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A B S T R A C T

A micro-vibration simulator with multiple degrees of freedom is required for performance
testing of sensitive instruments in a micro-vibration environment on-board spacecraft before
launch. In this study, a novel 6-DOF micro-vibration simulator (6-MVS) is proposed, which
can reproduce a micro-vibration environment with a wide bandwidth of disturbance frequen-
cies. The complete inverse dynamic equations of the proposed 6-MVS are derived using the
Kane method, which is very suitable for processing by computer. The validity of the derived
dynamic equations is then verified by co-simulation. The structural performance of the 6-
MVS is investigated using the finite element method. Based on this dynamic model, a robust
proportional-integral (PI) control scheme is then performed. The control performance of the
proposed controller is evaluated by co-simulation. The analysis and simulation results show
that the proposed robust PI controller has excellent robustness and stability and the 6-MVS
can exactly produce the required micro-vibration spectrum.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

There is an increasing requirement for precision pointing and extreme stability for current and forthcoming optical remote
sensors, which have a larger aperture and a higher resolution imaging. The James Webb space telescope [1], terrestrial
planet finder [2] and Space Interferometry Mission [3] are such examples where microarcsecond pointing and nanometer lev-
els of motion stability are required. However, micro-vibrations generated by on-board motion equipment in spacecraft (for
example, reaction/momentum wheel assemblies (R/MWA), cryo-coolers, thrusters, solar array drive mechanisms, etc.) can
greatly degrade the performance of optical payloads with high pointing accuracy and stability [4].

Since micro-vibrations have characteristics of low amplitude, a wide frequency range, and multiple directions, current shake
tables are unable to reproduce the required micro-vibration environment. Hostens et al. [5, 6] have proposed a six degree-of-
freedom (DOF) vibration simulator, which can be used to generate high-amplitude and narrow-band vibrations. Park et al. [7]
have developed a multiple-degree-of-freedom micro-vibration emulator to test jitter in spacecrafts, which can generate the
disturbance spectrum of flight RWAs. However, this device has some coupling effects causing differences between the target
input and the measured data responses along different axes. For space payloads, ground experiments are essential before launch,
including image quality testing of the optical system in the micro-vibration environment. However, no suitable micro-vibration
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simulator exists that is qualified for this work. The usual solution is to adopt the actual disturbance resources or use dummy
resources in the ground experiments. The R/MWA is generally regarded as one of the largest disturbance sources onboard a
spacecraft [8]. Therefore, a real R/MWA is usually used for the micro-vibration test. However, it is uncommon to use all the flight
R/MWAs to conduct the ground validating experiments because of scheduling issues or product assurance activities. Therefore,
development of a micro-vibration shaking platform, which can replace the real flight R/MWAs, is considered to be an important
adjunct to the development processes for space missions.

Parallel manipulators such as the Gough-Stewart platform (GSP) have been recently employed in various applications,
because they have the advantages of high maneuverability, precision, high stiffness, and a large payload driven capability com-
pared with serial manipulators. Li and Xu [9] have presented a three-prismatic-revolute-cylindrical parallel kinematic machine,
and have investigated its dynamic modeling and robust control. A six degree-of-freedom parallel kinematic machine has been
developed by Dong et al. [10], which is used for the motion simulation of hazardous chemical transportation. The Gough-Stewart
platform, also known as the hexapod, is one of the most widely used parallel manipulators [11–15] and its kinematics, dynamics
and control problems have been studied by many researchers. Oftadeh et al. [16] have presented explicit dynamics formulation
for the GSP and utilized the Lagrange method to verify the resulting dynamics equations. Dasgupta and Mruthyunjaya [17] have
derived an inverse dynamic formulation using the Newton-Euler approach for the GSP, with frictional forces occurring in the
joints; the mass of inertia of the pods was also taken into consideration in their study. Staicu [18, 19] has developed a recursive
matrix approach in kinematics and dynamics modeling of parallel robots, which can reduce the number of equations and com-
putation operations significantly. Jiang et al. [20–24] have investigated an optimal design of the GSP with dynamic isotropy, as
well as the influence of passive joint damping. Behrouz et al. [25] have developed a full parameter model of the GSP damped
vibrations, which includes parametric expressions of the damped eigenfrequencies and the corresponding eigenvectors.

The control strategies for the parallel manipulator can be divided into two categories: control in the joint space and control
in the task space [26]. The former control scheme can be readily employed in industry, but does not always guarantee high
performance for parallel manipulators [27]. Kim et al. [28] have proposed a robust nonlinear control scheme in the joint space
for an electro-hydraulic parallel manipulator based on the Lyapunov redesign method, but coupling is not taken into account,
which should not be ignored for high performance tracking controllers. Wu et al. [29] presented an improved robust nonlinear
controller, which is composed of the linear control part, nonlinear part and excitation compliment part. This proposed controller
has the advantages of fine adjustability, low power consumption and a wide frequency range of isolation in all directions. But
its pivotal objective is to attenuate the micro-vibrations. Superior control performance can potentially be provided using the
control scheme in the task space. Han et al. have published a series of reports on robust controls for 6-DOF parallel manipulators,
which include a computed force and velocity control, proportional plus derivative control and decoupling control schemes,
etc. [30–34]. Kim et al. [35] have proposed a robust nonlinear task space control with a friction estimator for a dynamoelectric
GSP. However, most studies have focused mainly on displacement or velocity trajectory tracking control, while acceleration
trajectory tracking control of a parallel manipulator with multiple degrees of freedom is still rare. Although some acceleration
trajectory control strategies have by been reported in Refs. [36, 37], they are only suitable for shake tables with a single degree
of freedom.

In this study, a 6-DOF micro-vibration simulator (6-MVS) has been developed, which can reproduce micro-vibrations with
different amplitudes and frequencies. While a conventional GSP has stretched rods, the structural configuration of the proposed
6-MVS has been improved and has rods of fixed length. Since the mass of the rods in a conventional GSP is relatively heavy,
a GSP may have low and closely-spaced local natural frequencies [38]. As a result, the natural frequencies of the overall sys-
tem are reduced. The improved configuration simulator that is presented in this study can solve this problem, and its structural
characteristics have been analyzed using the finite element method (FEM). Moreover, flexure joints are adopted to avoid non-
linear effects due to friction, backlash, and micro-impacts which are produced by traditional joints with bearings. The inverse
dynamics models, which consider the effect of the flexure joints, were established using the Kane method. A co-simulation was

Fig. 1. Virtual prototype of the 6-DOF micro-vibration simulator.
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Fig. 2. 3-D model of the leg: (a) isometric view and (b) cross-sectional view.

then adopted to verify the validity of the dynamics models, which combined ADAMS with MATLAB/Simulink. Finally, a robust
proportional-integral (PI) controller based on the inverse dynamics model was designed. This control strategy was designed
for the acceleration control of the parallel manipulator, which considered the effects of uncertainties such as modeling errors,
unknown loads, and parameter measurements. Its performance was analyzed in theory and simulation, including stability,
precision and robustness of the proposed controller.

2. Mechanical structure

A virtual prototype of the 6-DOF micro-vibration simulator is shown in Fig. 1. The 6-MVS consists of an upper platform, a
base platform, three fixed mounts and six identical legs. The detailed structure of the leg is depicted in Fig. 2, which includes an
actuator, a rod and two flexure joints. The actuator is attached to a fixed mounting by bolts. A permanent magnet is fixed to the
cover of the actuator, and a voice coil is connected to the cover by two membranes. The two membranes perform the function of
a spring, for axial compliance only. One flexure joint is used to connect the voice coil motor to the rod, which is made of carbon
fiber, and the other joint is used to connect the actuator to the upper platform. This design can reduce the sprung mass attached
to the membrane and increase the bending frequency of the single actuator [38, 39].

Fig. 3. A schematic view of the 6-DOF micro-vibration simulator: (a) isometric view and (b) vertical view.
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3. Dynamic model

Nomenclature

B
PR rotation matrix of transformation from the body frame {P} to the base frame {B}
Jpi,q Jacobian matrix relating the general velocity to the velocity of the upper flexure joint
Jd,q Jacobian matrix relating the general velocity to the sliding velocity of the actuator
E3 unit 3 × 3 matrix
a,b,c X-Y-Z fixed angles
Qsi

1 , Qsi
2 , Qpi

1 , Qpi
2 , Qpi

3 Z-Y-X Euler angles of successive rotation
ŝi

3, d̂i
3 unit vectors along the ith rod and actuator, respectively

si, di lengths of the ith rod and actuator, respectively
Pqc position vector of the centroid of upper platform under the body frame {P}
t translational vector (position of upper platform)
y angular velocity of upper platform
ysi, 4si angular velocity and acceleration of the ith rod, respectively
ypi angular velocity of the ith rod with respect to the upper platform
di, ḋi, d̈i length, sliding velocity and acceleration of the ith actuator, respectively
ac

di, ac
si accelerations of the ith actuator and rod, respectively

mP, msi, mdi masses of the upper platform, rod and actuator, respectively
PIc inertia matrix of upper platform under the body frame {P}
BIsi inertia matrix of the ith rod under the body frame {B}
ki

1, ki
2 torsional stiffness coefficients of the ith lower flexure joint

k′i
1, k′i

2, k′i
3 torsional stiffness coefficients of the ith upper flexure joint

FD, MD external force and moment
Mi

1, Mi
2 elastic moments of the ith lower flexure and upper flexure, respectively

Fdi exciting force of the ith actuator

The scheme of the 6-DOF vibration simulator is shown in Fig. 3. The {P} coordinate system refers to the body frame fixed
to the geometric center of the upper flexure joints, while the {B} coordinate system refers to the base frame attached to the
geometric center of the fixed mounts. The linear motions are denoted as surge (x), sway (y), and heave (z) along the XB − YB − ZB

axes of the base frame. The angles of the upper platform around the XB, YB, ZB axes are the angular motions roll (c), pitch (b), and
yaw (a). The upper flexure joint points on the upper platform are given by Ppi in frame {P} and the fixed mounts on the base
platform by Bbi in frame {B}, where the pre-superscripts B and P denote the base frame and the body frame, respectively. RP and
RB describe the radii of the upper and base platforms. The angle between P6 and P1 is denoted by v. As illustrated in Fig. 3 (b), the
angle between B6 and B1 is denoted by h. Frame d̂i is the reference frame which is attached to the base platform at Bi(i = 1 . . . 6)
with d̂i

3 along the ith actuator. The hat (^) above the variables indicates that it is a unit of length. The ŝi coordinate system is
located on the ith rod at the center of mass of the lower flexure joint with ŝi

3 along the ith rod. The ŝ∗i coordinate system is fixed
to the upper platform and its original point coincides with Pi. ŝ∗i

3 denotes the installation direction of the ith upper flexure joint.

3.1. Generalized speeds

As shown in Fig. 4, the ith flexure joint Pi with respect to the base frame {B} can be described by:

lpi = t +B
P R • Ppi (1)

where t is the position vector of the body frame, t = [x, y, z]T and the rotation matrix of the transformation from the body frame
{P} to the base frame {B} is B

PR, which adopts X-Y-Z fixed angles. The rotation matrix is given by:

B
PR =

⎡
⎢⎢⎣

cosa cosb cosa sinb sinc − sina cosc cosa sinb cosc + sina sinc

sina cosb sina sinb sinc + cosa cosc sina sinb cosc − cosa sinc

− sinb cosb sinc cosb cosc

⎤
⎥⎥⎦ (2)

Taking the derivative of Eq. (1) with respect to time, the velocity mapping function can be obtained as:

vpi = l̇pi = ṫ + y ×
(

B
PR • Ppi

)
=

[
E3, B

PR
(

Pp̃i
)T B

PRT
]

q̇ (3)
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Fig. 4. Kinematic diagram of the ith leg.

where vpi is the velocity of the upper flexure joint Pi, ṫ and y are the translational velocity and angular velocity of the upper
platform, respectively, ṫ = [ẋ, ẏ, ż]T , and y = [ċ, ḃ, ȧ]T , E3 is a unit 3 × 3 matrix, Pp̃i is the skew symmetry matrix of Ppi, q̇ is the
general velocity of the upper platform, and Eq. (3) can be rewritten as:

vpi = Jpi,q • q̇ (4)

where Jpi,q denotes a Jacobian matrix relating the general velocity to the velocity of the upper flexure joint, Jpi,q =[
E3, B

PR
(

Pp̃i
)T B

PRT
]

.

Similarly, the acceleration of the upper flexure joint Pi can be obtained as:

api = ẗ + ẏ × Bpi + y ×
(
y × Bpi

)
(5)

where Bpi =B
P R • Ppi.

The velocity and acceleration of the centroid of the upper platform are given by:

vc = ṫ + y ×
(

B
PR • Pqc

)
(6)

ac = ẗ +B
P R • Pq̃T

c
• B

PRTẏ + ỹ2
(

B
PR • Pqc

)
(7)

where Pqc denotes the position vector of the centroid of the upper platform under the body frame {P}, and Pq̃c and ỹ are the
skew symmetric matrices of Pqc and y, respectively.

li
BP = t + Bpi − bi (8)

The vector of the ith rod in the frame {B} can be described by:

siŝi
3 = li

BP − did̂i
3 (9)

where si and di denote the length of the ith rod and actuator, respectively.
Dot-multiplying both sides of Eq. (9) by siŝi

3 gives:

s2
i =

(
li
BP − did̂i

3

)T
•
(

li
BP − did̂i

3

)
= liBP

2 − 2did̂iT
3 li

BP + d2
i (10)
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Simplifying Eq. (10) yields:

d2
i − 2did̂iT

3 li
BP + liBP

2 − s2
i = 0 (11)

Solving Eq. (11), the length di of the rod can be obtained as:

di = d̂iT
3 li

BP −
√(

d̂iT
3 li

BP

)2 − liBP
2 + s2

i (12)

Taking the derivative of both sides of Eq. (10) with respect to time, and simplifying, the sliding velocity of the actuator can
be described by:

ḋi =
(

li
BP − did̂i

3

)T (
Jpi,qq̇

)
/

[(
li
BP − did̂i

3

)T
d̂i

3

]
(13)

To obtain the sliding acceleration of the actuator, the time derivative of Eq. (13) can be taken to yield:

d̈i =
(

Jpi,qq̇ − ḋid̂i
3

)T (
Jpi,qq̇ − ḋid̂i

3

)
+

(
li
BP − did̂i

3

)T
api/

[(
li
BP − did̂i

3

)T
d̂i

3

]
(14)

Based on their physical meaning, the velocities of the upper flexure joint Pi can also be described in terms of the velocity of
the centroid of the actuator and the angular velocity of the rod under frame {B} as:

vpi = ḋid̂i
3 + ysi ×

(
siŝi

3

)
(15)

Taking the cross-product of the above equation with ŝi
3 yields:

ŝi
3 × vpi = ŝi

3 ×
(

ḋid̂i
3

)
+ ŝi

3 ×
[
ysi ×

(
siŝi

3

)]
(16)

Considering the assumption that rotation is not allowed about the rod axis (i.e. yT
si

• ŝi
3 = 0) and simplifying Eq. (16), the

angular velocity of the ith rod can be obtained by:

ysi =
ŝi

3 × vpi − ḋiŝi
3 × d̂i

3

si
(17)

The angular velocity of the ith rod with respect to the upper platform can be described as:

ypi = y − ysi (18)

Taking the derivative of both sides of Eq. (17) with respect to time, the angular acceleration of the rod can be described by:

esi =
ysi × ŝi

3 × vpi + ŝi
3 × api −

[
d̈iŝi

3 × d̂i
3 + ḋi

(
ysi × ŝi

3

)
× d̂i

3

]
si

(19)

The velocity of the centroid of the ith actuator and rod can be written as:

vc,di = l̇c,di = ḋid̂i
3 (20)

vc,si = ḋid̂i
3 +

1
2

siysi × ŝi
3 (21)

According to Eqs. (3) and (15), the following expression can be obtained:

siysi × ŝi
3 = ṫ + y × Bpi − ḋid̂i

3 (22)

Substituting Eq. (22) into Eq. (21) yields:

vc,si = ḋid̂i
3 +

1
2

(
ṫ + y × Bpi − ḋid̂i

3

)
=

1
2

(
ḋid̂i

3 + ṫ + y × Bpi

)
=

1
2

(
ḋid̂i

3 + Jpi,qq̇
)

(23)
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Pre-multiplying both sides of Eq. (22) with ŝi
3 yields:

ḋi = ŝiT
3 ṫ +

[(
B
PR • Ppi

)
× ŝi

3

]T
y = Jdi,q • q̇ (24)

Ḋ = Jd,q • q̇ (25)

where Ḋ =
[
ḋ1, ḋ2, ḋ3, ḋ4, ḋ5, ḋ6

]T
and Jd,q denotes the Jacobian matrix relating the general velocity to the sliding velocity of the

actuator, which is given by:

Jd,q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŝ1T
3 /

(
ŝ1T

3 d̂1
3

)
,

[(B
PR • Pp1

) × ŝ1
3

]T
/
(

ŝ1T
3 d̂1

3

)
ŝ2T

3 /
(

ŝ2T
3 d̂2

3

)
,

[(B
PR • Pp2

) × ŝ2
3

]T
/
(

ŝ2T
3 d̂2

3

)
ŝ3T

3 /
(

ŝ3T
3 d̂3

3

)
,

[(B
PR • Pp3

) × ŝ3
3

]T
/
(

ŝ3T
3 d̂3

3

)
ŝ4T

3 /
(

ŝ4T
3 d̂4

3

)
,

[(B
PR • Pp4

) × ŝ4
3

]T
/
(

ŝ4T
3 d̂4

3

)
ŝ5T

3 /
(

ŝ5T
3 d̂5

3

)
,

[(B
PR • Pp5

) × ŝ5
3

]T
/
(

ŝ5T
3 d̂5

3

)
ŝ6T

3 /
(

ŝ6T
3 d̂6

3

)
,

[(B
PR • Pp6

) × ŝ6
3

]T
/
(

ŝ6T
3 d̂6

3

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)

Taking the derivative of both sides of Eq. (20) with respect to time, the acceleration of the actuator can be described by:

ac
di = d̈id̂i

3 (27)

The same procedure can be easily adapted to obtain the acceleration of the centroid of the rod, which is given by:

ac
si =

1
2

[
d̈id̂i

3 + ẗ + ẏ × Bpi + y ×
(
y × Bpi

)]
=

1
2

(
d̈id̂i

3 + api

)
(28)

3.2. Partial velocity and partial angular velocity

To simplify the derivation, the base coordinate system can be represented by three unit vectors î = [1, 0, 0]T , ĵ = [0, 1, 0]T

and k̂ = [0, 0, 1]T . The velocity of the center of mass and the angular velocity of the upper platform can also be described by:

vc = q̇1 î + q̇2 ĵ + q̇3k̂ + q̇4 î ×
(

B
PR • Pqc

)
+ q̇5 ĵ ×

(
B
PR • Pqc

)
+ q̇6k̂ ×

(
B
PR • APqc

)
(29)

yc = q̇4 î + q̇5 ĵ + q̇6k̂ (30)

where q̇j( j = 1, . . . , 6) is the general velocity of the upper platform.
Therefore, the partial velocities and partial angular velocity of the upper platform can be obtained by inspection of the

relevant velocity vectors:

vc,q1 = î, vc,q2 = ĵ, vc,q3 = k̂

vc,q4 = î ×
(

B
PR • Pqc

)
, vc,q5 = ĵ ×

(
B
PR • Pqc

)
, vc,q6 = k̂ ×

(
B
PR • Pqc

)
(31)

yc,q3 = yc,q2 = yc,q1 = 0

yc,q4 = î, yc,q5 = ĵ, yc,q6 = k̂ (32)

Similarly, the partial velocities and partial angular velocities of the ith rod can also be obtained:

vc
si,q1 =

1
2

(
Ji,1
d,q

• d̂i
3 + î

)
, vc

si,q2 =
1
2

(
Ji,2
d,q

• d̂i
3 + ĵ

)
, vc

si,q3 =
1
2

(
Ji,3
d,q

• d̂i
3 + k̂

)
vc

si,q4 =
1
2

(
Ji,4
d,q

• d̂i
3 + î × Bpi

)
, vc

si,q5 =
1
2

(
Ji,5
d,q

• d̂i
3 + ĵ × Bpi

)
, vc

si,q6 =
1
2

(
Ji,6
d,q

• d̂i
3 + k̂ × Bpi

)
(33)
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yc
si,q1 = ŝi

3 ×
(

î − Ji,1
d,q

• d̂i
3

)
/si, yc

si,q2 = ŝi
3 ×

(
ĵ − Ji,2

d,q
• d̂i

3

)
/si, yc

si,q3 = ŝi
3 ×

(
k̂ − Ji,3

d,q
• d̂i

3

)
/si

yc
si,q4 = ŝi

3 ×
(

î × Bpi − Ji,4
d,q

• d̂i
3

)
/si, yc

si,q5 = ŝi
3 ×

(
ĵ × Bpi − Ji,5

d,q
• d̂i

3

)
/si

yc
si,q6 = ŝi

3 ×
(

k̂ × Bpi − Ji,6
d,q

• d̂i
3

)
/si (34)

where Ji,j
d,q denotes the element on the ith row and jth column of Jacobian matrix Jd,q.

The partial velocities of the ith actuator are given by:

vc
di,q1 = Ji,1

d,q
• d̂i

3, vc
di,q2 = Ji,2

d,q
• d̂i

3, vc
di,q3 = Ji,3

d,q
• d̂i

3

vc
di,q4 = Ji,4

d,q
• d̂i

3, vc
di,q5 = Ji,5

d,q
• d̂i

3, vc
di,q6 = Ji,6

d,q
• d̂i

3 (35)

The partial angular velocities of the ith rod relating to the upper platform can be described by:

ypi,qj = yc,qj − yc
si,qj (36)

3.3. Rotational angle of the flexure joint

The lower flexure joint can be considered to be equivalent to a Hooke joint with torsional stiffness along its rotational axes,
and the upper flexure joint can be considered to be equivalent to a 3-DOF universal joint with torsional stiffness along its
rotational axes. Assuming that each rotation of the flexure joint occurs about an axis at a location dependent upon the preceding
rotations, the rotation angles of the ith upper flexure joints about the d̂i

1 and the displaced two-axis are denoted by Qsi
1 and Qsi

2 ,
respectively.

The vector li
BP can also be described by:

li
BP = didi

3 +B
d̂i

R • d̂i
ŝi R • ŝipi (37)

where B
d̂i

R is the rotation matrix of the transformation from the reference frame d̂i to the base frame {B}, d̂i
ŝi R is the rotation matrix

of the translation from the reference frame ŝi to the reference frame d̂i, which adopts Z-Y-X Euler angles, ŝipi is the position
vector of point Pi under frame ŝipi.

Using Eq. (37), the following expression can be obtained:

d̂i
ŝi

R • ŝi pi =B
d̂i

RT
(

li
BP − didi

3

)
(38)

Let B
d̂i

RT
(

li
BP − didi

3

)
= A, then Eq. (38) can be rewritten as:

⎡
⎣ cos Qsi

2 0 sin Qsi
2

sin Qsi
1 sin Qsi

2 cos Qsi
1 − sin Qsi

1 cos Qsi
2

− cos Qsi
1 sin Qsi

2 sin Qsi
1 cos Qsi

1 cos Qsi
2

⎤
⎦

⎡
⎣ 0

0
si

⎤
⎦ = A (39)

Simplifying Eq. (39) yields:

⎡
⎣ sin Qsi

2
• si

− sin Qsi
1 cos Qsi

2
• si

cos Qsi
1 cos Qsi

2
• si

⎤
⎦ = A (40)

Using Eq. (40), the rotation angles Qsi
1 and Qsi

2 can be obtained:

Qsi
1 = − arctan

(
A2

A3

)
, Qsi

2 = arcsin
(

A1

si

)
(41)

where Ai is the ith element of the vector A.
The rotation matrix can be described by:

B
PR =B

d̂i
R • d̂i

ŝi
R • ŝi

ŝ∗
i
R •

ŝ∗
i

P R (42)
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where ŝi
ŝ∗
i
R is the rotation matrix of the transformation from the reference frame ŝ∗

i to frame ŝi and
ŝ∗
i

P R is the rotation matrix of

the transformation from the body frame {P} to frame ŝ∗
i .

Using Eq. (42), the rotation matrix ŝi
ŝ∗
i
R can be written as:

ŝi
ŝ∗
i
R =d̂i

ŝi RT • B
d̂i

RT • B
PR • ŝi∗

P RT (43)

ŝi
ŝ∗
i
R =

⎡
⎢⎣ cpi

2 cpi
3 −cpi

2 spi
3 spi

2
spi

1 spi
2 cpi

3 + cpi
1 spi

3 −spi
1 spi

2 spi
3 + cpi

1 cpi
3 −spi

1 cpi
2

−cpi
1 spi

2 cpi
3 + spi

1 spi
3 cpi

1 spi
2 spi

3 + spi
1 cpi

3 cpi
1 cpi

2

⎤
⎥⎦ (44)

where cpi
k and spi

k represent the cosine and sine of the respective rotation angles Qpi
k (k = 1, 2, 3) of the upper flexure joints.

Let d̂i
ŝi RT • B

d̂i
RT • B

PR • ŝi∗
P RT = B, and substituting this into Eq. (44), the rotation angles Qpi

1 , Qpi
2 and Qpi

3 can be obtained as:

Qpi
1 = − arctan

(
B2,3/B3,3

)
, Qpi

2 = arcsin
(
B1,3

)
, Qpi

3 = − arctan
(
B1,2/B1,1

)
(45)

where Bi,j represents an element on the ith row and jth column of matrix B.

3.4. Dynamic equations

For the jth generalized speed, the upper platforms contribution to the set of generalized active forces is:

QP,qj
= vc,qj

(
mPg + FD

)
+ yc,qjMD (46)

where FD and MD are the external force and the moment acting on the original point of the body frame, respectively.
Let Mi

1 and Mi
2 represent the elastic moments of the lower flexure joint and upper flexure joint, respectively, which are given

by:

Mi
1 = ki

1Qsi
1 ĉsi

1 + ki
2Qsi

2 m̂si
2 (47)

Mi
2 = k′i

1Qpi
1 ĉpi

1 + k′i
2Qsi

2 m̂pi
2 + k′i

3Qsi
3 n̂pi

3 (48)

where ki
1 and ki

2 are the torsional stiffness coefficients of the ith lower flexure joint about the axis ĉsi
1 (ĉsi

1 = d̂i
1) and the moved

two-axis m̂si
2 , respectively; and k′i

1, k′i
2 and k′i

3 are the torsional stiffness coefficients of the ith upper flexure joint about the axis

ĉpi
1 (ĉpi

1 = ŝi
1), the moved two-axis m̂pi

2 and the moved three-axis n̂pi
3 , respectively.

The axes m̂si
2 , m̂pi

2 and n̂pi
3 are given by:

m̂si
2 =

⎡
⎣ 1 0 0

0 cos Qsi
1 − sin Qsi

1
0 sin Qsi

1 cos Qsi
1

⎤
⎦ d̂i

2 (49)

m̂pi
2 =

⎡
⎢⎣

1 0 0
0 cos Qpi

1 − sin Qpi
1

0 sin Qpi
1 cos Qpi

1

⎤
⎥⎦ ŝi

2 (50)

n̂pi
3 =

⎡
⎢⎣ cos Qpi

2 0 sin Qpi
2

sin Qpi
1 sin Qpi

2 cos Qpi
1 − sin Qpi

1 cos Qpi
2

− cos Qpi
1 sin Qpi

2 sin Qpi
1 cos Qpi

1 cos Qpi
2

⎤
⎥⎦ ŝi

3 (51)

The contribution of each rod to the set of generalized speeds is:

Qc
si,qj = vc

si,qjmsig −
(
yc

si,qjM
i
1 + ypi,qjM

i
2

)
(52)

Let Fdi represent the force exerted by the ith actuator and ki
e represent the stiffness of the membranes of the ith actuator. The

contribution of each actuator to the set of generalized speeds can be derived by:

Qc
di,qj = vc

di,qj

(
mdig + Fdid̂i

3 − ki
eDdid̂i

3

)
(53)
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The contributions of the upper platform, rods and actuators to the generalized inertial forces for the ith generalized speed are:

Q∗
p,qj = vc,qj

(−mpac
)

+ yc,qj

[
−BIcẏ − y ×

(
BIcy

)]
(54)

Qc∗
si,qj = vc

si,qj

(−msiac
si

)
+ yc

si,qj

[
−BIc

siẏsi − ysi ×
(

BIc
siysi

)]
(55)

Qc∗
di,qj = vc

di,qj

(−msiac
di

)
(56)

where PIc is the inertia matrix of the upper platform with respect to its center of mass in the body frame, BIc =B
P R • PIc • B

PRT and
is the inertia matrix of the ith rod with respect to its center of mass in the base frame.

The holonomic generalized active for the jth ( j = 1, . . . , 6) generalized speed is:

Fqj = Q P,qj +
6∑

i=1

Qc
si,qj +

6∑
i=1

Qc
di,qj (57)

Likewise, the contribution to the set of holonomic generalized inertia force is:

F∗
qj = Q∗

p,qj +
6∑

i=1

Qc∗
si,qj +

6∑
i=1

Qc∗
di,qj (58)

Kane’s dynamic equations are:

Fqj + F∗
qj = 0 ( j = 1, . . . , 6) (59)

The effect of gravity on the moving platform and the actuators can be compensated for by the elastic forces of the membrane
of the actuators, i.e. the moving platform will move to a new equilibrium position. Therefore, the effect of gravity on the micro-
vibration simulator can be ignored. The final expression of Eq. (59) can be written as:

mpvc,qjac + yc,qj

[
BIcẏ + y ×

(
BIcy

)]
+

6∑
i=1

{
msivc

si,qj
ac

si + yc
si,qj

[
BIc

siẏsi + ysi ×
(

BIc
siysi

)]

+
(
yc

si,qj
Mi

1 + ypi,qjM
i
2

)
+ vc

di,qj

(
msiac

di + ki
eDdid̂i

3

)}
=

6∑
i=1

vc
di,qj

(
Fdid̂i

3

)
( j = 1, . . . , 6) (60)

The complete dynamic equation of the 6-DOF micro-vibration simulator can be derived by:

M (q) q̈ + C
(
q, q̇

)
q̇ + K (q) q = JT

d,q
Fd (61)

where M(q) is a 6 × 6 mass matrix, C(q, q̇) is a 6 × 6 matrix of the centrifugal and Coriolis force terms, K(q) is a 6 × 6 matrix of
the generalized stiffness and Fd is a 6 × 1 vector representing the excitation forces.

Fig. 5. The finite element model of the 6-MVS.
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Fig. 6. Mode shapes of the first seven modes of the finite element model of the 6-MVS: (a) tilting mode along y-axis at 9.06Hz, (b) tilting mode along x-axis at
9.06Hz, (c) piston mode along z-axis at 10.2Hz, (d) twisting around z-axis at 12.88Hz, (e) rolling mode around x-axis at 13.69Hz, (f) rolling mode around y-axis
at 13.69Hz, (g) local mode of membrane at 526.9Hz.

4. Finite element analysis

In this paper, the dynamic model of the mechanical system for the parallel robot is viewed as thirteen rigid bodies. However,
when there are high-frequency exciting forces acting on an actual system, elastic deformations need to be taken into account.
The results of mode analysis characterize the basic dynamic behavior of the structure and are an indication of how the structure
will respond to dynamic loading. Therefore, the finite element method is adopted to analyze the normal mode of the 6-MVS.
A finite element model of the 6-MVS was developed by MSC NASTRAN software, and is depicted in Fig. 5. The upper platform
is modeled using a combination of Hex8, Wedge 6, Tria3 and Quad4 elements. The membranes are modeled using Quad4 ele-
ments, and the other components are modeled using CTETRA elements or other solid elements. All bolted connections between
different components are simulated by node coupling.

From Fig. 6, it can be seen that the natural frequency of the bending mode of the membrane is above 500 Hz. There is
no resonance peak between 0 Hz and 9 Hz, which is attributed to the simulator reproducing low frequency micro-vibrations.
Although six resonance peaks exist between 9 and 14 Hz, they are all body modes due to the elastic elements including the
membranes and the flexure joints, rather than flexible body modes (bending modes). Furthermore, these resonance peaks can
be offset by force compensation. There is no flexible body mode between 14 and 520 Hz. Therefore, within this frequency range,
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Fig. 7. Co-simulation block diagram.

the 6-MVS has excellent dynamic performance, which is a benefit to the simulator for reproduction of high frequency micro-
vibrations. It can be concluded that the structural performance of the 6-MVS satisfies the structural demands of the regeneration
of the micro-vibration spectrum with a width bandwidth of disturbance frequencies.

5. Dynamic model verification

The main objective of the proposed inverse dynamic model is to compute the required actuator forces when given the desired
accelerations at different frequencies. However, the accuracy and effectiveness of the developed dynamic model have not yet
been verified. In this section, a co-simulation using ADAMS and MATLAB/Simulink has been adopted to verify the validity of the
dynamic model and the feasibility of the 6-MVS. The MATLAB/Simulink environment is used to compute the required actuator
forces and ADAMS is used to build the virtual prototype of the 6-MVS. The six excitation forces of the actuators are used as
inputs to derive the ADAMS model and the accelerations and angular accelerations of the upper platform are used as the outputs
of the ADAMS plant model. Fig. 7 shows the ADAMS model and the co-simulation block diagram.

In ADAMS, the structural parameters and mass properties of the 6-MVS are shown in Tables 1 and 2, respectively. The upper
platform is allowed to track three translational acceleration trajectories and three angular acceleration trajectories at the same
time, i.e.

q̈d1 = 0.004 cos
(
4p • t

)
+ 0.004 cos

(
10p • t

)
q̈d2 = 0.001 cos

(
4p • t

)
+ 0.002 cos

(
10p • t

)
q̈d3 = 0.005 cos

(
4p • t

)
+ 0.0015 cos

(
10p • t

)
q̈d4 = 0.02 cos

(
4p • t

)
+ 0.012 cos

(
10p • t

)
q̈d5 = 0.01 cos

(
4p • t

)
+ 0.014 cos

(
10p • t

)
q̈d6 = 0.01 cos

(
4p • t

)
+ 0.02 cos

(
10p • t

)
where t is the time variable in unit seconds, q̈d1, q̈d2 and q̈d3 are in units of meters per second squared, and q̈d4, q̈d5 and q̈d6 are
in units of radians per second squared.

Fig. 8 compares the desired and simulated accelerations of the upper platform. The desired acceleration curves are the input
acceleration trajectories, and the simulated acceleration curves are the output acceleration trajectories of the ADAMS model.
Fig. 8 shows clear consistency between the translational accelerations and angular accelerations produced by the 6-MVS and
the target acceleration trajectories.

Table 1
Structural parameters of the 6-DOF micro-vibration simulator.

Notation Specification Value

RP Upper platform radius 220 mm
RB Base plane radius 230 mm
H Height of the origin of the body frame in the base frame 146 mm
v Upper platform central angle 10.8◦

h Base plane central angle 120◦

si Length of the rod 100 mm
d0 Initial length of the actuator 152.68 mm
zcm Height of the centroid of the moving platform in the body frame 1.72 mm
k Axial stiffness of membrane 2.16 ×104 N m−1

kh Torsional stiffness coefficients of the flexure joint 48.67 N m/rad
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Table 2
Mass properties of the 6-DOF micro-vibration simulator.

Notation Specification Value

m Mass of the upper platform 19 kg
Ixx Moment of inertia of the upper platform about x-axis 0.3314 kg m2

Iyy Moment of inertia of the upper platform about y-axis 0.3125 kg m2

Izz Moment of inertia of the upper platform about z-axis 0.6571 kg m2

msi Mass of the rod 0.068 kg
mdi Mass of actuator 0.206 kg
Isixx Moment of inertia of the rod about the x-axis 6.1 × 10−5 kg m2

Isiyy Moment of inertia of the rod about the y-axis 6.1 × 10−5 kg m2

Isizz Moment of inertia of the rod about the y-axis 1.1 × 10−5 kg m2

6. Control strategy and simulation

The model implemented in Section 5 is an ideal model. However, since an actual 6-MVS will not exactly coincide with the
theoretical model, a control measure needs to be implemented for the 6-MVS. The classical computed torque control (CTC)
approach uses an inverse dynamic model to decouple and linearize the nonlinear dynamics of the parallel manipulator. There-
fore, if the dynamic model is accurate enough, the resulting system will be a series of decoupled linear systems that can be easily
controlled using a proportional-derivative (PD) based control law.

6.1. Computed torque control

Dynamics control in task space utilizing the CTC method is implemented for the 6-MVS as follows. Firstly, the task space
dynamic model in Eq. (61) can be rewritten into the form:

Fq = JT
d,qFd = M (q) q̈ + H

(
q, q̇

)
(62)

where H
(
q, q̇

)
= C

(
q, q̇

)
q̇ + K (q) q.

The block diagram of the CTC scheme with PD feedback is depicted in Fig. 9. The 6-MVS is actuated by the following actuator
forces described in the task space, assuming no external disturbances:

Fq = M (q) u + H
(
q, q̇

)
(63)

where u is an input signal vector in the form of acceleration.
Combining Eq. (62) with Eq. (63) results in the following linear second-order system

q̈ = u (64)

which indicates that the system of Eq. (63) under control in Eq. (64) is linear and decoupled with respect to the input vector u.
The acceleration input signal in Eq. (63) can be described by:

u = qd + KD
(
q̇d − q̇

)
+ KP (qd − q) (65)

Substituting Eq. (65) into Eq. (64) yields a homogeneous second-order differential equation of errors, which is given by:

ë + KDė + KPe = 0 (66)

where e = qd − q is the vector of the displacement tracking errors. It has been shown that the displacement and acceleration
tracking errors in Eq. (66) are asymptomatically stable along with the positive definite matrices KP and KD.

In real situations, the payload and dynamic parameters, including the stiffness coefficients of the flexure joints and mem-
branes, may not be exactly known, despite the CTC scheme with PD feedback having excellent control performance. There can be
a high degradation of control accuracy of the system due to this difference between an actual system and the ideal model. Thus
the control performance is limited, which provides the motivation for the design of a robust controller in the following section.

6.2. CTC based robust PI control

Referring to the dynamic Eqs. (61) and (62), in the presence of uncertainties such as modeling errors, unknown loads, and
parameter measurements, the 6-MVS is actuated with the following actuator forces expressed in the task space:

Fq = M̂ (q) q̈ + Ĉ
(
q, q̇

)
q̇ + K̂ (q) q (67)
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Fig. 8. Comparison of desired and simulated accelerations of the upper platform in the time domain: (a) translational accelerations along the x-axis, (b) trans-
lational accelerations along the y-axis, (c) translational accelerations along the z-axis, (d) angular accelerations about the x-axis, (e) angular accelerations about
the y-axis, (f) angular accelerations about the z-axis.

where M̂ (q), Ĉ
(
q, q̇

)
and K̂ (q) denote the estimators of the mass matrix M(q), the nonlinear coupling matrix C

(
q, q̇

)
and the

generalized stiffness K(q) implemented in the controller, respectively. The errors of these estimates, i.e., the uncertainties, can
be expressed by:

EM = M̂ (q) − M (q) , EC = Ĉ
(
q, q̇

) − C
(
q, q̇

)
, EK = K̂ (q) − K (q) (68)

The error function is defined as:

r = ė + Ke (69)

Let q̇r = r (t) + q̇ (t) and q̈r = ṙ (t) + q̈ (t), the following equation can be obtained:

q̇r = q̇d + Ke, q̈r = q̈d + Kė (70)
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Fig. 9. Block diagram of proportional-derivative feedback control based on computed torque.

where K is a 6 × 6 diagonal constant matrix of positive gain.
Substituting Eqs. (70) and (68) into Eq. (67) yields:

Fq = M̂ (q) q̈ + Ĉ
(
q, q̇

)
q̇ + K̂ (q) q

= M̂ (q)
(
q̈r − ṙ

)
+ Ĉ

(
q, q̇

) (
q̇r − r

)
+ K̂ (q) q

=
(
M (q) + EM

)
q̈r +

(
C

(
q, q̇

)
+ EC

)
q̇r +

(
K (q) + EK

)
q − M̂ (q) ṙ − Ĉ

(
q, q̇

)
r

= M (q) q̈r + C
(
q, q̇

)
q̇r + K (q) q − M̂ (q) ṙ − Ĉ

(
q, q̇

)
r + EEOR (71)

where EEOR = EMq̈r + EC q̇r + EK q.
The control law is designed as:

Fq = Fm + KPr + Ki

∫ t

o
rdt + tr (72)

where Kp is a 6 × 6 proportional-gain positive definite matrix, Kp > 0, Ki is a 6 × 6 integral-time positive definite matrix, Ki > 0,
Fm is the control term of the normal dynamic model, and tr is the robustness term due to model errors and friction disturbance,
given by:

Fm = M (q) q̈r + C
(
q, q̇

)
q̇r + K (q) q, tr = Krsgn (r) (73)

where Kr = diag [krii] , krii ≥ |Ei
EOR|, i = 1, . . . , n.

Combining Eq. (71) with Eq. (72) and simplifying yields:

M̂ (q) ṙ + Ĉ
(
q, q̇

)
r + Ki

∫ t

0
rdt = −KPr − Krsgn (r) + EEOR (74)

The Lyapunov function candidate for the system in Eq. (74) is defined as:

V =
1
2

rT M̂ (q) r +
1
2

(∫ t

0
rdt

)T

Ki

(∫ t

0
rdt

)
(75)

Hence, the derivative of the Lyapunov candidate function becomes:

V̇ = rT
[

M̂ (q) ṙ +
1
2

˙̂M (q) r + Ki

(∫ t

0
rdt

)]
(76)

Table 3
Target frequency spectrum of translational and angular acceleration.

Frequency (Hz) Ax(mm • s−2) Ay(mm • s−2) Az(mm • s−2) Arx(mm • s−2) Ary(mm • s−2) Arz(mm • s−2)

10 2.0 1.0 1.5 0.02 0.01 0.01
50 1.2 1.3 1.1 0.015 0.014 0.013
100 1.1 1.2 1.0 0.01 0.012 0.014
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Fig. 10. Simulation result of robust PI controller.

The skew symmetric property of ˙̂M (q) − 2Ĉ
(
q, q̇

)
given in Eq. (76) can then be rewritten as:

V̇ = rT
[

M̂ (q) ṙ + Ĉ
(
q, q̇

)
r + Ki

(∫ t

0
rdt

)]
(77)

Substituting Eq. (74) into Eq. (77) yields

V̇ = −rT KPr + rT EEOR − rT Krsgn (r) (78)

Considering that the definition of krii ≥ |EEOR,i|, the following expression can be obtained:

V̇ ≤ −rT KPr ≤ 0 (79)

which indicates that the control system is practically stable.

6.3. Simulation results

In order to implement the control scheme presented above, several control parameters in terms of Ki, Kp,K, Kr, have to be
determined. Generally, the greater the uncertainty is, the larger the gain coefficient krii is, and the positive definite matrices Kp

and Ki are related with the control system. Additionally, the calculation of krii requires the determination of bounds associated
with the target trajectory and the uncertainty of modeling error.

A co-simulation is performed to command the 6-MVS tracking of the acceleration spectrum, to verify the validity of the CTC-
based robust PI control presented above. The amplitudes and frequencies of the co-simulation are shown in Table 3. It can be
noted that the target acceleration trajectories are periodic and consist of trigonometric series of the cosine function at different

Fig. 11. Simulation result of robust PI controller with increased value.
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amplitudes and frequencies. With the mass properties and stiffness coefficients are offset by 25% from the real values of the 6-
MVS, the trajectory and uncertainty bounds can be computed as: |EEOR,i|max = 0.8. When the control parameters are designed as:
Ki = KP = diag{-10}, K = diag{20}, Kr = diag{15}, the simulation result of angular accelerations about the x-axis is illustrated
in Fig. 10, which shows that after ts = 0.08s, the control system is unstable. By changing the values of the gain matrices Ki and
KP, Ki = KP = diag{100}, it can be observed that the control system is stable, but the angular acceleration error about z-axis is
over the allowable values, which is illustrated in Fig. 11. From the theoretical analysis and simulation results, it can be concluded
that the control performance of the proposed controller improves with the increase of gain matrices Ki and KP. So, the control
parameters are finally designed as: Ki = KP = diag{6672}, K = diag{20}, Kr = diag{15}.

Figs. 12 and 13 show the acceleration and angular acceleration produced by the 6-MVS in the time and frequency domains,
respectively. The frequency spectrum difference between the target values and outputs of the ADAMS model are given in
Table 4, which shows that the frequency components of the acceleration spectrums are identical. The greatest differences in the
translational acceleration amplitudes and the angular acceleration amplitudes are 2.84% and 0.18%, respectively. The smallest

Fig. 12. Response to desired acceleration trajectories under the proposed robust PI controller in the time domain: (a) translational accelerations along the
x-axis, (b) translational accelerations along the y-axis, (c) translational accelerations along the z-axis, (d) angular accelerations about the x-axis, (e) angular
accelerations about the y-axis, (f) angular accelerations about the z-axis.
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Fig. 13. Simulated acceleration trajectories in the frequency domain: translational accelerations along the x-axis, (b) translational accelerations along the y-axis,
(c) translational accelerations along the z-axis, (d) angular accelerations about the x-axis, (e) angular accelerations about the y-axis, (f) angular accelerations
about the z-axis.

differences in the translational acceleration amplitudes and angular acceleration amplitudes are 0.31% and 0.001%, respectively.
From Fig. 11, it is clear that the acceleration spectrums generated by the simulator are consistent with the target acceleration
spectrums and there is no coupling between the generated accelerations. This indicates that the micro-vibration simulator can
generate the target acceleration spectrums along any arbitrary direction in the task space.

The simulation results show that the robust PI control scheme based on CTC has strong control performance even when the
normal dynamic parameters of the 6-MVS deviate by 25% from the exact values. This proves that the proposed control scheme
has excellent robustness and is suitable for purpose.

7. Conclusion

This study presents the structural design, inverse dynamics modeling, and robust control of a micro-vibration simulator,
which can reproduce 6-DOF micro-vibrations with different amplitudes and frequencies. The Kane method is used to establish
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Table 4
Frequency spectrum difference between target values and simulation values

Frequency (Hz) Difference (%)

Ax Ay Az Arx Ary Arz

10 1.27 2.70 2.84 0.001 0.09 0.18
50 0.85 0.54 0.71 0.001 0.02 0.001
100 1.37 0.61 0.31 0.001 0.06 0.001

a complete inverse dynamics model of the 6-DOF micro-vibration simulator (6-MVS), where the parallel manipulator is consid-
ered to be a multiple-rigid-body system. This derived dynamics model takes the effects of the flexure joint into account. The
finite element method is then used to analyze the structural performance of the 6-MVS, and the model analysis results indicate
that the natural frequency of the first flexible body mode is greater than 500 Hz. Additionally, a co-simulation is used to verify
the validity of the inverse dynamics model, which combines ADAMS with MATLAB/Simulink. Based on the dynamics model, a
robust proportional-integral controller is designed and the performances are analyzed with respect to stability, precision and
robustness. The theoretical analysis and simulation results demonstrate that the proposed controller offers excellent perfor-
mance for the 6-MVS. Furthermore, even when the normal dynamic parameters are offset by 25% from the real values of the
6-MVS, the 6-MVS can reproduce the target micro-vibration spectrum. This indicates that the developed solution can satisfy the
initial design objectives. The design and validation methodology presented in this study can also be extended to other types of
parallel manipulators.
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