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1. Introduction

Kerr nonlinearity, which corresponds to the refractive part 
of the third-order susceptibility in optical media, plays an 
important role in the field of nonlinear optics [1]. Recent stud-
ies have shown that Kerr nonlinearity can be used for many 
interesting applications, such as self focusing [2], optical 
solitons [3–5] and polarization phase gates [6–8]. It is desir-
able to have large nonlinear susceptibilities under the con-
dition of low light levels. The electromagnetically induced 
transparency (EIT) scheme is capable of producing enhanced 
Kerr nonlinearity and suppressing the linear absorption [9]. 
Therefore, the enhanced Kerr nonlinearity in three-level EIT 
systems has been theoretically predicted [10] and experimen-
tally measured [11]. Furthermore, in multiple-level atomic 
schemes (such as N- [12, 13], M- [14], four-level Λ [15, 16] 
and inverted-Y [17] systems), Kerr nonlinearity can be greatly 
enhanced. The large enhancement of nonlinear susceptibilities 
in EIT media led to the study of nonlinear optics at low light 
levels [18–20].

On the other hand, quantum dots (QDs) have higher non-
linear optical coefficients than atoms, therefore, they can be 
used for obtaining high Kerr nonlinearity [21, 22]. But in 
such systems, it is crucial to have additional coupling lasers to 
modify the linear and nonlinear optical properties. Quantum 
dot molecules (QDMs) are systems composed of two or more 
closely spaced and interacting QDs, and can be fabricated by 
using self-assembled dot growth technology [23]. The tun-
neling between the dots, which is controlled by an external 
electric field, can induce quantum interference and coherence 
[24–26]. Therefore QDMs have received much attention in 
EIT and slow light [27, 28], entanglement [29, 30], coherent 
population transfer [31], narrowing of fluorescence spectrum 
[32, 33], optical bistability [34], high order nonlinearity [35], 
phase gate [36] and linewidth narrowing of cavity [37, 38].

It is known that dark resonance is the basis for EIT. When 
a dark state is coherently coupled to another level by a cou-
pling laser, double dark resonances can be attained [39, 40]. 
Intrigued by these studies, in the present paper we demonstrate 
a giant Kerr nonlinearity via tunneling–induced, interacting, 
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double dark resonances in triangular, triple quantum, dot mol-
ecules (TQDs). Such TQDs can be fabricated experimentally 
[41–43]. The tunneling between the QDs can modify excitons 
and create a four-level tripod-type system [44]. With proper 
values of the energy splitting and the tunneling intensity, 
enhancement of Kerr nonlinearity accompanied by vanishing 
absorption is realized. The difference between our study and 
previous studies on Kerr nonlinearity is that, in our considera-
tion, the interacting double dark resonances are induced by 
the tunneling effect, and no coupling laser fields are required.

2. Model and equations

The schematic of the setup of the triangular TQDs is shown 
in figure 1(a). QD 1 and QD 2, QD 1 and QD 3 are connected 
by two gate electrodes. Without a gate voltage, the conduc-
tion-band electron levels are out of resonance and the electron 

tunneling between the QDs is very weak. However, with a 
gate voltage, the conduction-band electron levels closely 
approach resonance, and the electron tunneling between the 
QDs is greatly enhanced. Because of the far off-resonant 
valence-band energy levels, hole tunneling can be neglected. 
Then the schematic of the level configuration of the triangular 
TQDs can be drawn as shown in figure 1(b). The ground state 
0∣  has no excitations and the exciton state ∣1  has one electron-
hole pair in QD 1. Under the tunneling coupling conditions, 
the electron can tunnel from QD 1 to QD 2 or from QD 1 to 
QD 3. Therefore, the indirect exciton state 2∣  has one hole in 
QD 1 and one electron in QD 2, and the indirect exciton state 
∣3  has one hole in QD 1 and one electron in QD 3.

The Hamiltonian of the basis {∣ ∣ ∣ ∣ }0 , 1 , 2 , 3  under the 
rotating-wave and the electric-dipole approximations can be 
written as (assumption of 1=� ):
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Here, EΩp p01µ=  is the Rabi frequency of the transition 
∣ → ∣0 1 . Ep denotes the electric-field amplitude of the laser, 
and µµ = ⋅ e01 01  denotes the electric dipole moment for the 
excitonic transition between states 0∣  and ∣1 , with e being 
the polarization vector. T2 and T3 are the tunneling couplings, 
which depend on the barrier characteristics and the external 
electric field. δ ω ω= −p p10  is the detuning of the probe field, 
with ω10 being the transition frequency between 1∣  and 0∣  
states.
ω12 and ω13 are the energy splitting of the excited states and 

can be controlled by manipulation of the external electric field 
that changes the effective confinement potential.

The state vector at any time t is:

∣ ( ) ( )∣ ( )∣ ( )∣ ( )∣Ψ = + + +t a t a t a t a t0 1 2 3 .I 0 1 2 3 (2)

The evolution of the state vector obeys the Schrödinger equation:

d

t
t H t t

d
i .I I I∣ ( ) ( )∣ ( )Ψ = − Ψ (3)

Substituting equations (1) and (2) into equation (3) and then 
using the Weisskopf-Wigner theory [45, 46], the dynamic 
equations for atomic probability amplitudes in the interaction 
picture can be obtained:

a ai ˙ ,p0 1= −Ω (4a)

( )δ γ= −Ω − − + −a a T a T a ai ˙ i ,p p1 0 2 2 3 3 1 1 (4b)

a T a ai ˙ i ,p2 2 1 12 2 2( )δ ω γ= − + − − (4c)

( )δ ω γ= − + − −a T a ai ˙ i ,p3 3 1 13 3 3 (4d )

with ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣+ + + =a a a a 10
2

1
2

2
2

3
2 . And here i 1 3i i i

d1

2 0 0 ( )γ γ= Γ + = −  

is the typical effective decay rate, with Γi0 being the radiative 

Figure 1. (a) Schematic of the setup of a triangular TQD. The 
probe field transmits the QD 1. V  is a bias voltage. (b) The 
schematic of the level configuration of a triangular TQD. (c) 
Dressed states of a triangular TQD for two tunneling couplings.
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decay rate of populations from ∣ → ∣i 0  and γi
d
0 being the pure 

dephasing rates.
It is well known that the polarization of the medium is:

P E
V

a a*,p p0 01 1 0ε χ µ= =
Γ

 (5)

with Γ being the optical confinement factor, V  being the vol-
ume of a single QD, and ε0 being the dielectric constant [47]. 
From equation  (5) the probe susceptibility can be obtained, 
which is given by:

χ
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For steady state, we solve equations (4) under the weak field 
approximation a 10

2(∣ ∣ )= , then:
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where ip1 1δ γΓ = − , ip2 12 2δ ω γΓ = − − , and 
δ ω γΓ = − −ip3 13 3. What we are interested in is the Kerr non-

linearity. So we expand the probe susceptibility, χ, into the 
second order of Ωp using the Maclaurin formula:

( ) ( )χ χ χ= + Ω ,p
1 3 2 (8)

where ( )χ 1  and 3( )χ  correspond to the first-order linear and 
third-order Kerr nonlinear parts of the susceptibility, respec-
tively, and they are given by:
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3. Results and discussions

In QDMs, the tunneling, T2, and, T3, depend on the barrier 
characteristics and the external electric field. Energy splitting 
ω12 and ω13 can be controlled by manipulation of the exter-
nal electric field. In addition, in the low temperature regime, 
both the population decay rates and the dephasing rates should 
be considered. The realistic values of these parameters are 
according to [28] and Refs therein. And, for simplicity, all the 
parameters are scaled by the decay rate, γ1.

We first consider the case in which the energy splitting 
is zero ( )ω ω= = 012 13  and display the linear absorption, 

[ ]( )χIm 1 , and the Kerr nonlinearity, [ ]( )χRe 3 , as a function of 
probe detuning with and without tunneling, T3, in figure 2. In 
the absence of tunneling, T3, the electron can tunnel from QD 1 
to QD 2 , but can not tunnel from QD 1 to QD 3. Thus, one can 
obtain one transparency window as shown by the dotted line in 
figure 2(a). While in the presence of tunneling, T3, the electrons 

can tunnel from QD 1 to QD 2 or from QD 1 to QD 3, which 
creates a four-level tripod structure. In this case, the transpar-
ency window becomes wider [solid line in figure 2(a)]. Then 
we focus on the Kerr nonlinearity, Re 3[ ]( )χ , which is shown in 
figure 2(b). As can be seen, within the transparency window, 
Re 3[ ]( )χ  with T3 [solid line] is smaller than that of the one with-
out T3 [dotted line].

Figure 2. Variation of Re 3[ ]( )χ  and [ ]( )χIm 1  as a function of 
the probe detuning δp with =T 03  (dotted line) and T 13 =  (solid 
line), (a) Im 1[ ]( )χ , (b) [ ]( )χRe 3 . Other parameters are =T 12 , 
ω ω= = 012 13 , γ = 11 , γ γ= = −102 3

3.

Figure 3. Variation of [ ]( )χRe 3  (solid line) and [ ]( )χIm 1  (dotted line) 
as a function of the probe detuning δp with different energy splitting 
ω ω ω− = =12 13 , (a) ω = 0.8, (b) ω = 0.4, (c) ω = 0.2. Other 

parameters are = =T T 12 3 , γ = 11 , γ γ= = −102 3
3.
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The physical interpretation can be seen clearly under the 
dressed state picture. To do that, the Hamiltonian correspond-
ing to the system and the tunneling coupling needs to be diag-
onalized. Then the expressions of the dressed states [figure 
1(c)] are:

i i a b ccos cos 1 cos sin 2 sin 3 , , ,∣ ∣ ∣ ∣  ( )θ ϕ θ ϕ θ= + + =
 (10)

where ϕ = −
ω λ+

tan T

i

2

12
 and tan T

T

i

i i

12 3

13 2
2

12
2

( )

( ) ( )
θ = ω λ

ω λ ω λ

+

+ + +
. λi 

is the eigenvalues of the dressed level ∣  ( )=i i a b c, , , giving 
the relative energy of the dressed sublevels ∣  ( )=i i a b c, , . 
Therefore, the weak probe field couples the transition from 
state ∣0  to the dressed state ∣ 〉 ( )=i i a b c, , .

Consider ω ω= = 012 13 , and in the limit →T 03 , equa-
tion (10) is simplified as:

a
1

2
1

1

2
2 , ∣ ∣ ∣= − (11a)

b 3∣ ∣= (11b)

∣ ∣ ∣= +c
1

2
1

1

2
2 ,  (11c)

with the eigenvalues being λ = Ta 2, 0bλ =  and Tc 2λ = − . 
So the dressed level b∣  coincides with the bare state ∣3  and, 
hence, is decoupled from the system. And the two dressed lev-
els a∣  and c∣  correspond to the usual Autler-Townes dressed 
components, and the energy splitting of them is T2 2. Because 
both dressed levels a∣  and ∣c  have a finite overlap with the 
excited state ∣1 , one dark resonance arises due to quantum 
interference in two probe transitions a0∣ → ∣  and ∣ → ∣c0 , 
which suppresses the linear absorption, [ ]( )χIm 1  for δ = 0p .

While in the case of ≠T 03 , the eigenvalues are 

T Ta 2
2

3
2λ = + , λ = 0b  and T Tc 2

2
3

2λ = − + , then equa-
tion (10) goes to:
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with the eigenvalues being T Ta 2
2

3
2λ = + , λ = 0b  and 

T Tc 2
2

3
2λ = − + . As can be seen form equation  (12b) that 

Figure 4. (a) The eigen energies  ( )λ =i a b c, ,i  as a function of the energy splitting ω. (b) The decay rates of the dressed state to the ground 
state  ( )γ =i a b c, ,i  as a function of the energy splitting ω. The parameters are the same as those in figure 3.

Figure 5. Variation of [ ]( )χRe 3  (solid line) and [ ]( )χIm 1  (dotted 
line) as a function of the probe detuning δp with different tunneling 
intensity T3, (a) =T 13 , (b) =T 0.43 , (c) =T 0.23 . Other parameters 
are ω ω− = = 0.812 13 , γ = 11 , γ γ= = −102 3

3.
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state ∣b  does not contain an admixture of ∣1  and thus has a 
zero dipole matrix element with ground state ∣0 . There is still 
one dark resonance resulting from quantum interference in 
two probe transitions a0∣ → ∣  and ∣ → ∣c0 . But this time, 
the energy splitting of the two dressed states ∣a  and c∣  is 

T T2 2
2

3
2+ , resulting in broadening of the transparency win-

dow. Within the wider transparency window, the refractive 
part of the third-order susceptibility is reduced, that is to say, 
Kerr nonlinearity is reduced.

So, in the following, we will only investigate the case of 

12 13ω ω≠ . In this situation, all the dressed levels i i a b c ( , ,∣ )=  

[equation (10)] have a finite overlap with the excited state ∣1  
and, thus, have a nonzero dipole matrix element with ground 
state 0∣ . Therefore, there are two dark resonances resulting 
from quantum interference between the three dipole-allowed 
transitions a0∣ → ∣ , ∣ → ∣b0  and ∣ → ∣c0 . The interaction of 
these two dark resonances will result in the emerging of the 
center absorption peak and the enhancement of Kerr nonlin-
earity, which will be discussed in more detail below.

In figure 3 we plot Im 1[ ]( )χ  (dotted line) and Re 3[ ]( )χ  (solid 
line) as a function of probe detuning for varied values of energy 
splitting, ( )ω ω ω= − =12 13 . As can be seen, under two tun-
neling couplings there is one extra absorption peak showing 
up in the center of the absorption spectrum. With a decreasing 
value of ω, the linewidth of the center peak becomes narrowed 
[dotted line in figure 3]. Simultaneously the Kerr nonlinearity 
becomes enhanced [solid line in figure 3]. Compared with the 
results in figure 2, [ ]( )χRe 3  is greatly enhanced in the vicinity 
of the center absorption peak that resulted from the interacting 
double dark resonances.

The above results can be seen clearly in the dressed states 
picture. From equation  (10), there are three dressed states 
∣  ( )=i i a b c, ,  and the eigenvalues, λi, represent the energy of 
the dressed states. If the probe field scans over the system, 
there will be three absorption peaks, and the maximal absorp-
tion occurs when the frequency of the probe field is chosen 
such that it is in resonance with one of the transitions ∣ ↔ ∣i0 . 
Therefore the position of the absorption peaks is determined 

by the eigenvalues, λi. We show in figure 4(a) the eigen ener-
gies i a b c, , ,i(   )λ =  as a function of the energy splitting, ω. 
With a decreasing value of ω, the eigen energy, λb, remains 
zero, and the eigen energies λa and λb become smaller, which 
means that the three absorption peaks become closer. On the 
other hand, the linewidth of these three absorption peaks cor-
responding to the decay rate of the dressed states, which can 
be calculated as:

i a b c

cos cos 1 cos sin 2 sin 3 .

, ,

i
2 2 2 2 2∣ ∣ ∣

 ( )

γ θ ϕ θ ϕ θ= + +

=
 

(13)

With equation (13), we plot the decay rate of the three dressed 
states in figure 4(b). From the figure, one can see that as ω is 
decreasing, the decay rate of the state b∣  is reduced, result-
ing in the narrowing of the center absorption peak. Therefore, 
within the narrowing center absorption peak, the Kerr nonlin-
earity (between detuning δA and δB) is enhanced.

In figure  3, though the Kerr nonlinearity [ ]( )χRe 3  is 
enhanced, it is accompanied by a strong linear absorption, 
which is not desirable for applications of low-intensity non-
linear optics. Fortunately, one can tune the tunneling intensity 
of T3 to obtain the enhanced Kerr nonlinearity with vanish-
ing absorption. In figure 5, we plot [ ]( )χIm 1  (dotted line) and 

[ ]( )χRe 3  (solid line) as a function of probe detuning for vari-
ous values of tunneling, T3.As can be seen, the center absorp-
tion peak is off center and the absorption spectrum becomes 
unsymmetrical under the condition of T T3 2≠ . As T3 is decreas-
ing, the transparency window on the right side becomes nar-
rowed, and simultaneously, the Kerr nonlinearity, Re 3[ ]( )χ , 
is enhanced and gradually enters the narrowed transparency 
window. That is to say, the Kerr nonlinearity is dramatically 
enhanced with suppressed linear absorption.

The results can also be explained in the dressed states pic-
ture. We show the eigen energies (   )λ =i a b c, , ,i  as a function 
of T3 in figure 6(a). With a decreasing value of T3, the energy 
difference between λa and λb is increased, while the energy 
difference between λc and λb is decreased. Therefore, left 
and center absorption peaks become farther away, while right 
and center absorption peaks become closer. The full width 

Figure 6. (a) The eigen energies  ( )λ =i a b c, ,i  as a function of the tunneling intensity T3. (b) The FWHM of the two transparency windows 
as a function of the tunneling intensity T3. The parameters are the same as those in figure 5.
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at half maximum (FWHM) of the transparency windows as 
a function of T3 is shown in figure 6(b). As tunneling, T3, is 
decreasing, the linewidth of the left transparency becomes 
wider while that of the right transparency becomes narrower. 
Within the narrower transparency window, the Kerr nonlinear-
ity (between detuning δB and δC) can be enhanced.

From the results obtained in figures  3 and 5, it can be 
concluded that the Kerr nonlinearity can be controlled by 
the energy splitting and the tunneling intensity. The physical 
interpretation is that the interaction of double dark resonances 
results in the linewidth narrowing of the center absorption 
peak (between detuning δA and δB) or the linewidth narrow-
ing of the transparency window (between detuning δB and δC), 
where the steep dispersion profile of the probe field makes 
it possible to enhance the Kerr nonlinearity. And in the later 
case, giant Kerr nonlinearity with vanishing absorption can be 
achieved.

4. Conclusions

In this paper, we demonstrate that it is possible to obtain giant 
enhancement of Kerr nonlinearity via tunneling effects in trian-
gular TQDs. By properly choosing the energy splitting and the 
tunneling, the enhancement of Kerr nonlinearity can be accom-
panied by vanishing linear absorption. The results are interpreted 
in the dressed states picture. Analyses show that the interacting 
double dark resonances induced by the tunneling between the 
quantum dots can result in linewidth narrowing of the absorp-
tion peak or the transparency window, where the steep disper-
sion profile of the probe field makes it possible to enhance the 
Kerr nonlinearity. Potential applications of such semiconductor 
nanostructures are to enhance self phase modulation at low light 
levels such as optical solitons and self focusing.
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