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Abstract—GaSb-based quantum well (QW) laser diode, with
emission wavelength ∼2 μm, integrated onto a silicon-on-insulator
(SOI) waveguide circuit through a high-thermal-conductivity
Al2 O3 bonding layer has been designed and analyzed. Prior to
bonding, the fabricated Fabry–Perot GaSb QW laser worked
under continuous wave operation at room temperature, with a low
threshold current of 37 mA at the emission wavelength of 2019 nm,
demonstrating high material quality. A tapered structure has
been used for evanescent coupling of light from the GaSb laser
to the underlying Si waveguide. Instead of using SiO2 for direct
bonding or Benzocyclobutene for adhesive bonding, the use of
Al2 O3 to directly bond GaSb lasers onto SOI wafers is proposed.
The optical mode distribution simulations by a beam propagation
method software show that light can be coupled efficiently to the
underlying Si waveguide through the tapered structure without
compromise in optical coupling efficiency. Furthermore, there is
a significant reduction (∼70%) in the total thermal resistance
compared with the same structure using a SiO2 bonding layer.
Our results suggest that the Al2 O3 bonding layer could be a
promising candidate for III–V lasers integrated on SOI circuits,
where thermal dissipation is very critical.

Index Terms—Al2 O3 wafer bonding, GaSb laser, Quantum well,
silicon photonics, silicon-on-insulator (SOI), tapered structure.

I. INTRODUCTION

H IGH-performance light sources operating at 2 μm
and above are key components for applications such
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as gas sensing, medical diagnostics as well as advanced
telecommunication [1]–[5]. Such optical emitting devices are
normally based on III–V compound semiconductor materials,
such as InP-based [6], [7] and GaSb-based [8], [9] quantum well
(QW) laser structures. Though high performance 2-μm laser
diodes have been demonstrated from both systems, GaSb-based
QW lasers are less critical in material growth compared to the
highly strained InGaAs QW on InP for wavelength around 2 μm.
Thus it is more advantageous for wavelengths longer than 2 μm.

On the other hand, silicon photonics, based on silicon-on-
insulator (SOI) waveguide circuits, is a well-established CMOS
compatible technology, which enables the compact passive sili-
con photonic circuits [10]. However, due to the intrinsic material
property, i.e., indirect bandgap, the Si-based materials cannot
emit light efficiently.

If the strength of these two worlds can be combined, namely,
the integration of III–V lasers onto SOI waveguide circuits,
it potentially allows the highly compact gas sensing and opti-
cal communication devices to have a large degree of freedom in
device design, thus improving the system performance. Further-
more, these devices can be fabricated using the mature CMOS
process infrastructure, resulting in high yield, high volume pro-
duction and therefore low cost [11].

There are quite a few papers addressing the integration of III–
V laser structures onto SOI platforms [12]–[20]; however, most
of them are based on InP-based materials at telecom wavelength
of 1.55 μm. So far, there are few reports on the design of lasers,
integrated onto SOI platforms, with emission wavelength around
2 μm and above. And even in these limited reports, the device
performance still needs to be further improved in terms of work-
ing temperature and output power [17]. For example, Hattasan
et al. has reported the first GaSb-based laser integrated onto a
SOI waveguide, working under continuous wave (CW) opera-
tion with output power of a few tens of μW only. Furthermore,
the GaSb Fabry–Perot (FP) laser was bonded onto an InP carrier
first and then bonded onto the SOI platform. Though the pioneer-
ing result demonstrated the possibility of integrating a GaSb-
based laser onto a SOI, this laser design limits light coupling
efficiency from lasers to Si waveguides. Therefore, direct GaSb
laser integrated onto a SOI platform is greatly desired. In addi-
tion, the GaSb-based material has higher refractive index (3.896
for GaSb) [21] than Si (3.451) [22]. Therefore, intrinsically, the
light is not easy to couple down from the higher-index GaSb QW
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region to the underlying Si waveguide region. A tapered struc-
ture has been demonstrated to efficiently facilitate coupling the
light from the InP QW region to the underlying SOI waveguide
[23]–[26]. However, tapered structures have not been evaluated
for the GaSb QW laser integrated onto SOI platforms yet.

Conventionally, SiO2 has been used as bonding material in di-
rect wafer bonding of III–V materials onto SOI waveguides [15].
But due to its large thermal resistivity (∼71.43 K · cm/W) [27],
heat dissipation becomes a big problem, especially for lasers
whose performances are affected significantly by thermal prop-
erties. Benzocyclobutene is also widely used in adhesive wafer
bonding, but its thermal resistivity is even larger (∼344.83 K ·
cm/W) [28]. Recently, we have reported the low temperature
heterogeneous InP bonding on a Si wafer with an Al2O3 bond-
ing layer [29], [30]. Due to its much lower thermal resistivity
(∼2.56 K · cm/W) [31], Al2O3 becomes a very promising can-
didate for bonding III–V lasers onto SOI wafers. With Al2O3
bonding layer, we have previously reported the InP-based uni-
travelling carrier photodiode bonded onto a SOI platform with
improved thermal characteristics [18].

In this paper, for the first time, we investigate a GaSb QW
laser, with a tapered waveguide structure, bonded onto SOI
circuits with an Al2O3 bonding layer. The thermal resistance
has been calculated and compared to that with a SiO2 bonding
layer. The tapered-waveguide GaSb QW laser which is suitable
for integration onto SOI circuits has been designed and grown
with molecular beam epitaxy (MBE). The fabricated standalone
GaSb QW laser worked under CW operation with emission
wavelength of 2019 nm at room temperature with a low thresh-
old current of 37 mA. With our design, simulated by a RSOFT
BeamProp software [32], the light in the GaSb QW active re-
gion can be successfully coupled into the underlying SOI wave-
guide. In addition, the use of Al2O3 bonding layer potentially
enhances the thermal characteristics of this device. By compar-
ing the device’s thermal property with the same structure using
SiO2 bonding layer, we show that device with Al2O3 bonding
layer has a much lower (∼70%) thermal resistance.

II. DEVICE STRUCTURE

The schematic diagram of the proposed device structure, i.e.,
a tapered-waveguide GaSb QW laser bonded onto a SOI wave-
guide with an Al2O3 bonding layer, and its cross section are
shown in Fig. 1. For the entire device, the width of the Si wave-
guide WSi is kept uniform while the width of the III–V structure
varies along the Z axis (in the main light amplification region,
the width of III–V structure is 4 μm as shown in Fig. 1). The
length of the entire III–V region is 1000 μm, including two ta-
pered coupling structures (50 μm each) and a 900-μm-long uni-
form region. Light emitted from the III–V laser can be coupled
into the Si waveguide gradually through the tapered coupling
structures and can keep oscillating in it. Every time passing
through the III–V region, the light is coupled back into the
III–V laser and gets amplified.

III. LASER RESULTS

Before simulations of the hybrid device, the GaSb-based
III–V lasers, which are used for bonding onto SOI wafers, have

Fig. 1. Schematic diagram of the entire device and its cross section (not to
scale).

TABLE I
EPITAXIAL STRUCTURE OF LASER

Layer MATERIAL Thickness (nm)

7 GaSb 250
6 Al0 . 5 GaAsSb 1500
5 Al0 . 2 GaAsSb 270
4 In0 . 2 Ga0 . 8 Sb 10
3 Al0 . 2 GaAsSb 270
2 Al0 . 5 GaAsSb 1500
1 GaSb 500
0 GaSb 700 μm

been fabricated and tested. The epitaxial structure of the laser
was grown with MBE and has been shown in Table I. The de-
tailed growth process is similar to that described in [33]. The
laser structure has been calculated by 8-band k dot p method
[34], same as we performed in [35]. The results are shown
in Fig. 2, including the first two electron subbands and the first
three heavy-hole bands. The fundamental transition is ∼2.0 μm.

The device fabrication process is the same as we published
before [36], [37]. Standard photolithography and wet chemical
etching at room temperature was carried out to form the ridge.
A SiO2 layer was deposited on the wafer for injection current
confinement. Ti/Au and Ni/Ge/Au/Ni/Au were evaporated on
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Fig. 2. In0 .2 Ga0 .8 Sb/Al0 .2 GaAsSb QW bandgap calculation.

Fig. 3. (a) LIV curve and (b) lasing spectrum of the GaSb laser.

top and bottom of the GaSb laser to form ohmic contact. The
light output power and voltage versus injection current (LIV)
curve is shown in Fig. 3(a). The output power corresponds to
both facets of the laser. As can be seen from the figure, the single
QW GaSb laser works well in CW mode at room temperature
with a threshold current of 37 mA. Lasing spectrum has also
been measured using an optical spectrum analyzer (OSA) when
the laser was driven slightly above threshold at 48 mA and shown
in Fig. 3(b). The lasing spectrum peaks at around 2019 nm,
which agrees well with the design in Fig. 2.

Fig. 4 shows the net modal gain (Gnet = Γ · g − αi) spectra
from the fabricated GaSb laser at 20 °C at several bias currents.

Fig. 4. Net modal gain versus injection current at room temperature from a
GaSb QW laser. The inset shows the FP spectra in greater detail.

Gnet is computed from multiple amplified spontaneous emis-
sion (ASE) spectra obtained at different injection currents using
Eq. (1) [36], [38]. The ASE spectra were recorded with a high
resolution OSA (AQ6375, 1200–2400 nm) with the step size of
0.01 nm and the spectral resolution of 0.01 nm. The spectral res-
olution in the measurement is considered very good compared
to the adjacent longitudinal FP mode spacing in our presented
laser, which is about 0.6 nm. This could ensure obtaining the re-
liable data using Eq. (1). The inset of Fig. 4 shows the FP modes
in greater detail. The sharp peak and valley indicate excellent
mode spacing as expected. In calculating the Gnet , we used the
known laser cavity length Lc . The laser facet reflectivity R is
determined by [(n − 1)/(n + 1)]2 , where n is the group refrac-
tive index, obtained from the ASE spectrum. It can be seen from
Fig. 4 that, when the current is 36 mA, just below the threshold
(37 mA), the maximum gain is reached. Assuming a modal gain
of zero at long wavelengths, we extract the internal loss (αi) to
be ∼−5 cm−1, which indicates the high quality of the designed
GaSb laser structure

Gnet(λ) = Γgmaterial(λ) − αi =
1
L

ln

√
S(λ) − 1

√
S(λ) + 1

+
1

2L
ln

(
1

R1R2

)
(1)

where αi is the internal loss, S is the ratio of intensity maximum
P(λ), and minimum V(λ) in the consecutive FP resonances in the
whole wavelength range [38], as expressed in the inset of Fig. 4,
Lc is the cavity length, and R1 and R2 are facet reflectivities.

IV. EVANESCENT COUPLING SIMULATIONS

The entire hybrid device using the same epitaxial structure
with the tested lasers (for bonding purpose, we changed the
thickness of the p-side waveguide layer and removed the p-
side cladding layer) has been generated with beam propagation
method (BPM) by a RSOFT BeamProp software. The details
of the III–V structure integrated onto the SOI platform, from
the Si waveguide surface to the III–V side, are 50-nm-thick
bonding layer, 50-nm-thick GaSb contact layer, 100-nm-thick p-
type Al0.2GaAsSb waveguide layer, 10-nm-thick In0.2Ga0.8Sb
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Fig. 5. (a) Refractive index profile of the entire device and (b) detailed profile
of the QW.

TABLE II
EPITAXIAL STRUCTURE OF LASER

Material Refractive Index

Si 3.451
SiO2 1.465
Al2 O3 1.738
GaSb 3.896
Al0 . 5 GaAsSb 3.457
Al0 . 2 GaAsSb 3.724
In0 . 2 Ga0 . 8 Sb 3.848

QW layer, 270-nm-thick n-type Al0.2GaAsSb waveguide layer
and 1500-nm-thick n-type Al0.5GaAsSb cladding layer.

Fig. 5 shows the refractive index profile of the entire device
(GaSb QW laser onto SOI waveguide) (a) as well as the enlarged
refractive index profile of its In0.2Ga0.8Sb QW active region (b).
The specific values of the refractive indices used in the BPM
simulation are given in Table II [22], [39]–[42]. For the refractive
index determination of the InGaSb material, we use the method
described in [39]. The equations are expressed as

ε1(ω) = A

[
f (χ0) +

1
2

[E0/ (E0 + Δ0)]
1.5 f (χOS )

]
+ B

(2)

n (ω) = ε1(ω)0.5 (3)

where A and B are the constant terms arising mainly from the
energy bandgaps of the material, E0 is direct bandgap energy,
Δ0 is spin obit splitting energy, ω is circular frequency and

f (χ0) = χ−2
0

[
2 − (1 + χ0)

0.5 − (1 − χ0)
0.5 H (1 − χ0)

]

(4)

f (χOS ) = χ−2
OS

[
2 − (1 + χOS )0.5

− (1 − χOS )0.5 H (1 − χOS )
]

(5)

χ0 = �ω/E0 (6)

χOS = �ω/ (E0 + Δ0) (7)

and

H (y) =

{
1 for y ≥ 0

0 for y < 0
(8)

where h-bar is Planck constant divided by 2π.
For the refractive index determination of AlGaAsSb ma-

terials lattice matched with GaSb, an improved single-
effective-oscillator model [40] is used and the equations are
expressed as

n2 − 1 =
Ed

E0
+ E2 Ed

E3
0

+
η

π
E4 ln

(
E2

f − E2

E2
Γ − E2

)

(9)

E2
f = 2E2

0 − E2
Γ (10)

η = πEd/2E3
0 (E2

0 − E2
Γ) (11)

where E is the photon energy hν, E0 and Ed are two single-
effective-oscillator parameters and EΓ is the direct bandgap
energy.

In order to find proper widths of the Si waveguide and III–V
structure, a series of optical mode distribution simulations using
both Al2O3 and SiO2 as bonding materials have been carried
out. The details of the simulation procedure are as follows: the
width of the Si waveguide was kept constant at 2 μm and the
width of the III–V structure was varied from significantly less
than 2 μm (0.3 μm) to 4 μm. The thickness of the bonding layer
is 50 nm. As can be seen from the results shown in Fig. 6 (two
curves with circular symbols), there is almost no difference in
light power in the Si waveguide by using either Al2O3 or SiO2
bonding layer. And when the III–V structure is very narrow,
like less than 0.4 μm, almost all the light is coupled into the
Si waveguide. Then there is a dramatic change when the width
of the III–V structure exceeds 0.4 μm, which is the portion of
light in the Si waveguide decreases rapidly due to the better
confinement of the III–V structure. Then when the width of
the III–V structure increases further to more than 0.8 μm, light
distribution changes only marginally.

This is the basic idea of taper coupling and it is widely used for
evanescent coupling in III–V on SOI hybrid devices [23]–[26].
Due to the width change of the III–V structure along the taper,
light also redistributes. Fig. 7 shows the top view of the device
together with optical mode distributions at different positions
of the Z axis. At the main amplification region (a) where both
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Fig. 6. Normalized power in the Si waveguide when either the III-V structure
or Si waveguide width changes.

Fig. 7. Optical mode distributions at different positions of the Z axis.

width and refractive index of the III–V structure are larger than
the Si waveguide, almost all the optical mode distributes in the
III–V structure. In the taper coupling region (b), (c), optical
mode starts to emerge in the Si waveguide and the narrower the
III–V structure is, the more portions of optical mode stay in the
Si waveguide. When there is no III–V structure above the Si
waveguide (d), the optical mode stays in the Si waveguide only.
These results confirm the relationship between optical mode
distributions and structure widths shown in Fig. 6.

In addition, we can also tune the width of the Si waveguide
while keeping the width of the III–V structure at a modest
value, like 0.5 μm. The simulation results have been shown in
Fig. 6 (the discrete points) together with the corresponding Si
waveguide widths. So far, the optical mode distributions can be
tuned freely by adjusting the structure widths.

Besides the variation of widths, three bonding layer thick-
nesses (25 nm, 50 nm and 100 nm) are also used to study
their influences on the coupling efficiency. As can be seen from
Fig. 6, for the three thicknesses, the difference in light power in
the Si waveguide by using either Al2O3 or SiO2 bonding layer

Fig. 8. Thermal resistance for downward transfer of heat flux.

is trivial, which indicates no compromise in optical coupling ef-
ficiency when Al2O3 is used to replace the conventional SiO2 as
bonding material. The bonding layer thickness does have some
influence on the coupling efficiency. Overall, less light remains
in the Si waveguide for thicker bonding layers, which could be
beneficial for light amplification.

V. THERMAL RESISTANCE

Since the SOI wafer is wide enough compared to the III–V
lasers, the total thermal resistance for downward transfer of heat
flux can be seen as the sum of resistance of each layer from the
active region of the GaSb laser where heat is generated to the Si
waveguide, and it can be calculated by a constant heat spreading
model [43]. The mode has been widely used in hybrid devices
and other electronic and photonic devices such as HBTs and
lasers [44], [45].

The III–V structure was calculated as a rectangle in the X-Z
plane with length L and width W. The length L was kept constant
at 1000 μm while the width W was varied from 0.3 μm to 2 μm
during the calculations. For bonding layer thickness, we also
chose the three values used in coupling efficiency simulations
to test whether it is a critical factor for total thermal resistance.
The expression of thermal resistance is

Rθ =
∫ Di

0

θ

(L + 2x) (W + 2x)
dx (12)

where Di is the thickness of the calculated layers, θ is the
thermal conductivity.

As can be seen from the results in Fig. 8, there are significant
reductions in thermal resistance by using Al2O3 as the bonding
material no matter how thick the bonding layer is. And bonding
thickness barely affects the total thermal resistance when Al2O3
is used due to its low thermal resistivity. In the main light ampli-
fication region where the width of the III–V structure W equals
4 μm, the thermal resistance is reduced around 70% when the
thickness of the bonding layer is 50 nm.
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VI. CONCLUSION

In this work, a tapered waveguide GaSb QW laser, bonded
onto SOI circuits with an Al2O3 bonding layer is designed and
analyzed. The standalone GaSb QW lasers grown by MBE to be
integrated on SOI has demonstrated CW operation with emis-
sion wavelength of 2019 nm at room temperature. It shows a
low threshold current of 37 mA. The BPM simulations show
that, with our design, the light in the GaSb QW active region
can be successfully coupled into the underlying SOI waveguide.
The thermal property of the GaSb-on-Si laser has been calcu-
lated using a constant heat spreading model, and results show
that the devices using Al2O3 bonding layer has a much lower
(∼70%) thermal resistance as compared to the one using SiO2
bonding layer. Our results suggest that Al2O3 bonding layer
could be a promising candidate for GaSb lasers integrated on
SOI circuits, where thermal dissipation could be critical. The
above-mentioned method is also useful for our future SOI inte-
grated GaSb distributed feedback lasers, with laterally coupled
Bragg grating, as well as GaSb mode-locked lasers.
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lasers based on adiabatic mode transformers,” Opt. Exp., vol. 19, no. 11,
pp. 10317–10325, May. 2011.

[27] W. M. Haynes, CRC Handbook of Chemistry and Physics. 95th ed. New
York, NY, USA: CRC Press, 2014.

[28] G. Roelkens et al., “III-V/silicon photonics for on-chip and intra-chip
optical interconnects,” Laser Photon. Rev., vol. 4, no. 6, pp. 751–779,
Nov. 2010.

[29] J. Fan et al., “Thermal characteristics of InP-Al2 O3 /Si low tempera-
ture heterogeneous direct bonding for photonic device integration,” ECS
J. Solid State Sci. Technol., vol. 2, no. 9, pp. N169–N174, Jun. 2013.

[30] P. Anantha and C. Tan, “Homogeneous chip to wafer bonding of InP-
Al2 O3 -Si using UV/O3 activation,” ECS J. Solid State Sci. Technol.,
vol. 3, no. 4, pp. P43–P47, Jan. 2014.

[31] G. Becker, C. Lee, and Z. Lin, “Thermal conductivity in advanced chips:
Emerging generation of thermal greases offers advantages,” Adv. Packag.,
vol. 14, no. 7, pp. 14–17, Feb. 2005.

[32] BeamPROP. (2012). [Online]. Available: http://optics.synopsys.com/
[33] Y. Zhang et al., “MBE growth and fabrication of 2.Xμm In-

GaAsSb/AlGaAsSb laser,” Proc. SPIE, vol. 9267, pp. 926710-1–926710-
7, 2014.

[34] S. L. Chuang, Physics of Optoelectronic Devices. New York, NY, USA:
Wiley, 1995.

[35] S. T. Ng et al., “Investigation of the optical properties of In-
GaAsN/GaAs/GaAsP multiple-quantum-well laser with 8-band and 10-
band k dot p model,” J. Appl. Phys., vol. 96, no. 8, pp. 4663–4665,
Oct. 2004.

[36] C. Liu, H. Wang, Q. Meng, B. Gao, and K. S. Ang, “Modal gain and pho-
toluminescence investigation of two-state lasing in GaAs-Based 1.3 μm
InAs/InGaAs quantum dot lasers,” Appl. Phys. Exp., vol. 6, no. 10,
pp. 102702–1–102702-4, Oct. 2013.

[37] C. Liu et al., “Fabrication of high-performance InGaAsN ridge wave-
guide lasers with pulsed anodic oxidation,” IEEE Photonics. Technol. Lett.,
vol. 16, no. 11, pp. 2409–2411, Nov. 2004.

[38] B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double heterostructure
injection lasers,” J. Appl. Phys., vol. 46, no. 3, pp. 1299–1306, Mar. 1975.



1500507 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 22, NO. 6, NOVEMBER/DECEMBER 2016

[39] S. Adachi, “Band gaps and refractive indices of AlGaAsSb, GaInAsSb,
and InPAsSb: Key properties for a variety of the 2–4 μm optoelectronic
device applications,” J. Appl. Phys., vol. 61, no. 10, pp. 4869–4876, May
1987.

[40] C. Alibert, M. Skouri, A. Joullie, M. Benouna, and S. Sadiq, “Refractive
indices of AlSb and GaSb-lattice-matched Alx Ga1−x Asy Sb1−y in the
transparent wavelength region,” J. Appl. Phys., vol. 69, no. 5, pp. 3208–
3211, Mar. 1991.

[41] L. Gao, F. Lemarchand, and M. Lequime, “Exploitation of multiple in-
cidences spectrometric measurements for thin film reverse engineering,”
Opt. Exp., vol. 20, no. 14, pp. 15734–15751, Jul. 2012.

[42] I. Malitson and M. Dodge, “Refractive index and birefringence of synthetic
sapphire,” J. Opt. Soc. Amer., vol. 62, no. 11, 1972, Art. no. 1405.

[43] J. J. Licari and L. R. Enlow, Hybrid Microcircuit Technology Handbook,
2nd ed. Park Ridge, NJ, USA: Noyes, 1998.

[44] H. Yang, H. Wang, K. Radhakrishnan, and C. L. Tan, “Thermal resistance
of metamorphic InP-based HBTs on GaAs substrates using a linearly
graded Inx Ga1−x P metamorphic buffer,” IEEE Trans. Electron. Devices,
vol. 51, no. 8, pp. 1221–1227, Aug. 2004.

[45] H. Tan, K. K. Kamath, Z. Mi, P. Bhattacharya, and D. Klotzkin, “Analysis
of the reduced thermal conductivity in InGaAs/GaAs quantum dot lasers
from chirp characteristics,” Appl. Phys. Lett., vol. 89, no. 12, pp. 121116-
1–121116-3, Sep. 2006.

Xiang Li received the B.Sc. and M.Sc. degrees from
the Harbin Institute of Technology, Harbin, China, in
2011 and 2013, respectively. He is currently working
toward the Ph.D. degree at the School of Electrical
and Electronic Engineering, Nanyang Technological
University, Singapore. He joined Nanyang Techno-
logical University in 2015. He is currently working
on research of semiconductor lasers.

Hong Wang received the B.Eng. degree from Zhe-
jiang University, Hangzhou, China, in 1988, and the
M.Eng. and Ph.D. degrees from the Nanyang Tech-
nological University, Singapore, in 1998 and 2001,
respectively. From 1988 to 1994, he was with the
Institute of Semiconductors, Chinese Academy of
Sciences, Beijing, China. From 1994 to 1995, he
was a Royal Research Fellow with British Telecom-
munications Laboratories, Ipswich, U.K., where he
was involved with the development of InP-based
heterostructure field-effect transistors using E-beam

lithography. Since 1996, he has been with Nanyang Technological Univer-
sity, where he is currently an Associate Professor, and the Director of Nanyang
NanoFabrication Centre. He has authored or coauthored more than 230 technical
papers. He received the 2007 Defence Technology Prize, Ministry of Defence,
Singapore. He served as the Session Chair, and a Subcommittee Member for
2009 and 2010 IEDM.

Zhongliang Qiao received the Ph.D. degree in engi-
neering optics from the National Key Laboratory on
High Power Semiconductor Lasers, Changchun Uni-
versity of Science and Technology, Jilin, China, in
2011. He was a Research Fellow in Singapore project
(2011–2013) and a Postdoctoral Research Fellow
(2015–present) in the School of Electrical and Elec-
tronic Engineering, Nanyang Technological Univer-
sity, Singapore. His current research interests include
growth, design, simulation, fabrication, characteriza-
tion, and analysis of high performance semiconductor

light sources, monolithically integrated multi-wavelength semiconductor laser.
He has authored and coauthored more than 30 technical papers in these fields
so far.

Yu Zhang received the Ph.D. degree in microelec-
tronics and solid electronics from the Institute of
Semiconductors, Chinese Academy of Sciences, Bei-
jing, China. He became a Research Associate in 2015.
His research interests include MBE growth and fab-
rication of antimonide mid-infrared high power laser,
narrow-line width lasers and short-pulse lasers.

Zhichuan Niu received the Doctorate degree in
physics from Institute of Semiconductors, Chinese
Academy of Sciences, Beijing, China, in 1996. He is
currently a Professor of the State Key Laboratory of
Superlattices and Microstructures, Institute of Semi-
conductors, Chinese Academy of Sciences, Beijing.
He is also a Collaboration Professor of the Syner-
getic Innovation Center of Quantum Information and
Quantum Physics, University of Science and Tech-
nology of China, Hefei, China. From 1996 to 1998,
he was a Postdoctoral Fellow in Paul Drude Institute

for Solid State Electronics, Berlin, Germany. From later 1998 to 1999, he worked
as a Research Assistant in the University of Southern California, Los Angeles,
CA, USA. He was Awarded by Hundred Talent Program of Chinese Academy
of Sciences in 1999 and the Winner of the National Outstanding Youth Fund in
2006. His current works focused on MBE growth of InAs quantum dot single
photon source devices, InGaAsSb long wavelength quantum well lasers, and
InAs/GaSb superlattice detectors.

Cunzhu Tong (M’09) received the B.S. and M.S.
degrees in physics from Chongqing University,
Chongqing, China, the Ph.D. degree from the Institute
of Semiconductors, Chinese Academy of Sciences
(CAS), Beijing, China. He was a Research Fellow
with Nanyang Technological University, Singapore
from 2005 to 2009. After that, he joined the Edward
S. Rogers Sr. Department of Electrical and Com-
puter Engineering, University of Toronto, Toronto,
ON, Canada, as a Postdoctoral Researcher. He be-
came the Professor of Hundred Talents Program in

CAS and was with the Changchun Institute of Optics, Fine Mechanics and
Physics, CAS, Changchun, China, in November 2010. He is the Standing Com-
mittee Member of Chinese Society of Astronautics, and received several awards
including the Outstanding Young Scientist Award, Person of the Year 2012 se-
lected by Scientific Chinese, Excellent Award of Hundred Talents Program in
CAS, etc. He has authored and coauthored more than 80 refereed journal papers.
His research on the low divergence diode lasers was selected as the important
achievement of China optics in 2015. His current research interests include pho-
tonic crystal lasers, disk lasers, beam shaping and combining of semiconductor
lasers.

Chongyang Liu (M’07) received the Ph.D. degree
in semiconductor photonics from Nanyang Techno-
logical University (NTU), Singapore, in 2004. He is
currently the Principal Investigator/Senior Research
Scientist at Temasek Laboratories, NTU. He was
a Research Associate in Singapore-MIT Alliance
project (2004–2005) and a Postdoctoral Research
Fellow (2005–2007) in the School of Electrical and
Electronic Engineering, NTU, Singapore. From 2007
to 2009, he was a Senior Research Fellow with the
A∗STAR “VIP” program on Nanophotonics and Na-

noelectronic Integration at Data Storage Institute, Singapore. From October
2009 to January 2012, he received Humboldt Fellowship (for experienced
researcher) from Alexander von Humboldt Foundation for doing research in
Technical University Berlin, Germany. His research interests include design,
simulation, fabrication, characterization, and analysis of low-dimensional semi-
conductor light sources, monolithically integrated high-speed photonic devices
as well as micro/nanophotonic and electronic photonic integration. He has au-
thored and coauthored more than 80 technical papers in these fields so far.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


