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Abstract: The core problem of phase diversity phase retrieval (PDPR) is to find suitable opti-
mization algorithms for wave-front sensing of different scales, especially for large-scale wave-
front sensing. When dealing with large-scale wave-front sensing, existing gradient-based local
optimization algorithms used in PDPR are easily trapped in local minimums near initial po-
sitions, and available global optimization algorithms possess low convergence efficiency. We
construct a practicable optimization algorithm used in PDPR for large-scale wave-front sens-
ing. This algorithm, named EPSO-BFGS, is a two-step hybrid global optimization algorithm
based on the combination of evolutionary particle swarm optimization (EPSO) and the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm. Firstly, EPSO provides global search and obtains
a rough global minimum position in limited search steps. Then, BFGS initialized by the rough
global minimum position approaches the global minimum with high accuracy and fast conver-
gence speed. Numerical examples testify to the feasibility and reliability of EPSO-BFGS for
wave-front sensing of different scales. Two numerical cases also validate the ability of EPSO-
BFGS for large-scale wave-front sensing. The effectiveness of EPSO-BFGS is further affirmed
by performing a verification experiment.
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1. Introduction

The phase diversity(PD) algorithm is a well-known algorithm to improve image quality, which
has many applications in high resolution imaging and adaptive optics imaging [1–4]. To achieve
near-diffraction-limited imaging, PD algorithm requires the collection of a simultaneous set of
two (or more) focused images and defocused images. The focused images are the target im-
age degraded by unknown wave-front aberrations, while the defocused images are the same
blurred images, but with an additional known defocus wave-front. The reconstruction of un-
known wave-front aberrations requires numerical processing to solve an optimization problem.
The error metric, set as the optimization object, is built by the error intensity distribution be-
tween actually obtained image intensity and theoretical image intensity. The reconstruction of
the parameterized wave-front aberrations can be obtained by minimizing the optimization ob-
jective function.

PD algorithm was first introduced by Gonsalves and Chidlaw [5]. This algorithm is suitable
for point target and extended target at the same time. Since the work of Gonsalves and Chidlaw,
scholars have used PD technique to estimate the wave-front aberrations induced by atmospheric
blur or imperfections of the optical system and improve the quality of detected images [1,2,6,7].
In recent years, PD algorithm has been successfully used in adaptive optics (AO) system [3, 4,
8–10]. Other applications of PD algorithm also include measurement of a laser beam [11, 12]
and biological microscopy imaging [13].

However, it is not easy to apply PD algorithm to wave-front estimation due to the compli-
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cated optimization processing, especially for large-scale wave-front sensing. The error met-
ric is a multiple extreme values function on a multidimensional parameter space. When deal-
ing with large-scale wave-front sensing, the global minimum search of error metric becomes
extremely difficult. Gradient-based optimization algorithms, such as conjugate-gradient algo-
rithm(CG) [14, 15] and quasi-Newton algorithm(BFGS) [16–19], are easily trapped in local
minimums near the initial positions. Available global optimization algorithms used in PD, such
as the genetic algorithm [20], have not focused on large-scale wave-front sensing. Moreover,
general global optimization algorithms possess low convergence efficiency when dealing with
large-scale wavefront sensing.

In this paper, we construct a two-step optimization algorithm(EPSO-BFGS) based on the
combination of particle swarm optimization (PSO) [21–23] and Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm. The kind of PSO used here(named EPSO) is a modified form of
traditional PSO introduced a evolutionary mechanism, which is helpful to improve convergence
efficiency. For the first step, EPSO provides global search and obtains a rough global minimum
position in limited search steps. And for the second step, BFGS initialized by the rough global
minimum position approaches the global minimum with high accuracy and fast convergence
speed. EPSO-BFGS gives a guarantee of believable convergence efficiency and acceptable con-
vergence speed.

The rest of this paper is organized as follows: In Section 2 we review the theory of PDPR.
Section 3 describes the hybird global optimization algorithm EPSO-BFGS. In Section 4 we
discuss numerical simulations and a verification experiment. Finally, our conclusion and future
work are given in Section 5.

2. Phase diversity phase retrieval

In this section, we briefly review the phase diversity technique. We will only consider two
images separated by a certain defocus distance. Let us suppose that the object is illuminated
with non-coherent quasi-monochromatic light, and the imaging system is a linear shift-invariant
system [24]. The intensity distribution of the image plane with Gaussian noise can be modeled
by the following equation:

i(r) = o(r) ⊗ h(r) + n(r), (1)

where ⊗ stands for the convolution operation, r is a two-dimensional position vector in the
image plane, o(r) is the object to be found, h(r) is the point-spread function (PSF) of the
optical system, and n(r) is Gaussian noise. With the condition of near-field [25], the point-
spread function associated with the focused image is given by

h(r) = |FT−1{P(v) exp[ jφ(v)]}|2 , (2)

where FT−1 denotes the inverse Fourier transform, v is a two-dimensional position vector in the
pupil plane, P(v) is the binary aperture function with values of 1 inside the pupil and 0 outside,
and φ(v) is the unknown wave-front aberration. Similarly, the defocused image is given by

id (r) = o(r) ⊗ hd (r) + nd (r), (3)

and
hd (r) = |FT−1{P(v) exp[ j (φ(v) + φd (v))]}|2 , (4)

where the subscript d indicates that a known phase diversity φd (v) has been added to the optical
system. The common used φd (v) is defocus aberration. φd (v) can be exactly determined by the
location of the defocused image plane relative to the focused plane.
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The following error metric

E =
∑

u

Ẽ(u)

=
∑

u

{[I (u) − O(u)H (u)]2 + [Id (u) − O(u)Hd (u)]2} (5)

can evaluate the mean-squared image intensity difference between the data predicted by optical
system and the data actually collected, where

O(u) = FT {o(r)},
I (u) = FT {i(r)}, Id (u) = FT {id (r)},
H (u) = FT {h(r)}, Hd (u) = FT {hd (r)}, (6)

u is a two-dimensional spatial frequency coordinate, FT denotes the Fourier transform, H (u)
is the optical transfer function (OTF) of the focused system, and Hd (u) is the OTF of the
defocused system.

E is minimized by choice of O(u) when

∂Ẽ(u)
∂O

= 0, (7)

namely,

O(u) =
H (u)I (u) + Hd (u)Id (u)

|H (u) |2 + |Hd (u) |2 . (8)

Substitution of O(u) into E yields

E =
∑

u

|I (u)Hd (u) − Id (u)H (u) |2
|H (u) |2 + |Hd (u) |2 . (9)

It is notable that Eq.(9) is independence of any object estimate.
In this paper, the unknown wave-front aberration is expanded on a finite set of Zernike poly-

nomials [26]:

φ(v) =
K∑

j=4

a j Z j (v). (10)

The coefficients a1 − a3 stand for piston and tilt of the wave-front aberration, which have no
effect on the resolution of image. The error metric E is therefore defined on a multidimensional
parameter space:

a = [a4 , a5 , · · · , aK ]. (11)

For a given parameters a, the error metric E(a) can be calculated.
The goal is to find the optimal parameter set a for which the error metric is globally minimum.

Many standard gradient-based nonlinear optimization algorithms have been used by scholars,
such as steepest decent algorithm(SD), conjugate-gradient algorithm(CG) and quasi-Newton
algorithm(BFGS), etc. All gradient-based nonlinear optimization algorithms need an initial es-
timate for a. Then the error metric and its gradient can be obtained at the initial estimate a.
The gradient of error metric can be calculated by finite difference method or by analytic ex-
pression [14]. The gradient provides a search direction, and a new estimate for a is made along
the search direction to find a smaller error metric. The entire procedure is repeated iteratively
until a local minimum is found. In other words, the search of the optimal parameter set a with
gradient-based optimization algorithms is easily trapped in a local minimum that is not the true
solution.
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3. EPSO-BFGS optimization algorithm

To cope with the disadvantage that the existing gradient-based optimization algorithms used
in PDPR are easily trapped in local minimums, we construct a hybrid EPSO-BFGS global opti-
mization algorithm. This algorithm is based on the combination of Particle Swarm Optimization
(PSO) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. EPSO is an improved form
of traditional PSO, which a evolutionary mechanism has been introduced to improve conver-
gence efficiency. Firstly, EPSO provides global search and obtains a rough global minimum po-
sition in finite search steps. Then, BFGS initialised by the rough minimum position approaches
the global minimum with high accuracy and fast convergence speed.

Particle Swarm Optimization (PSO), belonging to the Evolutionary Algorithm family, is a
population-based optimisation algorithm introduced by Kennedy and Eberhart [21]. Since PSO
requires no gradient features, it is relatively flexible to be applied to PDPR. PSO employs a
number of particles and each particle stands for a potential solution of the whole optimization
problem. The initial position and velocity of each particle are randomly generated:

x (0) = x (0) (i, j) (12)

v (0) = v (0) (i, j) i = 1, ..., N j = 4, ..., K (13)

where N is the number of particles and K is the maximum number of design variables.
There are many kinds of modified PSO algorithms and we select the model of Clerc [27],

which a constriction factor ϕ is introduced to improve convergence efficiency. The position and
velocity of each particle are updated by the following equations:

v(n+1)
i , j = ϕ{v (n)

i , j + c1r1[p(n)
i ,l
− x (n)

i , j ] + c2r2[p(n)
i ,g − x (n)

i , j ]}, (14)

x (n+1)
i , j = x (n)

i , j + v (n+1)
i , j i = 1, ..., N, j = 4, ..., K, (15)

where

ϕ =
2

|2 − C − √C2 − 4C |
, C = c1 + c2 , C > 4. (16)

In this work, we set c1 = c2 = 2.05. r1 and r2 are uniformly distributed random numbers
between 0 and 1; pi ,l is the best local position of particle i itself; pi ,g is the best global position
of particle i itself; pi ,l and pi ,g share information among all particles. pi ,l and pi ,g are updated
as follows:

p(n+1)
i ,l

=

⎧⎪⎪⎨⎪⎪⎩
p(n)
i ,l
, E(x (n+1)

i , j ) ≥ E(p(n)
i ,l

),

x (n+1)
i , j , E(x (n+1)

i , j ) < E(p(n)
i ,l

).
(17)

p(n+1)
i ,g = p(n+1)

∗,l , p(n+1)
∗,l ∈ {p(n)

i ,g , p
(n+1)
i ,l
},

E(p(n+1)
∗,l ) = min{E(p(n)

i ,g ), E(p(n+1)
i ,l

)}. (18)

p(n+1)
i ,g = p(n+1)

∗,l ,

p(n+1)
∗,l ∈ {p(n)

i ,g , p
(n+1)
i ,l
},

E(p(n+1)
∗,l ) = min{E(p(n)

i ,g ), E(p(n+1)
i ,l

)}. (19)

We introduce a evolutionary mechanism to the PSO used here, namely, EPSO. Ascending
sort of all error metrics reveals the performance of each particle. After the end of each search
step, indexes of all particles are updated according to ascending sort. All particles are divided
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into two parts: the front part and the rear part. The front part is possessed of more possibility
than the rear part for the global minimum search of error metric E. The positions and velocities
of the rear part are reset as the front part:

x (n+1)
i+N/2, j = x (n+1)

i , j ,

v (n+1)
i+N/2, j = v (n+1)

i , j i = 1, ..., N/2, j = 4, ..., K. (20)

The mechanism can enhance the survival of advantageous particles and improve convergence
efficiency.

A rough global minimum position p(M )
i ,g can be obtained in limited search steps M by EPSO.

The rough global minimum position provides a proper initial position for gradient-based opti-
mization algorithms. We select a widely used quasi-Newton algorithm(BFGS) as the second
step to approach the global minimum with high accuracy. BFGS algorithm is also suitable for
multi-variable optimization problems.

In fact, for gradient-based optimization algorithms used in PDPR, a proper initial position
is unknown and a zero position a = 0 is usually initialized. Improper initial position is the
very reason that gradient-based optimization algorithms are easily trapped in local minimums.
EPSO-BFGS can avoid being trapped in a local minimum. The flow chart and sketch map for
EPSO-BFGS are shown in Fig. 1 and Fig. 2.

Fig. 1. Flow chart of EPSO-BFGS algorithm.
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Fig. 2. Sketch map of EPSO-BFGS algorithm.

4. Numerical simulations and experimental results

4.1. Numerical simulations

In this section we describe and discuss the simulation results. We assume all images are Nyquist
sampled. The size of each data frame is 200 × 200 pixels and the intensity levels are quantized
to 16 bits. The diameter of the pupil is set to 100 pixels. The amount of defocus used for the
phase diversity is set to be 1.0λ peak to valley (PV), which is commonly used [28–30]. Zernike
polynomials are used here up to the fifteenth term, so the computed parameter space is

a = [a4 , a5 , · · · , a15]. (21)

The simulated wave-front aberration φtrue is Kolmogorov aberrated and generated in the
pupil plane by the work of Noll and Roddier [26, 31], which lets us easily adjust the turbulence
strength D/r0, where D is a simulated telescope diameter and r0 is Fried’s parameter [32]. The
rms value of simulated wavefront is defined as follows:

RMS{φtrue }(λ) =
1

2π

[∑

v

(φtrue (v) − φaver (v))2/NT

] 1
2 , (22)

where φaver is the average wave-front of φtrue , NT is the total number of pixels within the
pupil aperture. The accuracy of the reconstructed wavefront φ is quantified with the rms phase
error between the true wave-front aberration and the reconstructed wave-front aberration. The
definition of rms phase error is

RMS error(λ) =
1

2π

[∑

v

(φ(v) − φtrue (v))2/NT

] 1
2 . (23)

We will firstly show the different performances between three widely used gradient-based op-
timization algorithms(SD,CG and BFGS) and our hybrid algorithm EPSO-BFGS. In the case of
different turbulence strength D/r0, Table 1 lists the RMS errors achieved by SD, CG, BFGS and
EPSO-BFGS algorithms. Each RMS error is the average value of three same calculation cases.
As indicated before, the initial condition of SD, CG and BFGS algorithms is a = 0. When the
turbulence strength D/r0 = 1, the three gradient-based optimization algorithms work equally
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well as EPSO-BFGS algorithm. However, when dealing with large turbulence strength, the three
gradient-based optimization algorithms obviously lost much accuracy of calculation. Compar-
atively, EPSO-BFGS algorithm can accurately recover the simulated wave-front aberrations of
several large turbulence strength D/r0.

Table 1. RMS errors(λ) achieved by SD, CG, BFGS and EPSO-BFGS algorithms for wave-
front aberrations of different D/r0.

Algorithms
SD CG BFGS EPSO-BFGS

D/r0 = 1 0.0129 0.0127 0.0193 0.0132
D/r0 = 5 0.0348 0.0838 0.0385 0.0012
D/r0 = 10 0.0429 0.1529 0.2989 0.0048
D/r0 = 15 0.1549 0.3340 0.2974 0.0017
D/r0 = 20 0.3012 0.3199 0.3454 0.0093

Similarly, in Table 2 and Fig. 3, we show the performances of SD, CG, BFGS and EPSO-
BFGS algorithms dealing with wave-front sensing of different RMS. Each RMS error is the
average value of three same calculation cases. From the initial position a = 0, SD, CG and
BFGS algorithms carry on the search for the global minimum position. When the RMS value
of unknown wave-front is 0.1λ, SD, CG and BFGS algorithms are able to obtain satisfactory
RMS errors. That means the PDPR optimization problem is probable convex optimization for
small-scale wave-front sensing and SD, CG and BFGS algorithms are competent.

Table 2. RMS errors(λ) achieved by SD, CG, BFGS and EPSO-BFGS algorithms for wave-
front aberrations of different RMS.

Algorithms
SD CG BFGS EPSO-BFGS

RMS=0.1λ 0.0247 0.0379 0.0239 0.0015
RMS=0.2λ 0.0512 0.1161 0.1139 0.0005
RMS=0.3λ 0.1231 0.0935 0.2384 0.0004
RMS=0.4λ 0.2087 0.2919 0.3171 0.0359
RMS=0.5λ 0.4485 0.3993 0.4474 0.0181
RMS=0.6λ 0.5554 0.4848 0.5393 0.0474
RMS=0.7λ 0.5802 0.6219 0.6934 0.0344
RMS=0.8λ 0.6924 0.6993 0.7497 0.0129

However, when dealing with large-scale wave-front aberrations, Table 2 and Fig. 3 reveal the
fact that the search of SD, CG and BFGS algorithms only go ahead a short distance. PDPR
optimization problem is non-convex and complicated for large-scale wave-front sensing and
SD, CG and BFGS algorithms are easily trapped in a local minimum. The initial position and
velocity of EPSO-BFGS algorithm are randomly initialized. And the global search mechanism
of EPSO-BFGS algorithm ensures a more optimal position approach than all local minimum po-
sitions, that is, a rough global minimum position. The rough global minimum position provides
a proper initializing position for BFGS algorithm. RMS errors obtained by EPSO-BFGS algo-
rithm are remarkably smaller than other algorithms. The excellent performance of EPSO-BFGS
algorithm confirms the validity and robustness of our mechanism of EPSO-BFGS algorithm.

It is notable that BFGS algorithm, as the second step of EPSO-BFGS algorithm, plays an
important role for the second approach after initialized by the rough global minimum posi-
tion obtained by EPSO. Table 3 is a list of RMS errors achieved by EPSO and EPSO-BFGS
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Fig. 3. RMS errors chart with SD, CG, BFGS and EPSO-BFGS algorithms for wave-front
aberrations of different RMS.

algorithms for different particle number N and iteration number M. The coefficients a used
here(RMS=0.1619λ, PV=1.0310λ) is case1 listed in Table 4. We can see that BFGS algorithm
can obviously improve the performance of EPSO when particle number N and iteration number
M are small. A proper initial position can be obtained by EPSO algorithm when particle num-
ber N and iteration number M are big enough, which ensures that BFGS algorithm searches the
global minimum position towards the unknown wave-front(RMS errors fluctuate near 0.017λ).
For the cases that RMS errors obtained by EPSO-BFGS fluctuate near 0.017λ confirm the valid-
ity of EPSO-BFGS. We would like to point out that the complementary role of BFGS is weak
when particle number N and iteration number M are big enough. Even so, we think that BFGS
algorithm is indispensable because better performance is always desired.

Table 3. RMS errors(λ) achieved by EPSO and EPSO-BFGS algorithms for different parti-
cle number N and iteration number M.

M=5 M=20 M=50 M=100
EPSO EPSO-

BFGS
EPSO EPSO-

BFGS
EPSO EPSO-

BFGS
EPSO EPSO-

BFGS
N=5 0.18466 0.12780 0.13181 0.03237 0.15558 0.02036 0.08712 0.01680
N=20 0.09797 0.01716 0.04689 0.01711 0.02198 0.01732 0.02835 0.01738
N=50 0.09206 0.01917 0.04455 0.01756 0.02035 0.01738 0.01857 0.01732
N=100 0.08397 0.02045 0.03251 0.01747 0.01752 0.01737 0.01744 0.01737

Finally, we will show the ability of EPSO-BFGS algorithm for large-scale wave-front sensing.
The coefficients a used here for simulations are listed in Table 4, of which case2(RMS=1.0λ,
PV=5.8325λ) and case3(RMS=1.2λ, PV=8.6304λ) are large-scale wave-front aberrations. Re-
constructed coefficients a for case2 and case3 are also listed in Table 4. And in Fig. 4 and Fig.
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5, phase retrieval and reconstructed object are given. It can be seen that high accuracy can be
achieved by EPSO-BFGS algorithm for the two large-scale wave-front aberrations, where the
RMS phase errors are 0.01092λ and 0.00096λ, respectively. The simulation results confirm the
capability of our EPSO-BFGS algorithm for large-scale wave-front sensing.

Table 4. Coefficients of three cases used for simulations. Case1 is used for the simulations
in Tab.3. Case2 and case3 are large-scale phases for the simulations of Fig. 4 and Fig. 5.

Coefficient Case1 Case2 Case3
Set Set Reconstructed Set Reconstructed

a4 0.9361 -4.2028 -4.1423 -3.9998 -3.9961
a5 0.3538 1.5276 1.5149 -0.9988 -0.9987
a6 0.1681 -4.2380 -4.2213 4.1653 4.1604
a7 0.3767 -1.3286 -1.3350 4.8879 4.8899
a8 0.2782 0.0151 0.0343 0.9817 0.9822
a9 0.2210 -2.3758 -2.3585 -3.3273 -3.3289
a10 -0.0919 1.8187 1.8219 1.5528 1.5512
a11 -0.0653 -0.0623 -0.0472 0.5909 0.5912
a12 0.0093 -0.8079 -0.7997 0.3772 0.3766
a13 0.0375 -1.6907 -1.6975 1.1993 1.1994
a14 0.1464 0.0124 -0.0159 0.4065 0.4068
a15 0.1284 0.1198 0.1367 -0.6608 -0.6612

Fig. 4. Simulation results of phase retrieval and reconstructed for the phase aberration of
RMS=1.0λ, PV=5.8325λ. (a) and (d) are the simulated and reconstructed phases respec-
tively, where the RMS phase error is 0.01092λ. (b) and (c) are the simulated focused and
defocused images, respectively. (e) is the reconstructed object.
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Fig. 5. Simulation results of phase retrieval and reconstructed for the phase aberration of
RMS=1.2λ, PV=8.6304λ. (a) and (d) are the simulated and reconstructed phases respec-
tively, where the RMS phase error is 0.00096λ. (b) and (c) are the simulated focused and
defocused images, respectively. (e) is the reconstructed object.

4.2. Experimental results

A preliminary experiment has been made to test the practical performance of EPSO-BFGS for
PDPR. The simplified block diagram of the optical system used here is shown in Fig. 6. The
equivalent focal length F is 300mm, the pupil diameter D is 10mm, and the CCD(Andor zyla
4.2) pixel size is 6.5μm. A common halogen lamp is selected as the light source. A fiber bun-
dle is used as the extended object to be measured. To obtain quasi-monochromatic image, a
filter(633nm) is located at the collimated beam. Lens L1 is used to collimate the light from the
fiber. The collimated beam proceeds through the fiber, a beam splitter, a artificial deformed mir-
ror and reflected by the beam splitter. Some unknown aberrations are introduced to the optical
system by adjusting the deformation of the mirror. After passing through the lens L2, the focal
images with aberrations can be obtained by the CCD located at the focal plane. Then, we move
the CCD by the distance d to get the the defocused images. The corresponding peak-to-valley
optical path difference � [30] is equal to

� = d

8(F/D)2
. (24)

As we have mentioned in our numerical simulations that choosing d such that � = λ is a
relatively better choice to obtain accurate results. So the distance d here is 4.5576mm. The
measured object takes the area of 300 × 300 pixels and the exposure time is 20ms.

The computed parameter space is a = [a4 , a5 , · · · , a15], the same as our numerical simula-
tions above. The size of measured object is larger than our numerical simulations, which means
more computational cost. To get believable results, we set particle number N = 500 and itera-
tion number M = 500. After the parameter estimates of the unknown phase aberrations, we still
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need to employ a Wiener-Helstrom noise filter [14] to perform the object restoration:

O(u) =
H (u)I (u) + Hd (u)Id (u)

|H (u) |2 + |Hd (u) |2 + Pn (u)/Pf (u)
. (25)

where the third term in the denominator is the ratio of the power spectral density of the noise to
that of the object. The reconstructed image is then obtained by the inverse Fourier transform of
O(u). In fact, It is difficult to get the power spectral density of the noise and that of the object.
Usually, a common approach is to assume the radio to be a small constant.

We will firstly compare the performances of different optimization algorithms used in PDPR
for a simple large-scale wave-front sensing, that is, a 2λ(PV) defocus aberration. We make the
deformation of the mirror zero, and the "focal" image is obtained by moving the CCD by the
distance 2d, which means a 2λ(PV) defocus aberration is added to the optical system. Then,
the defocused image is obtained by moving the CCD by the distance d again. As shown in Fig.
7, we can see from the reconstructed image that the performances of SD, CG and BFGS algo-
rithms are poor. The three gradient-based optimization algorithms provide similar wrong phase
sensing. As we have pointed out in our numerical simulations, SD, CG and BFGS algorithms
are easily trapped in a local minimum for PDPR. In comparison, EPSO-BFGS algorithm pro-
vides a satisfactory performance. Although there are still some small errors, the reconstructed
phase by EPSO-BFGS is quite similar with a defocus aberration. We have found the computed
parameter a4(stands for defocus aberration) is 2.059λ(PV).

To testify the effectiveness of EPSO-BFGS algorithm, three different random wave-front
aberrations are generated by the deformed mirror. Reconstructed wavefront aberrations and
images are shown in Fig. 8. The three measured wavefront aberrations are (a)(RMS=0.155λ,
PV=0.765λ), (b)(RMS=0.261λ, PV=1.389λ) and (c)(RMS=0.416λ, PV=2.136λ), respectively.
Experimental results are satisfying and practically prove the feasibility of the proposed EPSO-
BFGS algorithm for PDPR.

light source

L1

filter

BS

CCD

L2

pupil

mirror

fiber

d

Fig. 6. Simplified block diagram of the verification experiment system of PDPR.
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Fig. 7. Experimental results of PDPR for a 2λ(PV) defocus wave-front aberration. (a)
contains the focal image(left) and the defocused image(right) collected by the CCD.
(b),(c),(d) and (e) show the phases and images reconstructed by SD, CG, BFGS and EPSO-
BFGS,respectively.

Fig. 8. Experimental results of PDPR for three different wave-front aberrations by EPSO-
BFGS. (a),(b) and (c) contain the the focal image, the defocused image, reconstructed phase
and images,respectively.
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5. Conclusion

In this paper, we construct a hybrid EPSO-BFGS global optimization algorithm for PDPR. The
two-step mechanism of EPSO-BFGS algorithm overcomes the shortcomings that traditional
gradient-based optimization algorithms are easily trapped in local minimums. At the same time,
EPSO-BFGS algorithm is stable and reliable. Also, the formulas of EPSO-BFGS algorithm is
simple and easy to implement. Computer simulations illustrate that this algorithm can cope with
various scales of wave-front sensing. And for large-scale wave-front sensing, EPSO-BFGS can
also obtain satisfactory performance. The performed experiment confirms the effectiveness of
EPSO-BFGS. Our work provide a practicable algorithm for the complicated nonlinear optimiza-
tion processing of PDPR, which could enhance the ability of PDPR technique used in several
fields such as high resolution imaging and adaptive optics imaging. As part of our future work,
we are interested in the physical mode of PDPR. It is desired to find an modified form of the
error metric to improve the convergence of PDPR.
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