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1. Introduction

In recent few decades, cellular neural networks (CNNS), initially
proposed by Chuan and Yang in 1988 [1], have attracted considerable
attention due to their extensive applications in signal processing,
classification of patterns, quadratic optimization, and other areas
[1-3,10,12,20]. Such applications heavily depend on the dynamical
behaviors of the CNNS. Therefore, dynamical behaviors of the CNNS,
which involve discussions of stability properties, periodic oscillatory
behaviors, bifurcation, chaos [3,4] and so on, have been investigated
and meanwhile a great number of approaches for neural networks
have also been proposed [6,7,10]. Especially, the global stability issue
that is of great interest in many applications has long been a focused
topic of theoretical as well as practical importance [12,20-22,40].
Thus, it has important meaning to do some research on cellular
neural networks stability.

Time delays are usually unavoidable in signal transmission, engi-
neering systems, biological systems and economic systems because
of the finite processing speed of information, for example, the finite
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axonal propagation speed from soma to synapses, the diffusion of
chemical across the synapses, the postsynaptic potential integration
of membrane potential at the neuronal cell body and dendrites [5].
On the other hand, in the electronic implementation of artificial
neural networks, time delays often inevitably occur and are usually
time varying owing to the finite switching speed of amplifies [2].
Moreover, when designing a neural network or implementing it by
VLSI in practice, neural networks usually have a spatial nature due to
the presence of a multitude of parallel pathways with a variety of
axon sizes and lengths, but the distribution of propagation is not
instantaneous and cannot be modeled by discrete time delays. As a
result, continuously distributed delays have been incorporated into
neural networks [13,15]. It is well known to us that constant, time
varying, or distributed time delays may lead to undesirable dynami-
cal network behaviors such as bifurcation, divergence, instability or
oscillation. Thus, the global stability of neural networks with time
delays becomes an extremely important research topic and many
researchers have already paid special attention to this area. Until
now, some sufficient conditions have been reported to ensure the
stability of neural networks with different types of time delays, see
[8,9,11-15,19-22,38] and references therein.

On the other hand, it is noteworthy that a wide variety of
evolutionary processes are characterized by abrupt changes at
certain moments of time, which may be caused by a switching
phenomenon or other sudden noises, existing the impulsive
effects [25-27]. The instantaneous perturbations in turn affect


www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.01.044
http://dx.doi.org/10.1016/j.neucom.2015.01.044
http://dx.doi.org/10.1016/j.neucom.2015.01.044
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.01.044&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.01.044&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.01.044&domain=pdf
mailto:cui_huimin2012@126.com
http://dx.doi.org/10.1016/j.neucom.2015.01.044

H. Cui et al. / Neurocomputing 157 (2015) 1-10

dynamical behaviors of the neural network systems. Therefore,
investigations of stability of neural networks with impulsive
effects as well as delay effects have received much interest
[18,25-32]. Fundamental theory of impulsive differential equa-
tions has been developed in [23,27,29,30]. In [40], several new
sufficient conditions ensuring the global exponential stability of
the equilibrium point for fuzzy cellular neural networks with
delays and reaction-diffusion terms are obtained. For more details
of the literature related to stability of impulsive neural networks,
the reader is referred to [28-34,37,39,42] and the references cited
therein.

In addition to delay and impulsive effects in artificial neural
networks, diffusion effects are often encountered when electrons
are moving in asymmetric electromagnetic fields. Therefore, the
model of impulsive reaction-diffusion neural networks whose
activations vary in space as well as in time will be more powerful
for describing the evolutionary process of the practical systems.
Recently, some results concerning the stability of impulsive neural
networks involving time delays and diffusion effects have been
reported [16,17,35,36,39-42]. For example, in [41], some new and
concise algebraic criteria ensuring the global exponential stability
of the equilibrium point for impulsive cellular neural networks
with time-varying delays and reaction-diffusion terms are sum-
marized by means of Hardy-Poincare inequality and Gronwall-
Bellman-type impulsive integral inequality. Moreover, some aut-
hors have considered a class of neural networks with impulsive
diffusion terms and mixed time delays. For example, the problem
of mean square exponential stability for a class of impulsive
stochastic fuzzy Cohen-Grossberg networks with mixed delays
and reaction-diffusion terms is investigated in Ref. [39].

However, it should be noted that, in all the aforementioned
literature, time delays are assumed to be bounded. Unfortunately,
in many practical neural networks, this assumption is not realistic.
As far as we know, several results have been available in some
literature when time delays are unbounded [43-45]. For example,
the global robust stability for uncertain stochastic neural networks
with unbounded time-varying delays has been studied in [44],
where a novel concept of global robust p-stability in the mean
square for neural networks is proposed. In [45], robust u-stability
criteria have been derived for a class of uncertain stochastic neural
networks with unbounded time-varying delays. In addition, to the
best of our knowledge, there are no results on the global x-stability
criteria for impulsive reaction-diffusion neural networks with
both unbounded time-varying delays and bounded continuously
distributed delays, which is very important in both theories and
application but still remains as a challenging research issue.

Therefore, motivated by the above discussions, the objective of this
paper is to study the global u-stability for impulsive neural networks
with reaction-diffusion terms and mixed delays which may be unbo-
unded. The presented nervous model integrates impulses with reac-
tion-diffusion terms and mixed delays. By establishing a novel
Lyapunov-Krasovskii functional and employing the delay differential
inequality with impulsive initial conditions, boundary conditions and
LMI, we develop two sufficient conditions guaranteeing the global
u-stability which unifies the exponential stability, power stability,
log-stability, log-log stability, etc., for cellular neural networks with
unbounded time-varying delays.

The rest of this paper is organized as follows: in Section 2,
models are formulated and preliminaries are given. In Section 3,
two global u-stability criteria for neural networks are derived and
detailed proof is presented. In Section 4, several corollaries are also
derived. In Section 5, two simple illustrative examples are pro-
vided to show the validity of the main results. Finally, conclusions
are shortly drawn in Section 6.

Notation: The following notations will be used throughout this
paper: For A,Be R™" or A,Be R™", A> B (A < B) means that each

pair of corresponding elements of A and B satisfies the inequality
> (<).AeR™" is called a nonnegative matrix if A> 0 and [ e R" is
called a positive vector if [ > 0. Apax(P) and Apin(P) represent the
maximum and minimum eigenvalues of a symmetric matrix P,
respectively.

PC(2) = {¢ : (—o00,tg] x Q>R p(s~,X) = ¢(5,X),S € (— 00, to]}
where Q =Q U 082, and ¢(s*,x) exists for all s e (—oo,to] but at a
finite number of points. PC[J x 2,R"] = {u(t,x) : | x 2—R"} where
u(t,x) is continuous at t;étk, u(t, ,x)=u(ty,x), and JCR is an
interval. 11, = (J,!1| de) , for any [ € PC(2), where || is Euclid
norm of a vector [ € R" for any integer n. Let S £ S([— 00, 0] x R™,R")
be the Banach space of continuous functions which map [— oo, 0] x
R™ into R" with the topology of uniform converge. Q= {x=
(X1,X2, ...,xm)T| |Xi| <q;,i=1,2,...,m}is an open bounded set with
smooth boundary 02 and mes 2 > 0 denotes the measure of £ in
space R™. [?(@) is the space of real functions on £ which are L2
for the Lebesgue measure. It is a Banach space for the norm

lu(t)ll, = ,/Z?:] () I3, where u(t) = Uy (t), ..., un()’, lut)l

= ([ lui(t,x)|? dx)”z. For any y(t,x) € S(—1z, 0] x 2,R"), we define

Iyl = \/STF 13, where y(t, %) = (1 (£.%). ..., wa(t.X)", ly;

= (Jolwi012 dx) "%, 1y =sup_, _s ol w5, X))

2. Model description and preliminaries

We consider the following impulsive delayed reaction-diffu-
sion cellular neural networks with boundary conditions:

a(ui(t, X)) (t X) i 0 (
0Xs

=1

ou; (t X)

) —a;u(t, X)

+ ) byf . 0)+ D cuf (Uit — (1), %)
j=1 j=1

n + 00 -

+) dy / kij(s)f j(uj(t —s,x)) ds
j=1

+I;(t), t>0, t # ty, keN, xeQ,i=1,2,....n, (])

Aui(t,x) = di(t~, 0+ Y egh(ui(t~ —(t).x),
j=1

t=t,keN,xeQ,i=1,2,...,n, )

on~ \ox; oxy

611,'_ ou; ou; ou;
0X1 0Xy" 70X

T
) =0,Vt>0,xe0R,i=1,2,...,n, 3)

ui(s,x) = ¢i(s,x), —co<s<0,xeQ,i=1,2,...,n, (4)

where  Aui(ty, X) =u;(t;", X)—ui(t, ,x), ui(t; ,x)= lime_, ¢ wi(t, %),
u,z(t,j,x)zlimmt; u(t,x),xeR,i=1,2,...,n,n>2,keN=1{1,2,...}
is the impulse at time instant t,. The time sequence t; satisfies
O<to<ti<tby<-<tp<tppi1<-- and lim;., (oot = +00; X=
(X1,X2, ..., Xxm)T € 2 R™; n is the number of neurons in the net-
work; u=(u1,u2,...,un)7eR”,ui(t,x) denotes the state of the ith
neuron at time t and in space x; u;(t;,x) and u;(t; ,x) denote the
right-hand and left-hand limits at t;, respectively. For all k e N, it is
always assumed that u;(t, ,x)=u;(ty,x). The smooth function
D;s = Dis(t,x,u) >0 corresponds to the transmission diffusion
operator along the ith unit; the scalar a; > 0 is the rate with which
the ith unit will reset its potential to the resting state in isolation
when disconnected from the network and external inputs at
time t and in space x; by, c; and d;; are known constants deno-
ting the strength of the ith neurons on the jth neurons;
fj(uj(t,x)), ﬁj(uj(t,x)) denote the activation functions of the jth
neuron at time ¢ and in space x; zj(t) denotes the unbounded time-
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varying delay; the delay kernels k; are real valued nonnegative
continuous functions; I; denotes external input to the ith neuron.
To obtain our main results, we give the following assumptions.

Assumption 1. 7j(t) §=1,2,...,n) is a nonnegative continuous
differential function and satisfies zj(f)<p<1,p is a positive
constant.

Assumption 2. Delay kernels k; : [0, +o00]—[0, +00] (i,j=1,2,
.,ny and satisfy [;F* k;j(s) ds=k; <o0,i=1,2,....n

Assumption 3. There exist positive matrices

I=diag(ly, o, ..., 1) and m = diag(my,mo, ...,
~j('h)*fj(ﬂz) hi (1) — Ry (n2)
m—m ’ m—m2 ’

diagonal
my) such that

li= sup 5)

m#m

m; = sup

m#m

for any ny,my e Ropy #n2,j=1,2,...,10

A constant vector u* = (uf, u3, ..., u:)T eR" is assumed to be an
equilibrium point of system (1)-(4). To simplify the calculations,
now let y;(t,x)=u(t,x)—u¥,i=1,2,...,n. It is easy to see that
system (1)-(4) can be transformed mto

it %) _ | yi(t,x)
ot Zaxs (D’S 0Xs )

+ Z cif j it —7i(t),x))

—aiy(t,x)+ Z byf i(y;(t. x))

i=

j=1
3 dy / k() 00t —5.%) s,
j=1
t>0, t#t,, keN, xeQ, i=1,2,...,n, (6)
Ayi(t,x)=diy;(t~,X)+ ie,-jhj(yj(t’ —7j(t),X)), t=ty, keN, xeQ, i=1,2,....n,
j=1
(7)
%_ ayl ayz ayi T_ i
n = <0x1 Xy e =0, Vt>0,xe0Q,i=1,2,...,n, (8)
Vi($,X) = @i(5,x), —o00<s<0,xe, i=1,2,...,n, 9)
where  f;(y(t, %) = ;.0 +u¥) - fwh), j=1.2,...n,  hiy(t—
7j(), %)) = hj(y;(t— 7O, ) +ud) — i), j=1,2,....n, @i(8,X) =

¢i(s,x)—u*,n>2. Then, it is easy to see that f;(-) and h;() satisfy
Assumption 3.

Definition 1 (Chen et al. [44], Liu and Chen [45]). Suppose that u(t)
is a nonnegative continuous function and satisfy u(t)— +oo when
t— +oo. For impulsive neural networks (6) with reaction-diffusion
terms and both time-varying unbounded delays and distributed
delays, the solution is said to be globally u-stable, if there exists a
constant M > 0 such that when t > T

M
2 [
lhu(t, x)—u*ll3 < O (10)

Remark 1. This Definition 1 unifies various stabilities. For exam-
ple, when u(t) = e, g > 0, the global u-stability becomes the global
exponential stability; when p(t) =t, the global p-stability becomes
the global asymptotic stability; when u(t)=t", the global u-
stability becomes the global power stability; when u(t) = In(1 +¢),
the global p-stability becomes the global log stability; when
u(t)=InIn(3+t), the global u-stability becomes the global log-
log stability. We will give a concrete discussion about the relation-
ship between the u-stability and other stabilities in Section 4.

To obtain our main results, we need the following Lemma 1.

Lemma 1 (Lu [5]). Let Q be a cube |x;| <q; (i=1,2,...,m) and let
w(x) be a real-valued function belonging to S'(22) which vanishes on

the boundary 082 of 2, i.e. W(X)| 0 = 0. Then,
2

2 2 aﬂ
Lw (X)dXSqI,Q()X,

dx. (11)

3. Main results

Theorem 1. Suppose that when t > T > 0 the function u(t) satisfies

fu(t) u(t—1(t) Jo" kij(o)u(t+0) do

WO =" T PG

where 1, > and B3 are nonnegative scalars.

The solution of impulsive neural networks (6) with reaction-diffusion
terms and both time-varying unbounded delays and distributed delays is
said to be globally u-stable, if under Assumptions 1-3, there exists a
matrix P e R™" whose corresponding elements to principal diagonal as
the axis of symmetry form opposite numbers and whose elements on the
principal diagonal are all greater than zero (i.e.,py = —pj,i#Jj; pj >0,
i=j) such that

5w 58)5 (P2

—ﬁ2> Sﬂ3a (]2)

i=1 s=1 j=1
+(1=p)~ 'y pici+ d,,p, +1,~2+/331,-2> <0, (13)
(E+Dy)"P(E+D)—iP (E+Dp'PEIY| _ 14
ITETP(E+Dy) rTEPE . | = a4
where
Ay -+ Qin
Ee=| i =~ i |@=Lij=12,..n), (15)
Qn1 co Omn
Iy = diag(my, my, ..., my), (16)
Dk :diag(d1,d2, ...,dn), (17)
1<en®teD < <elt1)  (0<aq <ap). (18)
Proof. Define a novel Lyapunov-Krasovskii functional:
Ve = [ (Vit0+Va(t. 0+ Va(t.0) d (19)
Q
where
n
Vit,x) =Y pu(t)y (¢, ), (20)
i=1
Vatn=3" % / 05,10 85, 1)

i=1j=1
+00
Vs(t,x)= ZZ / kij(o) / /4(5+o‘)fj ¥(s.x)) ds do. (22)
i=1j=1

For any te[t;_i,ty), the time derivative of V(t,x) along the
trajectory of system (6) is

V(t,%)| 6 = / {Z piﬂ(t)y?(tVX)} dx
9
/ 2 memy,(t X) <Z 7(

i=1

6y,(t X)

) a;y;(t,x)

+ Z byf(y;(t.x) + Z cuf ji(t = 7(0), X))
j=1 j=1



H. Cui et al. / Neurocomputing 157 (2015) 1-10

n +o0
+ Zd,j /0 kig($)fj(;(t —5,%)) ds> dx

+ /Q ZZMt)f, V5t 20) = u(t = 7 (E)FT Yt = 750, ))(1 = ()] dx

i=1j=

/Q ZZkuw)wmfj @it 0)—uOF Wt —0,)] do dx.
i=1j=

(23)

From Assumption 1, we can obtain

n
Vel < [ a0 {Z Pl x)}

n m a
+ 2003 P ( > (

Will, x)> —a;y;(t.x)
+ > byfiyt.x)+ Z cif it —j(6),x)
j=1 j=1

n +00
+Yd; / kij($)f jy;(t —s, %)) ds) dx
j=1 0

u(t—zj(t
+f u(r)zz{fj 0yt~ I 5000 —p)} dx

i=1j

/ u(t) Zl Zl k(o) [" (;(“:)“) 256,00~ 2yt —o, x)):| do dx.
i=1j
(24)

By the boundary condition of (8), we get

0y,(t,%)
s_l/y'(tx) ( " )d

= [y (Di!’y ”“”‘)) ax= [ ve (y,(t oD, 2 x)) »
JQ Xs s—1 Xs o

_/ (Dlsay,(t X)> oVy;(t,x) dx = / (y,(t x)D,sayl(t X)) dx
Q Xs s=1 Xs s=1

SWLICSK

in which

(9 9 a\"
T\ ox17ox2” T 0xs

is the gradient operator, and

m T
(Disa(yi(t’ X))) _ (D“ 30’1‘(&?‘))’ ...,Dima(yi(t’ X))) .
s=1

00X 0X1 0Xm

m 2
=_ Z /Q D (%) dx, (25)
s=1 S

From Lemma 1, we can obtain
" & 0 ay;(t, x) _
/ Z%(L’Oa(Dzs OXs ) dx =
/ (ay,(r X)> dx < — / Z Dlsy’ CLIPN (26)

Q5=1

s=1

From (12) and Assumption 3, we can obtain

S u(t) {(1 Y (Mt (g(”’f, @it —i(D), x)))
i=1

i=1

+2pyi(t,x) (Z cif vt — Tj(t)>x))> }

Jji=1

u(t)[ A= S L2t — 500,30 + 2Dy (E.5)

j=1

(Z c,-jfj(vja—rj(t),x)))} =) u)
j=1 i=1

2
{ (A=) BY2f10t=0.x0) = A=)~ 28, P picyyit. o)

n
+1-p) g5 YR} < Y (A —p) T B pECyEE ). (27)
i=1

From (12) and Assumption 2, we get

ﬂ(t){ [2 > pilt,x) Z dj / kij(S)f j¥;(t =5, %)) ds}

i=1 j=1

i=1j=1

S / ) do} — u(t)

i=1 j=1

n +oo
{ |:2 > pyit.x) Z d;j / kij($)f j(v;(t —5,%)) d5j|

i=1j=1

- Z/ ku(s)fj (t—s.%)) ds}

—un3 Y / ky(S2Pidyyi(t, X)fV5(E—5,X)

i=1j=

Pye-s N ds=u S 3 / kis)

i=1j=1

1 1 2
{ |:§pidijyi(tyx) *fj(J/j(f*S,X))} + (jpidijyi(tsx)> }

M(t)zz Zdz/+ kii(s)y2(t,x) ds

i=1j=1

< (TZ Z kip?diyA(t, X). (28)

By Assumption 3, we can obtain

u(t) {2 > pwit.x) Z byf (v;(t, %)) — Z Z 2apiyi(t, x)}

i=1 j=1 i=1j=1

< pu(t) [Z 2pyit,x) Y bylyitx)— > > afp,»y?(t,X)]

i1 j=1 i=1j=1

—p(t) Y aipyi (e, x) =) [Z ap; Yy

i=1j=1 i=1 j=1

il 2 bl ?
{ {yx(tX)—#y](tX)} <“> y](tX)}

noR2p2

bil;
- Z Z a1p1y1 (t, X):| < u(t) |:Z aip; Z Uzj y] (t, %)

i=1j=1 i=1 j=1 a;

- Z Za,p (3 X)} —u(t)Z Z {p i a,—p,} Y2(tx).  (29)

i=1j=1 i=1j=1

Substituting (26)-(29) into (24), we further have

. t,
Venles | Wy {/flp,y, x-23" DptEY

i=1 s=1 i

pibjili
s [t

aipi]y?(t,X)Hl —p) B3 ' piciy(t.x)
=L 9

K 24PV €0+ (LY (e, x)} dx = /Q u(t)

n m p. bzl2
(ﬂlp, 230 0) 4 3 —a,-p,»)
i=1 &) = aj
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+(1—p) gy PR+ ,]pl (1+ﬁ3)12) }y?(t,x) dx.

(30
From (13), we can get
V(t, 0|6 <0, teltp_i,t) N[T,+o0), ke N={1,2,--}. 31
When t =t}
v 0= [ [Z Pt WA 0+ 3 S / 005,00
i=1 i=1j=1 -5t

+ 00
ds+ Z Z / k(o) / M(S+o)fJ (s, %)) ds dg}

i=1j=1

/ {prﬂ(tk )(yl(tk 7x)+Ayz(tk=X))

i=1

DN

i=1j=1

u(s)ff(yj(s,x)) ds

=1t

+ oo tk’ 2
+ Z Z / kij(o) / o us+o)fi(yj(s.x) ds do | dx

i=1j=1 f

2
—7j(ty), X))}

/{szﬂ(tk )I:(d +1)YI(tk ,X)+ Z euh (yj(tk

i=1 ji=1

RN

i=1j=1

M(s)ffcyj(s,x)> ds

=76 )

i=1j=1

+ o0
+ Z Z / kij(o) / ,u(s+a)fj vj(s.x)) ds da} dx.  (32)

By the matrix form and from Assumption 3, we can get

i=1 j=1

2
n n
> pinlty) {(dﬁ Dyite 0+ Y ejhiy(te —rj(tk),x))}
=t [(E+Dyy(t . X)+ExHy(tg — (6. %)) PIE+Dyy(ty; .X)
+EGH(t; — ot x)] = p(tOY (6 . X)(E+Di) PE+Dyy(ti . %)

+y"(tg . X(E+D) PEHY(t; —(ti). X))

+H"(y(t;; —(tr). X)ELPE +Dy)y(t; .X)

+HT(y(t; —2(ti). XDERPEHY(t, — (L), x))]
< Ut (t , X)(E+Dy) PE+Dy)y(ty ,X)

+YT(t . X)(E+Dy) PELy(t; —=(ti). %)

+y7 (6 —=(ty), ) FELP(E+ D)y (t; %)

+yT(tg —2(ty), X)TEELPELMy(t, —1(t), X)]
e |[ yeem !
=HE |yt —(t).x)
(E+Dy)"P(E+Dy)— 4P (E+Dy)  PE; Y(ty . X)
I'TEFP(E+Dy) I'TELPET, Yty —(ty), X)
+ 2Tt 0Pyt )] (33)

From (12) and (18), we can get

2
Zpu(fk ) {(d + 1yt 0+ Z eihiy;(ty rj(tk),x))}

i=1

< At Y (6 0OPY (%) = Apalt ) Z Pyt ). (34)

i=1

Therefore,

vty .0 < / [Aku(tk )Zp,y, (e »%)

DR

i=1j=1

ﬂ(S)ij (s, %)) ds

+ 00
+ Z Z / kii(o) / u(s+o)f} (yj(s.x)) ds do
i=1j=1
< AV(tg ). (35)

Let Ty = max({tp, T} and Vo =supg .1, V(s,x) and Viex = max{Vo,
ﬂk,1~-~/10V(t6 ,X)}. When te[ty_q,t,) NI[T, +00), ke N={1,2,...}
we can obtain

(O min(P) I U(t, X) —U* 15 < V1(£,X) < V(£,X)

<V %) S VIt 1,2 < e_q 20V (8 %), (36)

H %2 Vmax
ire.  llu(t,x)—u*ll sm. 37)

The proof is completed. ©

4. Discussions

In what follows, along with the properties of time delays, we
give several corollaries by specifying the functional u(t), which
represents several types of stabilities (also see [23,24]).

We suppose that

=k;.

K B+ 1)s ~+ook d e B +Ds g, 1

kii(s) =e 1T 1s, i(S) ds = e s =

56) | ke [ o
(38)

Corollary 1 (Global exponential  stability). Suppose  that

(t) <%, u(t)y=eMt, p; > 0. If (13)-(14) hold, then the solution of
neural networks (6) is globally exponentially stable.

Proof. Factually, we just need to verify the condition (12). Since

ity _pieht
u(ty  emt — P (39)
uw® Sr(t) /n*_l
wt—aty =T Ty “0)
f0+0¢ e—(1+p)ophit+0)d s +00 .
et :/0 e~ do=1. 41)

Let f) =y, <e #7, p3>1. Similar to the proof procedure of
Theorem 1, finally, we can obtain

u* ” 2 Vinax (42)

) -wlz < e By

i.e. if under Assumptions 1-3 there exists a matrix P such that (13)
and (14) hold, the solution of impulsive neural networks (6) is said to
be globally exponentially stable according to Definition 1 and Remark
1. o

Corollary 2 (Global power stability). Suppose that «=(t)<kt,
O0<k<1,u(t)y=t",y >0.1f (13)-(14) hold, then the solution of neural
networks (6) is globally power stable.

Proof. Factually, we just need to verify the condition (12). Since
when t >T,

) gy

WO~ & ST (43)
wty ot -

WE—0) (==Y ~(— kty ==k, (44)
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State Curve
1 T T T T

Fig. 1. The response curves of system (64)-(69) without impulsive effects.

State Curve With Impulsive Effects

y1
08 —y2
impulse occur at t=1

06 b

04 impulse occur at t=2 E

0.2 impulse occur at t=3

ts

Fig. 2. The response curves of system (64)-(69) with impulsive effects.

[ e~ 0+he(t oy do 7! 7!
- < < .
v (+p) e ™ (14p) T

Let gy >y/T, B, <(1—kY, B3 > 7!/(1 +/31)7+1T’. Similar to the proof
procedure of Theorem 1, finally, we can obtain

(45)

Vinax (46)

lu(t,x)—u*ll2 <1
2 tyﬂmin(P)

i.e. if under Assumptions 1-3 there exists a matrix P such that (13)
and (14) hold, the solution of impulsive neural networks (6) is said to
be globally power stable according to Definition 1 and Remark 1. ©

Corollary 3 (Global log stability). Suppose that «=(t)<t—t/
Int, u(t)=In(1+t). If (13)-(14) hold, then the solution of neural
networks (6) is globally log stable.

Proof. Factually, we just need to verify the condition (12). Since
when t >T,
alty 1+t 1 1 1 1

WO " In(A+0  A+0mA+0 It e dn 1) “7)

u(t) In(1+1¢)

Wl—(0) = In(1+t/Ing) = 1478 (48)

Jo Z e THPrin(l +t+0) do
In(1+¢)
1 1 + 00 1
*(1*’/11)57‘1
S(1+ﬂ1)+(1+ﬂ1)ln(1+t)/0 € T+t+o '
< + 1 < 1 4 1
TR (1) A0 A (1450) I+ T)

(49)

Let §;>(nT) "2, <1478 ", p3=1/(1+p)+1/(1+5;)°In(1+
T). Similar to the proof procedure of Theorem 1, finally, we can
obtain

Vv
a2 max
lTu(t,x)—u*ll5 < 71[1(1 O (PY

i.e. if under Assumptions 1-3 there exists a matrix P such that (13)
and (14) hold, the solution of impulsive neural networks (6) is said to
be globally log stable according to Definition 1 and Remark 1. ©

(50)

Corollary 4 (Global log-log stability). Suppose that =(t) <t—t*,
O<a<1l,u(t)=InIn@B+1t). If (13)-(14) hold, then the solution of
neural networks (6) is globally log-log stable.

Proof. Factually, we just need to verify the condition (12). Since
when t > T,

a®)  1/InG+6)- (1/3+1) 1

u(t) InIn(3+¢) T 3+pIn@E+t)in InB+t)
< L s (51)

B+DInB+DIn In(3+T)

ut)  InlnB+0) _
u(t—1(t) In 1n(3+t“)|“ +oo =1.628, (52)
Jo e~ +iInIn(3 +t+o0) do 1 1

< + 5
InIn@EB+¢) I+61 (144,)°InIn@B+1)
1 1 53

< + >
1+61 (145))° InIn3+T)

Let g, >1/3+DInGB+T) InInB+T).5, <1.6287',83>1/1+
A +1/(1+p )Zln In(3 +T). Similar to the proof procedure of Theo-

rem 1, finally, we can obtain
Vv
a2 max
llu(t, x) —u* 5 S—ln NG+ D (P) (54)

i.e. if under Assumptions 1-3 there exists a matrix P such that (13)
and (14) hold, the solution of impulsive neural networks (6) is said to
be globally log-log stable according to Definition 1 and Remark 1. ©

5. Three illustrate examples

Example 1. Consider the following system:

A1 (6,X) _ 22: 0 (ay1<r,x)

T FrA )71.2y](t,x)+0.2f](y1(t,x))

s=1

—03f, (5 (£.X) £ 0.1F, (7 (£ — 71(£), )
+ o0
+0.2f (5t —2(0), X)) +0.3 /0 ki1 () (1 (E—5,%) ds—0.4

00
x /0 Kia()f 2 (t —5,X) ds, (55)

o (t, (2
LZ;E ) _ > X( yf);t X)> —¥5(t,X) = 0.1f (¥4 (£, %))
s=1 S S

+0.1f (2 (£, x)) — 0.15f 1 (y1 (E — 71(£), X))
+ 00
+0.12f5(y5(t— 12(0). X))~ 0.13 /0 kot ($)f 1 (v1 (£ —5,X)) ds

r+00
+0.2 x /0 k22 ($)f ,(¥o(t — s, X)) ds, (56)
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t-axis 0 -2

1.5F

0.5

l.l1 —axis

-15 L L L
0 5 10 15

t-axis

20

uz—ax1s
o
w
!

I

X‘1 —axis

t-axis 0 -2

0.2 . . .
0 5 10 15 20

t-axis

Fig. 3. State trajectories of system (72)-(75) when uq(t,x1) =2, u(t,X1) = sin(pi/4), tmax = 20.

n
YiltE 0=yt .0 =1+ y (6 0+ > eyt

—7i(t), X)),
i=1
(57)
Va(tiE %) =Yy (t . %) — (1+e29%K)y, (6, x)
n
+ D eghy(ty =), %)), (58)
j=1

h(yi(t —1j(£), X)) = y;(t —7j(t), x) — (1 + 02Ky (t — 7;(t), %),
ij=1,2,xeQ={(X1,%2)"10<x1,x <1} CR?, ty=0,
ty=tr_1+0.5k, keN, (59)
%_ 0}/1 ayz ayi T_ 5 —
an_(axl " "axm> =0, Vt>0, xe0Q, im=1,2, (60)
Vi(5,X) = @i(5,X), —o00<5<0,xeQ,i=1,2, 61)

where the coefficients and functions are taken as

4_[12 0 _[02 -03] __[01 02
_[o 1]’ {—0.1 0.1 } _[—0.15 0.12}’

03 —-04 E, — €11 €12 _ 1 1
[—0.13 0.2 } KT e exn _{1 1]’

L 0 10 e0.025k 0
L:{o lz}:{o 1}’ F":{ 0 e0-025"]’ ken,

D=

(1o , _[d o

_[o 1]’ K=lo oy

_ (] + e0.00ZSk) 0

|: 0 _(1 +e0.025k)

}, keN,

e~S e~* .
(kij(s))zxzz {975 6’5}’ Dis=1, i
s=1,2,fi(x) =0.5(]x+1]

—1x=1]), i=1,2,71(t)=12(t) = 0.5¢.

Let T=1,0¢=0.01,0,=0.1,|2| =1,u(t)=t. Then p;=1,p,=
2,p3=0.25,q, =q, =1. It is easy to verify that Assumptions 1-3
are satisfied, and by using the Matlab LMI toolbox, we obtain
P= [%1 z? [ 9] which satisfies that
2
2 IS pl jlll
> ﬁlpf—Zp,Z +Z —aip;
i=1 s=1 1
+(1-p) ' 'pic + l;’dupl +l,?+ﬁ3l[~2> =—-5.1081<0,
(62)
(E+D)"P(E+Dy)— 4P (E+Dy) PE Iy 63
ITELP(E+Dy) ITERPEMy | = 63)

From Definition 1 and Theorem 1, the above discussed system is
globally asymptotically stable.
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U1 —axis

10
t-axis

Uz—aXIS

/)
4
9

0.6 T T T T

t-axis

Fig. 4. State trajectories of system (72)-(75) when u;(t,x1) =2, uy(t,x1) = sin(pi), tmax = 10.

Example 2. If we let f;(&) = hi(¢),D;s=0,d; =0, for i,j=1,2,£€eR.
System (6) will be reduced to the following system:

d

1= —0.9y,(0)+0.21 (7, (6)+0.3h> (1)

—0.1h(y1(t—71(t))) — 0.2h (¥, (t — 72(1))), (64)
D2 _ _ 0 86y, (0)+0.2h vy () +0.1ha(yy(t

dr = .00y 2h1(y1()+0.1ha (4 (D))

+0.1h1 (1 (t—71 (1)) — 0.2ha (Yo (£ —72(1))), (65)

Y1) =05y, (t;), (66)
Ya(t5) = 0.64y,(t; ), (67)
ty=tk_1+k, keN, to=0, (68)
Vi) =i(s), —oco<s<0,i=1,2,
ye@={(y1.y2) 10<y..y, <1} CR%. (69)
Let u(t)=t, hi(&)

=&+ —1E=1]),71() =72(t) = 0.5t, T = 1,1 = 0.01, 0, = 0.1.
Then gy =1,5,=2,p3=025,q; =q, = 1.

09 0 02 03
A:{o 0.86}’ B:[o.z 0.1}’ €=

D_00 E—]OE—e“
_{0 o}’ _{o 1}’ kK= ey

~01 -02
{0.1 _0.2}

ez| [0 O
€22 _|:0 0:|’

D_d10_0.50 kNL—l]O—lo
=10 d, —{o 0.64}’ S tTlo b _{0 1}
Similar to Example 1, Assumptions 1-3 are satisfied. By using the

Matlab LMI toolbox, we obtain P = [1’01 o } = [} 9] which satisfies
that

2 2 p 2 p:b22
Z <ﬁ1pi—2Pi Z *) + Z ((%_aipi
i=1 j=1 J

is
2
s=1 qi

1, ki
+(1—p)~'py 1pick +Z‘d§p,2+1?+ﬁ3l,?> = —-42132<0,
(70)
(E+Dy)"P(E+Dy)— 4P (E+Dy)" PE Iy a1
T'TELP(E+Dy) TYELPEY, | =

Therefore, the conditions of Theorem 1 are satisfied, which means
that the above discussed system is globally asymptotically stable.
The state responses of the system simulation discussed in Example
2 are shown in Figs. 1 and 2.

In fact, this model is also discussed in [34] where the stability
criteria depend on the upper bound of time delays. Hence,
theorems in [34] are not applicable to ascertain the stability of
the model in Example 2. This point implies that our results are
more general and universal.



H. Cui et al. / Neurocomputing 157 (2015) 1-10 9

Example 3. Consider the following impulsive delayed reaction—
diffusion cellular neural network:

At X) _ zm: 0 (DiSM) —aiui(t, X)+ Xn: byf j(uj(t.x))

ot 5210)(5 0X5 j=1

n
+ ) cf jui(t—7i(t), %), t > 0, t £, XeQ,

j=1
i=1,2,...n, k=1,2,... (72)
lli(tk—i-O,X) = ui(tk,x)—i- 1 .343u,-(tk,x), XeQ,

i=1,2,...n k=1,2,... (73)
o _(ou; ou; ouy ou\"_

on -~ \0X{ 0Xy 0X3' 0X4)

Vt>0,X1,X2,X3,X4 €00, i=1,2,....n, (74)
Ui(s,X) = ¢i(5,X), —o00<s<0,xeR,i=1,2,...,n (75)

Let n=2, m=4, «(t)=0.95t, te (0, tma), Q={(X1,....,x4)"
|Zf_ %} <4}, a;=6.5, a1 =36, ay =40, t;—t_1 =0.05k, f;(u) =
Muy+1)—uy+1)), wty=e™, m>0, p=095 q=2, =
0.5, di=1343,¢;=0, d; =0, i,j=1,2,

12 23 25 31 ~023 13

Ona=|15 32 27 34 22=| o1 3]
~01 -02

(CU)ZXZZ{OJ 70.3]'

Then, gy >m, 3 >1, p, <e~mxM Qbviously, Assumptions 1-3 are
satisfied. By using the Matlab LMI toolbox, matrix P=[ 2, 1]
which satisfies (13)-(14) can be obtained easily. Then, according to
Corollary 1 the above discussed system is globally exponentially
stable.

But we note that

W(t)=095<1—(1/h) (h>0), p=n _max 3 =%,

n
—_ . 2 2 _
A= max —x—2a;+ > (bj+c}) | +p= —7.4698.

1 ]:1

Since h > 20, A= —7.4698 > —10 > — hp. The conditions of Theo-
rem 3 in [41] are not satisfied, which implies that our proposed
method in this paper weaken some conservatism of the existing
results in [41]. Considering u(t, x1), u(t, x,), u(t, x3), and u(t, x4) have
similar state trajectories, here, we only take u(t,x;) as an example
to show the superiority of the proposed method more clearly. The
corresponding numerical simulations of the system discussed in
Example 3 have been described in Figs. 3 and 4 under different
initial conditions and parameters.

6. Conclusions

In this paper, a new model that is more general than those
investigated in the previous literature has been outlined first.
Then, by establishing a novel Lyapunov-Krasovskii functional and
using some initial conditions, two concise sufficient conditions
guaranteeing the global u-stability of impulsive neural networks
with reaction-diffusion terms and both unbounded time-varying
delays and bounded continuously distributed time delays have
been obtained, which unifies the exponential stability, power
stability, log-stability, log-log stability, etc. Moreover, the new
and simple LMI-based stability criteria have involved the reaction-
diffusion terms and the regional feature, which weakens some
conservatism of the existing results in previous literature. How-
ever, they are independent of boundaries of variable time delays.
On the other hand, our method can also be used to investigate the
stability for neural networks with bounded delays, either constant

or time-varying. Finally, several corollaries and three concrete
numerical examples have been given to verify the feasibility and
superiority of our results. The results have generalized and
improved the existing ones. In the future, we will try to search
for sufficient conditions for the global stability of the neural
systems under parameter uncertainties or stochastic perturbations
and apply these obtained results to other problems such as
combinatorial optimization.
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