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Abstract
Partial occlusions, large pose variations, and extreme ambient illumination conditions gen-

erally cause the performance degradation of object recognition systems. Therefore, this

paper presents a novel approach for fast and robust object recognition in cluttered scenes

based on an improved scale invariant feature transform (SIFT) algorithm and a fuzzy

closed-loop control method. First, a fast SIFT algorithm is proposed by classifying SIFT fea-

tures into several clusters based on several attributes computed from the sub-orientation

histogram (SOH), in the feature matching phase only features that share nearly the same

corresponding attributes are compared. Second, a feature matching step is performed fol-

lowing a prioritized order based on the scale factor, which is calculated between the object

image and the target object image, guaranteeing robust feature matching. Finally, a fuzzy

closed-loop control strategy is applied to increase the accuracy of the object recognition

and is essential for autonomous object manipulation process. Compared to the original

SIFT algorithm for object recognition, the result of the proposed method shows that the

number of SIFT features extracted from an object has a significant increase, and the com-

puting speed of the object recognition processes increases by more than 40%. The experi-

mental results confirmed that the proposed method performs effectively and accurately in

cluttered scenes.

Introduction
Object recognition has become one of the most active research topics in the fields of computer
vision and pattern recognition because of its potential value in practical applications. Many
novel methods have been proposed in the literature for object recognition, and they can be
broadly classified into two main categories: holistic methods and local feature-based methods.
The holistic methods attempt to recognize the object as a whole. Thus, the query image is ac-
quired, pre-processed, and segmented, and the global features are extracted. Finally, statistical
classification techniques are used. This class of algorithms is especially suited to homogeneous
objects, which can be easily segmented. Typical holistic methods can be found in [1–4]. The
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holistic methods are simple and fast, but there are limitations in recognition during changes in
illumination and poses. Local feature-based methods, however, are better suited to textured ob-
jects and are more robust with respect to variations in viewpoint and illumination. Local fea-
ture-based methods are based on the idea of representing an object by a collection of local
invariant patches. Generally, local feature-based methods primarily involve the following steps:
first, salient points, which are typically corners or blob-like shapes from the image to be
matched, are extracted. Second, descriptors from regions around the salient key-points are con-
structed using mechanisms that aim to keep the characteristics of these regions insensitive to
viewpoint and illumination changes and invariant to rotation, scaling and affine transforma-
tions. Finally, correspondence points between the query and model images are computed
based on extracted features. From the matched points, an affine transformation between the
query and model images can be computed using a fitting method, such as Least of Squares and
random sample consensus (RANSAC) method [5]. The matching process is then iteratively re-
fined by removing the correspondence points that do not fit this affine transformation. The
idea originates from the work of Schmid and Mohr [6], whereby the centers of patches are lo-
cated at points of interest and are invariant under rotation. Typical local feature-based methods
can be found in [7–10]. Lowe developed an efficient object recognition approach based on the
scale invariant feature transform (SIFT) [11].

The SIFT algorithm, proposed by Lowe, is one of the most widely used local feature-based
method for object recognition and is useful for nearly all computer vision tasks. The algorithm
attempts to detect similar feature points in each of the available images and subsequently de-
scribe these points with a feature vector, which is invariant to scale and rotation and is partially
invariant to illumination and viewpoint changes. In addition to these properties, SIFT features
are highly distinctive and relatively easy to extract and match against large databases of local
features. However, the main drawback of the SIFT algorithm is that the computational com-
plexity of the algorithm increases rapidly with an increasing number of key points, especially
during the matching step due to the high dimensionality of the SIFT feature descriptor. To
overcome the main drawbacks of the SIFT algorithm, various modifications have been pro-
posed. In general, strategies addressing the acceleration of SIFT feature matching can be classi-
fied into three different categories: reducing the descriptor dimensionality [12], [13], using
parallelization and exploiting the power of hardware [14–16], and improving feature matching
algorithms [17–19].

Traditional local feature-based object recognition methods are open-loop methods, which
mean that the result of each step depends on the result of the previous step. Therefore, errors
are accumulated over the entire recognition system and propagated to the final step. Hence,
the final result tends to be error prone and unreliable. This problem is usually solved using
closed-loop control techniques. Because the method is non-linear and no mathematical model
is available, a fuzzy control strategy is used. Ever since fuzzy set theory was used to synthesize a
fuzzy logic controller for a simple dynamic process in Mamdani and Assilian [20], fuzzy logic
control has become one of the most successful applications of the theory. An important appli-
cation of a fuzzy-knowledge-based system is the control of complex, nonlinear systems [21].
Control algorithms with fuzzy controllers offer better response and efficiency in the case of
complex nonlinear systems when compared to conventional controllers [22], [23]. The basic
difference between fuzzy and conventional controllers is that the latter are designed using a
mathematical model for the process being controlled. In contrast, fuzzy controllers are based
on the synthesis of prior knowledge, which is provided by human expertise to construct a set of
rules in the form of IF-THEN statements [24]. Typically, the design of a fuzzy controller is
mostly based on expert control experience [25] or on a self-learning process [26], which re-
quires human experience to design fuzzy control systems that demonstrate good performance.
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In this paper, we propose an improved SIFT algorithm and a fuzzy closed-loop control strat-
egy for object recognition in cluttered scenes. A fast SIFT algorithm is proposed by classifying
SIFT features into several clusters based on several attributes computed from the SIFT orienta-
tion histogram, in the feature matching step, only features that share nearly the same corre-
sponding attributes are compared. Feature matching is performed following a prioritized order
based on the scale factor, which is calculated between the object image and target image to
guaranteeing robust feature matching. A fuzzy closed-loop control strategy based on SIFT fea-
tures is applied to increase the invariant to affinity, thereby increase the quality of the results of
the matching process, which is essential for autonomous object manipulation. To compare the
improved SIFT algorithm with the original SIFT algorithm, the proposed method was com-
pared with two algorithms for approximate nearest neighbors (ANN) searching, hierarchical
k-means tree (HKMT) [27] and randomized KD-trees (RKDTs) [28]. The hierarchical
k-means tree is constructed by splitting the data points at each level into K distinct regions
using k-means clustering, and then applying the same method recursively to the points in each
region. We stop the recursion when the number of points in a region is less than K. The ran-
domized KD-trees are built by choosing the split dimension randomly from the first D dimen-
sions on which the data have the greatest variance. When searching the trees, a single priority
queue is maintained across all the randomized trees such that the search can be ordered by in-
creasing distance to each bin boundary. The degree of approximation is determined by examin-
ing a fixed number of leaf nodes, at which point the search is terminated and the best
candidates returned. The presented experimental results indicate that the proposed method
outperforms the two other considered algorithms. Additionally, several images from a stranded
image database and from real-world stereo images were tested under different conditions, in
which viewpoint were altered, partial occlusion, pose invariant, or the illumination during
image acquisition conditions. The experimental results confirmed that the proposed method
performs effectively and accurately for object recognition in cluttered scenes.

Materials and Methods

Fast SIFT algorithm
Although there have been early impressive object recognition results achieved using the SIFT
algorithm, efficient object recognition under cluttered-scene conditions is still challenging. To
achieve fast object recognition a novel strategy to accelerate the SIFT features-matching process
is introduced in this paper. The strategy is based on hashing of SIFT features into several clus-
ters during the feature extraction phase using new attributes computed from the SOH. First, in
the key point detection stage, the key points are split into two types: Maxima and Minima.
Fig. 1 presents the Maxima and the Minima SIFT features extracted from the same image. The
Maxima SIFT feature locations are centers of dark blobs on a light background and vice versa
for the Minima locations. The number of Maxima SIFT features is nearly equal to the number
of Minima SIFT features extracted from the same image. Only the features of the same type are
computed, and the matching time is reduced by 50% with respect to the exhaustive search
without losing any correct matches. No matches can be expected between two features of dif-
ferent types. Second, SIFT features are extended by a few new angles without incurring extra
computational costs. The high dimensionality of the SIFT descriptor (SIFT-D) makes feature
matching very time consuming. To speed up the feature matching process, it is assumed that
some new independent angles can be assigned to each feature. These angles are invariant to
changes in the viewing geometry and illumination, and they are computed from sub-orientation
histograms (SOHs) of the SIFT-D. In the original SIFT algorithm for computation of the SIFT-
D, the interest region around the key point is subdivided into sub-regions in a rectangular grid.
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PLOS ONE | DOI:10.1371/journal.pone.0116323 February 25, 2015 3 / 15



From each sub-region, an SOH is built [29]. Theoretically, a SIFT feature can be extended using
a number of angles equal to the number of SOHs because these angles are to be calculated from
the SOHs. In the case of 4x4 grids, the number of angles is 16, as shown in Fig. 2.

However, to speed up SIFT matching, these angles should be components of a multivariate
random variable that is uniformly distributed in the 16-dimensional space [-180°, 180°]. To
meet this requirement, the following two conditions must be verified. First, each angle must be
uniformly distributed in [-180°, 180°] [30]. Second, the angles should be pair-wise independent
[31]. The angles between the orientations corresponding to the vector sum of all bins of each
SOH and the horizontal orientation are suggested as the SIFT feature angles. Mathematically,
the proposed angles {θij; i, j = 1,..,4} are calculated as follows:

yij¼tan�1

X7

k¼0

magijðkÞ � sinðoriijðkÞÞ
X7

k¼0

magijðkÞ � cosðoriijðkÞÞ

0
BBBB@

1
CCCCA ð1Þ

wheremag(k) and ori(k) are the magnitude and orientation of the kth bin of the ijth SOH, re-
spectively. Because the angles θij are computed from SOHs from which the SIFT-D is built,
they are invariant under geometrical and photometrical transformations. Finally, four angles
can be pair-wise independent, and only border angles can meet the equally likely condition.
Therefore, the best choices are the corner angles, ϕ1 = θ11, ϕ2 = θ14, ϕ3 = θ41 and ϕ4 = θ44,
which can be considered as new attributes of the SIFT feature. Compared with the original
128-dimensional SIFT descriptor, the improved SIFT algorithm can lead to a significant de-
crease in computational time.

At the matching stage, a new idea is proposed based on the new angles by comparing fea-
tures that share the same corresponding angles, which may lead to correct matches. Among all

Fig 1. The Maxima andMinima SIFT features extracted from the same image.

doi:10.1371/journal.pone.0116323.g001

Fig 2. Angles computed from the sub-orientation histogram.

doi:10.1371/journal.pone.0116323.g002
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possible matches, only a small number of correct matches exist. For each possible match, four
different angle differences {Δϕ11, Δϕ22, Δϕ33, Δϕ44} for each pair of SIFT features can be con-
structed. Considering the angle differences as random variables, the behaviors of these random
variables vary according to the type of matches being analyzed. Fig. 3 shows the probability
density function of the angle differences. For a false match, its feature is independent. There-
fore, each of the two corresponding angles is independent because four random variables are
uniformly distributed and are pair-wise independent. However, each of the corresponding cor-
rect match angles tends to be equal because the features of the correct matches tend to have the
same SIFT descriptors. Therefore, the four random variables tend to be concentrated at ap-
proximately 0°. By calculating the probability density function of the random variables, ap-
proximately 95% of the correct matches and only 15% of the false matches are found to

belong to the range ½�360; 360�4. Because the possible matches are uniformly distributed in the

4-dimensional angle space ½�1800; 1800�4, the portion of possible matches in the range

½�360; 360�4 is equal to 72=360
� �4 � 100%. To exploit this outcome, SIFT features are hashed into

a 4-dimensional table based on their angles. The SIFT features of each cell are compared only
with the features of some cells such that the correspondences have absolute difference in angle
that are less than a pre-set threshold. A threshold of 36° was selected because almost all correct

matches have angle differences in the range ½�360; 360�4.
Thus far, we have extended a SIFT feature by adding 4 pair-wise-independent angles that

are invariant to rotation, scale and illumination changes. During the extraction phase, the SIFT
features are classified based on their angles into different clusters. Thus, in the matching phase,
only SIFT features that belong to clusters from which correct matches may be expected are
compared. A fast SIFT algorithm is concluded to confirm the efficiency of object
recognition system.

Robust SIFT feature matching
Although SIFT features are reasonably invariant, they cannot accommodate large changes in
viewpoint or extreme illumination conditions, which is the core problem of object recognition
in cluttered scenes. This problem is caused by the absence of true positive correspondences or
by their portion being insufficient for fitting methods to work correctly. This paper introduces
a new procedure to determine the scale factor between object images to be recognized by divid-
ing SIFT features into different sub-sets based on their octaves. Then, the matching process is
performed following a prioritized order, whereby only features of the same scale ratio are com-
pared in each step. Additionally, a scale ratio histogram (SRH) is constructed. Only matches of
the step corresponding to the highest SRH bin are provided to the fitting method. This

Fig 3. Probability density function of the angle differences.

doi:10.1371/journal.pone.0116323.g003
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restriction decreases the portion of outliers among positive matches, leading to an improved
performance of the fitting method, which is called a random sample consensus. This strategy
exhibits an increased matching performance and robustness with no additional computational
time cost.

In general, the SIFT algorithm is a local image operator that takes an input image and trans-
forms it into a collection of local features. To use the SIFT operator for object recognition pur-
poses, it is applied on two images: a model image and test image. The model image presents
only the object taken under predefined conditions, whereas the test image is an image including
the target object captured in cluttered scenes. Using the SIFT operator, the two object images
are transformed into two SIFT image feature sets. These two features sets are divided into sub-
sets according to the octaves in which the features arise. To perform the newly proposed SIFT
feature matching strategy, the feature subsets obtained are arranged so that a subset of the
model image feature set is aligned to a subset of the test image feature set. The process of align-
ing the model image subset with the test image subset is performed in n+m-1 steps, where n
and m are the total number of octaves (subsets) corresponding to the model image and test
image, respectively. For each step, all pairs of aligned subsets must have the same ratio v, which
is defined as:

v ¼ 2o1
�
2o2

ð2Þ

where o1 and o2 are the octaves of the model image subset and the test image subset, respective-
ly. For example, for both the model and test images, if there are four octaves, the process will
consist of seven steps. At the first step a, only SIFT features of the model image extracted
from octave o1 = 0 are compared with the SIFT features of the test image extracted from

octave o2 = 3. In this case, all possible matches have the scale ratio v ¼ 20
�
23
¼ 1=8. In step b,

only the model SIFT features of the octaves o1 = 0 and o1 = 1 are compared with the test SIFT
features of the octaves o2 = 2 and o2 = 3, respectively. In both cases, the possible matches have a

scale ratio of v ¼ 20
�
22
¼ 21

�
23
¼ 1=4 for other steps, as indicated by the arrows in Fig. 4. At

every step, the total number of positive matches is determined for each aligned subset pair. The

Fig 4. The steps of the calculation scale factor.

doi:10.1371/journal.pone.0116323.g004
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total number of positive matches within each step is indexed using the appropriate shift index:

k ¼ o1 � o2 ð3Þ

The shift index can be negative, positive or zero. The highest number of positive matches
achieved determines the optimal shift index kopt and the consequent scale factor:

S ¼ 2kopt ð4Þ

To realize the proposed procedure mathematically, a scale ratio histogram F(x) is defined as

FðxÞ ¼

Xx

j¼0

RðMn�1�xþj
1 ;Mj

2Þx < n

Xj¼n�1

i¼0

RðMn�1�xþj
1 ;Mj

2Þn � x < m

Xj¼mþn�2�x

i¼0

RðMx�nþj
1 ;Mx�mþ1þj

2 Þx � m

8>>>>>>>>>><
>>>>>>>>>>:

ð5Þ

where RðMi
1;M

j
2Þ is the number of positive matches between the ith subset of the model image

feature setMi
1 and the j

th subset of the test image feature setMj
2 and x is the modified shift

index introduced for the sake of simplicity in the above equation.

x ¼ intðkþ ðnþm� 1

2
ÞÞ ð6Þ

The scale ratio histogram F(k) obtains its maximum at the shift index Kopt = arcmax
(F (K)) = 1,which corresponds to the scale factor.S = 2kopt The optimal shift index defines a “do-
main of correct matches”. All matches outside this domain, including positive matches, are ex-
cluded. The positive matches from the domain of correct matches are used to determine the
affine transformation (rotation, matrix, and translation vector) between the two feature sets
using the RANSAC method. Once the transformation is calculated, every match that is either
positive or negative within the domain of correct matches is examined to determine if it meets
the previously calculated transformation. If the match fulfills the transformation, it is labeled as
correct; otherwise, it is labeled as a false match. Thus, this method can significantly reduce the
number of false match features.

Among all the found matches, many correct matches will exceed Lowe’s threshold τ. To re-
trieve these correct matches, the ratio between the Euclidean distance to the nearest feature
neighbor and the Euclidean distance to the second nearest feature neighbor must be reduced.

The feature Fi
1 from the model image feature set is correctly assigned to the feature Fj0

2 from the

test image feature set. Additionally, suppose that Fj1
2 is the second nearest feature to feature Fi

1.

Reducing the ratio can be performed by either reducing the smallest distance d1ðFi
1; F

j0
2 Þ or by

increasing the next smallest distance d2ðFi
1; F

j1
2 Þ. In practice, the first alternative is impossible,

whereas the enlargement of the next smallest distance can be achieved by limiting the search
area for both the nearest feature and the next nearest feature to the feature Fi

1 within a

specified domain. Feature Fj2
2 is the second nearest feature to Fi

1 when the search is limited

only to the octave in which the features Fj0
2 are found. As shown in Fig. 5, because the distance

d3ðFi
1; F

j2
2 Þ � d2ðFi

1; F
j1
2 Þ always holds, the following is obtained:
d1ðFi

1; F
j0
2 Þ=d2ðFi

1; F
j1
2 Þ � d1ðFi

1; F
j0
2 Þ=d3ðFi

1; F
j2
2 Þ ð7Þ
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Thus, by reducing the search area, the ratio related to the feature Fi
1 can be decreased and can

be less than the threshold τ. The proposed method improves the object feature matching ro-
bustness of object recognition in a cluttered background.

A fuzzy closed-loop control strategy for object recognition based on SIFT
features
A fuzzy closed-loop control approach is proposed for object recognition based on SIFT fea-
tures. This approach uses the benefits of fuzzy closed-loop structure to increase the invariance
to affinity, and consequently, to increase the quality of the matching process, which is essential
for autonomous object manipulation in cluttered scenes. Fig. 6 presents the proposed closed-
loop control system.

The idea of this approach is to extract two independent parallel feature streams (Maxima
and Minima SIFT features) from both the model and test images and then match them to fea-
tures belonging to the corresponding streams to estimate two independent affine transforma-
tions. The dissimilarity between these transformations is used as a feedback variable to observe
and control the matching process. If this variable is larger than a certain threshold, one of the
transformations is selected using a fuzzy controller to warp the model image. The procedure is

Fig 5. Searching the second nearest feature in the limiting area.

doi:10.1371/journal.pone.0116323.g005

Fig 6. Proposed fuzzy closed-loop object recognition system.

doi:10.1371/journal.pone.0116323.g006
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repeated until the two transformations become similar or until one of them converges to the
identity matrix.

We use a similar principle for improving the quality and the quantity of the matching pro-
cess, which enhances the efficiency of the object recognition system. To close the loop, a quan-
titative measurement should be defined to describe the quality of the matching result and to
modify the input of the image matching process for improving its output when the matching
result is not accepted. The definition of this quantitative measurement is because the SIFT fea-
ture locations are efficiently detected by identifying the Maxima and Minima of the difference-
of-Gaussian (DoG) scale space.

Each set of the SIFT features for the test image GFtest and for the model image GFmodel is di-
vided into two subsets: one for the Maxima SIFT features and the other for the Minima
SIFT features.

GFmodel ¼ GFmodel
min

S
GFmodel

max

GFtest ¼ GFtest
min

S
GF test

max

ð8Þ

By matching the Maxima SIFT features with Maxima and the Minima SIFT features with
Minima, two independent sets of positive matches GMmax and GMmin are obtained.

GMmin ¼ matchðGFmodel
min ;GFtest

minÞ
GMmax ¼ matchðGFmodel

max ;GFtest
maxÞ

ð9Þ

From these sets of positive matches, two independent affine transformations (Maxima and
Minima affine transformations) can be estimated using the RANSAC algorithm.

Tmin ¼ RANSACðGFminÞ
Tmax ¼ RANSACðGFmaxÞ

ð10Þ

The next step is to calculate the dissimilarity between the two affine transformations. Be-
cause at least three non-collinear corresponding points between two images are required to de-
termine the affine transformation, at least three non-collinear points are required to compute
the dissimilarity between two affine transformations T1 and T2. Assuming that p1 (a,a), p2
(a,-a), and p3 (-a,a), are three non-collinear points in the xy plane, where a is an arbitrary
value, each of these points is mapped by each affine transformation:

P1
i ¼ T1 � pi

P2
i ¼ T2 � pi

ð11Þ

where i = 1,2,3. Hence, the dissimilarity Dis(T1,T2) is defined as:

DisðT1;T2Þ ¼
1

3

X3

i¼1
ðdðp1i ; p2i ÞÞ ð12Þ

where d(p1,p2) is the Euclidian distance between two points p1(x1,y1) and p2(x2,y2) and is com-
puted as follows:

dðp1; p2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ þ ðy1 � y2Þ

p
ð13Þ

The dissimilarity between these transformations is used as a signal, indicating the matching
quality. The transformations are fed back to a controller to improve the matching result. Be-
cause there is no available mathematical model for the system, a fuzzy controller is used. The
dissimilarities between the identity matrix and each of the affine transformations are delivered
to the fuzzy controller. The task of the controller is to select the best transformation to produce
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a new model image to be used in the next matching iteration as long as the termination criteri-
on is not met. For each channel (Maxima and Minima) of the object recognition system, the
error emax/min, which is computed according to equation 12, and the error derivative Δemax/min

are chosen as inputs:

emax=min ¼ DisðTmax=min; IÞ
Demax=min ¼ emax=minðk� 1Þ � emax=minðkÞ

ð14Þ

where I is the identity transformation given by:

I ¼ 1 0 0

0 1 0

" #
ð15Þ

The output is defined as a quality index, which is a real value in the range [0,1] representing
how correct the corresponding affine transformation estimation is. The fuzzy controller con-
sists of three main stages: the formation of membership functions, definition and evaluation of
fuzzy rules and selection of defuzzification. In the proposed method, a triangular shape is se-
lected as the main membership function. The range values are determined experimentally.
For each input, three linguistic variables are used: S(small),M(middle),and L(large) for the
error emax/min and Z(zero),N(negative),and P(positive) for the error derivative. For each output,
five linguistic variables are defined: VS(very small),S(small),M(middle),L(large),and VL(very
large). The membership function for fuzzification is presented in Fig. 7. The fuzzy rules in a lin-
guistic form are shown in Table 1. Knowledge is interpreted using IF-THEN rules, and multiple
statements are joined by the AND connective. The centroid area method is used for the defuz-
zification processes. In this method, the resultant membership functions are developed by con-
sidering the union of the outputs of each rule, which means that the overlapping area of the
fuzzy output sets is counted only once, providing additional results. The center of gravity of the
shape is mathematically obtained by the following equation:

�x ¼

Zxe
xs

x � mbðxÞdx

Zxe
xs

mbðxÞdx
ð16Þ

The proposed controller is based on fuzzy expert rules and uses the triangular membership
functions for fuzzification, max/min operators for inference, and centroid area method for the
defuzzification processes. The method has been verified through several experiments on the

Fig 7. Input and output membership function.

doi:10.1371/journal.pone.0116323.g007
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object recognition system. The obtained results indicate that the proposed approach is
very promising.

Results
To evaluate the performance of the proposed method, several experiments were conducted on
different pairs of images from a standard LEAR image database [32] and from real world im-
ages. The first experiment was performed to investigate the difference between the original
SIFT algorithm and the proposed optimized SIFT algorithm. The performance of the improved
SIFT algorithm was compared with the performance of two algorithms: HKMT and RKDTs.
The comparisons were performed using the fast library for approximate nearest neighbors
(FLANN). In the experiment, SIFT features were extracted from images in the LEAR database;
subsequently, each of the two corresponding images were matched using the HKMT, RKDT
and speedy SIFT algorithms under different degrees of precision. The matching step performs
tradeoffs between the matching speedup and matching accuracy, and the experimental results
are shown in Fig. 8. The precision degree is defined as the ratio between the number of correct
matches returned using the considered algorithms and the exhaustive search, whereas the
speedup factor is defined as the ratio between the exhaustive matching time and the matching
time of the corresponding algorithm. As shown in Fig. 8, the speedy SIFT algorithm outper-
forms the other two considered algorithms in speeding up feature matching for all precision

Table 1. Fuzzy-expert rules in linguistic form.

Rule 1 IF (N is L) AND (e is S) AND (Δe is N) THEN (β is M)

Rule 2 IF (N is L) AND (e is S) AND (Δe is N) THEN (β is L)

Rule 3 IF (N is L) AND (e is S) AND (Δe is N) THEN (β is VL)

Rule 4 IF (N is L) AND (e is M) AND (Δe is N) THEN (β is S)

Rule 5 IF (N is L) AND (e is M) AND (Δe is N) THEN (β is M)

Rule 6 IF (N is L) AND (e is M) AND (Δe is N) THEN (β is L)

Rule 7 IF (N is L) AND (e is L) AND (Δe is N) THEN (β is VS)

Rule 8 IF (N is L) AND (e is L) AND (Δe is N) THEN (β is S)

Rule 9 IF (N is L) AND (e is L) AND (Δe is N) THEN (β is M)

doi:10.1371/journal.pone.0116323.t001

Fig 8. Trade-off between the matching speedup andmatching precision.

doi:10.1371/journal.pone.0116323.g008
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degrees. For a precision of approximately 95%, the speedy SIFT algorithm obtains a speedup
factor of approximately 1250.

In the second experiment, the proposed object recognition system was compared with the
original SIFT-based method under the cluttered scene condition. A variety of images photo-
graphed by a regular digital camera were used in the experiments. The input of the system is a
model image where only a single target object is available, and the test image includes the target
object captured under the cluttered scene condition. The recognition progress was performed
using an Intel Core2 2.6-GHz processor with images of size 1024×768 pixels. The comparison re-
sults for the coffee cup recognition in the cluttered scene are illustrated in Fig. 9. Tables 2 and 3
demonstrate the comparison of the SIFT feature matching results between the original SIFT al-
gorithm and the improved SIFT algorithm. In Table 2, a comparison is performed to show an
improvement in the robustness of the feature matching process. The number of correct SIFT fea-
tures is significantly increased. Table 3 presents the computational matching time of the pro-
posed SIFT approach and of the original SIFT approach. Compared with the original SIFT
algorithm, a 40% reduction in processing time was achieved. Thus, the appearance of objects in

Fig 9. The result of the object recognition based on the original SIFT algorithm and the improved
method.

doi:10.1371/journal.pone.0116323.g009

Table 2. Comparison of the Feature Number for the Improved SIFT and the Original SIFT.

Cluttered Scene Feature number of original SIFT
algorithm

Feature number of improved SIFT
algorithm

Viewpoint
change

73 117

External
occlusion

77 123

Object rotation 68 102

Illumination 70 105

doi:10.1371/journal.pone.0116323.t002
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the test images is different from their appearance in model images because of different condi-
tions, such as illumination during image acquisition, viewpoint, partial occlusion, rotation, and
illumination conditions. The advantage of the proposed recognition technique over the original
SIFT matching technique is evident.

Discussion
Most applications of object recognition, such as face recognition systems and robotic vision, re-
quire efficient performance. Conventional methods are time consuming, and their perfor-
mance always drops significantly during partial occlusions, large pose variations, and extreme
ambient illumination conditions. Thus, this paper proposed a method for fast object recogni-
tion in cluttered scenes based on an improved SIFT algorithm and a fuzzy closed-loop control
strategy. The proposed improved method is highly distinctive and significantly speeds up ob-
ject feature matching by dividing the SIFT features into several clusters, restricting the match-
ing tactics based on the scale factor, and decreasing the portion of outliers among positive
matches, which leads an improvement in the robustness of the object recognition system in a
cluttered background.

Possible directions for future work on the proposed methods are as follows. First, the original
SIFT algorithm contains some easy but computationally intensive operations, such as Gaussian
filtering and the detection of scale-space extremes, and the proposed fast SIFT algorithm is based
on dividing features into several subsets. Therefore, the feature matching process can be paralle-
lized so that it can be adapted to parallel computation and can be implemented with a hardware
pipeline in the field programmable gate array (FPGA). Achieving an on-chip architecture for the
SIFT algorithm would be novel way to obtain an on-chip hardware and software co-design,
which provides flexibility to the users to customize the SIFT feature descriptors according to the
needs of the object recognition application. Second, another main application of the fuzzy
closed-loop control strategy is camera calibration. Camera calibration is the estimation of a cam-
era’s intrinsic, extrinsic, and lens-distortion parameters. Typical uses of a calibrated camera are
for correcting optical distortion artifacts, estimating the distance of an object from a camera,
measuring the size of objects in an image, and constructing 3D views for augmented reality sys-
tems. Camera calibration is an important and potential application in computer vision tasks.
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Table 3. Comparison of the computation speed for the Improved SIFT and the Original SIFT.

Cluttered Scene Computation speed of original SIFT algorithm (s) Computation speed of improved SIFT algorithm (s)

Viewpoint change 0.186 0.111

External occlusion 0.192 0.120

Object rotation 0.170 0.103

Illumination 0.220 0.132

doi:10.1371/journal.pone.0116323.t003
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