electronic band structures of semiconductors [9–
13]. Similar to the idea of semiconductor QW structures, one
can use different PCs to construct photonic QW structures,
provided that the PBG of the constituent PCs are aligned
properly. The constituents can be one-dimensional (1D),
two-dimensional (2D), or three-dimensional (3D) PCs. It
has been shown by the authors [14] that the transmission
properties of the 1D and 2D PCs can be tailored by using
QW structures.The nontransmission frequency range can be

enlarged as desired by using QW. The use of QW exciton
embedded in high-finesse semiconductor microcavities of
the Fabry-Perot type has allowed observing a modification of
spontaneous emission (weak coupling regime) [15–21] as well
as the occurrence of a vacuumRabi splitting (strong coupling
regime) [22–25]. The latter effect arises when the radiation-
matter coupling energy overcomes the damping rates of QW
exciton and microcavities photons.

In [26, 27], we have studied the quantum transmission
characteristic of 1D PCs with quantum theory approach and
given the quantum transform matrix, quantum transmis-
sivity, and reflectivity. In this paper, we use the quantum
method to research the QW transmissivity of 1D PCs. It is
found that there are some new features in the QW structure
(𝐵𝐴)

6
(𝐵𝐵𝐴𝐵𝐵)

𝑛
(𝐴𝐵)

6, which can be used to design optic
amplifier, attenuator, and optic filter of multiple channel.

2. Quantum Transform Matrix and
Transmissivity of QW

TheQWstructures consisted of two different 1DPCs.Thefirst
and second 1D PCs structures are (𝐵𝐴)6(𝐴𝐵)6 and (𝐵𝐵𝐴𝐵𝐵)𝑛,
respectively, where 𝑛 are the numbers of the second PCs
layers.The two 1DPCs can consist of 1DPCs ofQWstructure,
which is (𝐵𝐴)6(𝐵𝐵𝐴𝐵𝐵)𝑛(𝐴𝐵)6.
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Figure 1: The QW structure of 1D PCs.
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Figure 2: The quantum transmissivity of 1D PCs with 𝑛
𝑏
= 2.45. (a) The structure is (𝐵𝐵𝐴𝐵𝐵)12; (b) the structure is (𝐵𝐴)6(𝐴𝐵)6.

In quantum theory approach [26, 27], we consider the
photon travels along with the 𝑥-axis, and the QW structure
and quantum wave functions distribution are shown in
Figure 1. The thicknesses and refractive indexes of layers 𝐴
and 𝐵 are 𝑎, 𝑏, 𝑛

𝑎
, and 𝑛

𝑏
, respectively. The 𝜓1

𝐵
and 𝜓1

𝐴
are

the photon wave functions of the first period media 𝐵 and
𝐴. The photon wave functions of incident, reflection, and
transmission are [26, 27]

𝜓
𝐼
= 𝐹𝑒
𝑖𝐾𝑥
,

𝜓
𝑅
= 𝐹
󸀠
𝑒
−𝑖𝐾𝑥
,

𝜓
𝐷
= 𝐷𝑒
𝑖𝑘𝐴𝑃𝑎+𝑖𝑘𝐵𝑄𝑏+𝐾(𝑥−𝑃𝑎−𝑄𝑏),

(1)

where𝐾 = 𝜔/𝑐, 𝑘
𝐴
= (𝜔/𝑐)𝑛

𝑎
, and 𝑘

𝐵
= (𝜔/𝑐)𝑛

𝑏
are the wave

vector of photon in vacuum,mediums𝐴 and𝐵.The constants
𝐹, 𝐹󸀠, and 𝐷 are the wave function amplitudes of incident,
reflection, and transmission wave. By calculation, similarly as
[26, 27], we can directly give the wave functions of photon in
arbitrary layers 𝐴 and 𝐵. For medium 𝐴 (𝐵) of the (𝑃

𝑖
+ 1)th

((𝑄
𝑗
+1)th) layer, the photon wave function can be written as

𝜓
𝑃𝑖+1
𝐴
(𝑥) = 𝐴𝑒

𝑖[𝑘𝐴𝑃𝑖𝑎+𝑘𝐵𝑄𝑖𝑏+𝑘𝐴(𝑥−𝑃𝑖𝑎−𝑄𝑖𝑏)]

+𝐴
󸀠
𝑒
𝑖[𝑘𝐴(𝑃𝑖+1)𝑎+𝑘𝐵𝑄𝑖𝑏+𝑘𝐴((𝑃𝑖+1)𝑎+𝑄𝑖𝑏−𝑥)],

𝜓
𝑄𝑗+1
𝐵
(𝑥) = 𝐵𝑒

𝑖[𝑘𝐴𝑃𝑗𝑎+𝑘𝐵𝑄𝑗𝑏+𝑘𝐵(𝑥−𝑃𝑗𝑎−𝑄𝑗𝑏)]

+𝐵
󸀠
𝑒
𝑖[𝑘𝐴𝑃𝑗𝑎+𝑘𝐵(𝑄𝑗+1)𝑏+𝑘𝐵(𝑃𝑗𝑎+(𝑄𝑗+1)𝑏−𝑥)];

(2)

before the (𝑃
𝑖
+ 1)th layer medium 𝐴, there are 𝑃

𝑖
layers

medium𝐴 and𝑄
𝑖
layers medium 𝐵, and before the (𝑄

𝑗
+1)th

layer medium 𝐵, there are 𝑃
𝑗
layers medium 𝐴 and 𝑄

𝑗
layers

medium 𝐵. The constants 𝐴, 𝐴󸀠, 𝐵, and 𝐵󸀠 are the wave
function amplitudes. By the condition of wave function and
its derivative continuation at the interface of two mediums,

we can obtain the quantum transfer matrix of 𝑗th medium
layer; it is

𝑀
𝑗
=
1
2
(

1 +
𝑘
𝑗−1

𝑘
𝑗

1 −
𝑘
𝑗−1

𝑘
𝑗

(1 −
𝑘
𝑗−1

𝑘
𝑗

) 𝑒−2𝑖𝑘𝑗𝑑𝑗 (1 +
𝑘
𝑗−1

𝑘
𝑗

) 𝑒−2𝑖𝑘𝑗𝑑𝑗
), (3)

where 𝑘
𝑗
(𝑘
𝑗−1) is the wave vector of photon in the 𝑗th

((𝑗 − 1)th) layer medium and 𝑑
𝑗
is the thickness of 𝑗th layer

medium. For the QW structure (𝐵𝐴)6(𝐵𝐵𝐴𝐵𝐵)𝑛(𝐴𝐵)6, its
total quantum transfer matrix is

𝑀 = (𝑀
𝐵
𝑀
𝐴
)
6
(𝑀
𝐵
𝑀
𝐵
𝑀
𝐴
𝑀
𝐵
𝑀
𝐵
)
𝑛
(𝑀
𝐴
𝑀
𝐵
)
6

= (
𝑚1 𝑚2

𝑚3 𝑚4
) ,

(4)

and the quantum transmissivity 𝑇 is [26, 27]

𝑇 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐷

𝐹

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑘
𝐴
(𝑚2𝑚3 − 𝑚1𝑚4)

𝑚2 (𝑘𝐴 − 𝐾) − 𝑚4 (𝑘𝐴 + 𝐾)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

. (5)

3. Numerical Result

In this section, we report our numerical results of the
QW quantum transmissivity. The refractive indexes and the
thicknesses of medium 𝐴 and medium 𝐵 are as follows:
𝑛
𝑎
= 1.35, 𝑛

𝑏
= 2.45 and 𝑎 = 890 nm, 𝑏 = 469 nm.

The quantum transmissivity of (𝐵𝐵𝐴𝐵𝐵)12 and (𝐵𝐴)6(𝐴𝐵)6
is shown in Figures 2(a) and 2(b). In Figures 3 and 4, we
only change the refractive index of medium 𝐵 in relation to
Figure 2; they are 𝑛

𝑏
= 2.45 − 𝑖0.0001 (active medium) and

𝑛
𝑏
= 2.45 + 𝑖0.0001 (absorbing medium). From Figures 2

to 4, we can obtain results as follows. (1) In Figures 2(b),
3(b), and 4(b), when the ratio 𝜔/𝜔0 = 1.0, the quantum
transmission peaks are 𝑇 = 1.0, 𝑇 > 1.5, and 𝑇 < 1.0 for
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Figure 3: The quantum transmissivity of 1D PCs with 𝑛
𝑏
= 2.45 − 𝑖0.0001. (a) The structure is (𝐵𝐵𝐴𝐵𝐵)12; (b) the structure is (𝐵𝐴)6(𝐴𝐵)6.
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Figure 4: The quantum transmissivity of 1D PCs with 𝑛
𝑏
= 2.45 + 𝑖0.0001. (a) The structure is (𝐵𝐵𝐴𝐵𝐵)12; (b) the structure is (𝐵𝐴)6(𝐴𝐵)6.
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Figure 5: The quantum transmissivity for QW structure (𝐵𝐴)6(𝐵𝐵𝐴𝐵𝐵)𝑛(𝐴𝐵)6 with 𝑛
𝑏
= 2.45. (a) 𝑛 = 1, (b) 𝑛 = 2, and (c) 𝑛 = 3.

the 1D PCs (𝐵𝐴)6(𝐴𝐵)6; that is, the quantum transmission
peaks are gained and attenuated when the medium 𝐵 is
active medium (𝑛

𝑏
= 2.45 − 𝑖0.0001) and absorbing medium

(𝑛
𝑏
= 2.45 + 𝑖0.0001). (2) The forbidden band of 1D PCs

(𝐵𝐴)
6
(𝐴𝐵)

6 is in the range of 𝜔/𝜔0 = 0.8 ∼ 1.2, and
the conduction band of 1D PCs (𝐵𝐵𝐴𝐵𝐵)12 is inside the
forbidden band. So, the PCs (𝐵𝐴)6(𝐴𝐵)6 play a role similar
to a barrier to PCs (𝐵𝐵𝐴𝐵𝐵)12, and the PCs (𝐵𝐵𝐴𝐵𝐵)12
act as a well in the forbidden band. We put the 1D PCs
(𝐵𝐵𝐴𝐵𝐵)

𝑛 and (𝐵𝐴)6(𝐴𝐵)6 together to constitute the 1D PCs
of QW structure (𝐵𝐴)6(𝐵𝐵𝐴𝐵𝐵)𝑛(𝐴𝐵)6, which are shown in
Figure 1. In Figures 5, 6, and 7, we should study the quantum

transmissivity of theQW structure (𝐵𝐴)6(𝐵𝐵𝐴𝐵𝐵)𝑛(𝐴𝐵)6. As
mentioned above, the conduction band of PCs (𝐵𝐵𝐴𝐵𝐵)𝑛 is
inside the forbidden band of PCs (𝐵𝐴)6(𝐴𝐵)6; that is, the
PCs (𝐵𝐴)6(𝐴𝐵)6 prohibit the propagation of photon in its
forbidden band; then the photon will be confined in the PCs
(𝐵𝐵𝐴𝐵𝐵)

𝑛. Because of the quantum effect of photon in QW
of 1D PCs, the photon should form the bound state in the
QW, which is analogous to the bound state of electron in
semiconductor QW. The photon can pass the QW by the
resonance perforation way and form the very sharp peaks
of quantum transmissivity within the forbidden band of the
PCs (𝐴𝐵)6(𝐵𝐴)6, which are shown in Figures 5, 6, and 7. In
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Figure 6: The quantum transmissivity for QW structure (𝐵𝐴)6(𝐵𝐵𝐴𝐵𝐵)𝑛(𝐴𝐵)6 with 𝑛
𝑏
= 2.45 − 𝑖0.0001. (a) 𝑛 = 1, (b) 𝑛 = 2, and (c) 𝑛 = 3.
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Figure 7: The quantum transmissivity for QW structure (𝐵𝐴)6(𝐵𝐵𝐴𝐵𝐵)𝑛(𝐴𝐵)6 with 𝑛
𝑏
= 2.45 + 𝑖0.0001. (a) 𝑛 = 1, (b) 𝑛 = 2, and (c) 𝑛 = 3.

Figures 5, 6, and 7, (a), (b), and (c) are corresponding to 𝑛 = 1,
𝑛 = 2, and 𝑛 = 3 for the QW structure (𝐵𝐴)6(𝐵𝐵𝐴𝐵𝐵)𝑛(𝐴𝐵)6.
In Figures 5, 6, and 7 refractive indexes of medium 𝐵 are
real number, 𝑛

𝑏
= 2.45 (convention medium), and complex

numbers 𝑛
𝑏
= 2.45−𝑖0.0001 (activemedium) and 𝑛

𝑏
= 2.45+

𝑖0.0001 (absorbing medium), respectively. From Figures 5 to
7, we can obtain some results. (1) The numbers of the sharp
peaks (bound states) are equal to 𝑛 + 1; that is, when 𝑛 = 1,
𝑛 = 2, and 𝑛 = 3, the numbers of the sharp peaks are 2,
3, and 4. (2) In Figure 5, the quantum transmissivity of the
sharp peaks 𝑇 = 1 for 𝑛 = 1, 𝑛 = 2, and 𝑛 = 3, which can be
designed optic filter of multiple channel. (3) In Figure 6, the
quantum transmissivity of the sharp peaks 𝑇 > 1 for 𝑛 = 1,
𝑛 = 2, and 𝑛 = 3. When 𝑛 increase, the sharp peaks value
𝑇 increase, which can be used to design optic amplifier and
optic filter of multiple channel. (4) In Figure 7, the quantum
transmissivity of the sharp peaks 𝑇 < 1 for 𝑛 = 1, 𝑛 = 2,
and 𝑛 = 3; when 𝑛 increase, the sharp peaks value 𝑇 decrease,
which can be used to design optic attenuator.

4. Conclusion

In summary, we have studied the quantum transmissivity
of the QW of 1D PCs with quantum theory approach. By
calculation, we find that there are photon bound states in
QW structure (𝐵𝐴)6(𝐵𝐵𝐴𝐵𝐵)𝑛(𝐴𝐵)6, and the numbers of the
bound states are equal to 𝑛 + 1, which are formed by the
quantum effect of photon in QW. We also find that the QW
(𝐵𝐴)

6
(𝐵𝐵𝐴𝐵𝐵)

𝑛
(𝐴𝐵)

6 can be used to design optic amplifier,
attenuator, and optic filter of multiple channel.
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