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Hyperspectral images are often contaminated with stripe noise, which severely degrades the imaging 

quality and the precision of the subsequent processing. In this paper, a variational model is proposed by 

employing spectral-spatial adaptive unidirectional variation and a sparse representation. Unlike traditional 

methods, we exploit the spectral correction and remove stripes in different bands and different regions 

adaptively, instead of selecting parameters band by band. The regularization strength adapts to the spectrally 

varying stripe intensities and the spatially varying texture information. Spectral correlation is exploited via 

dictionary learning in the sparse representation framework to prevent spectral distortion. Moreover, the 

minimization problem, which contains two unsmooth and inseparable l1-norm terms, is optimized by the 

split Bregman approach. Experimental results, on datasets from several imaging systems, demonstrate that 

the proposed method can remove stripe noise effectively and adaptively, as well as preserve original detail 

information.
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I. INTRODUCTION

Hyperspectral images (HSIs) have been successfully applied 

to a myriad of applications such as data classification and 

target detection [1]. However, they are inevitably contaminated 

with striping artifacts due to response variations of each 

detector. The existence of stripe noise not only degrades 

the image quality, but also limits the precision of the sub-

sequent data analysis. Consequently, it is an essential prepro-

cessing step to remove the stripes.

In the past decades, several methods have been proposed 

in the extensive literature [2], and can be broadly classified 

into three major categories. The first category eliminates 

the striping pattern by filtering techniques. Filters in the 

spatial domain have the disadvantage of image information 

loss in spite of simple implementation [3]. Wavelet-based 

filters only adjust the vertical or horizontal detail components 

[4-7]. Nonetheless, the structural information with the same 

frequency is unavoidably removed, which results in blurring 

and ringing artifacts. The second category, including histogram 

matching [8] and moment matching [9], makes use of similar 

statistics of individual detectors and restricts statistical 

parameters to a predefined reference. Though image statistical 

properties can be preserved, these equalization methods are 

highly sensitive to the assumption of statistical homogeneity. 

The third category is a variational approach [10-12]. The 

destriping issue is formulated as an inverse problem, and 

can be tackled in the regularization framework. Despite the 

effectiveness of these methods, the selection of regulation 

parameters has a great influence on the performance of 

destriping results [13].

In reality, however, there exist hundreds of bands with 
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spectrally varying stripes in HSIs. Even in the same band, 

stripe intensities may be spatially dependent. Thus, selecting 

regulation parameters band by band is particularly time-

consuming and poses a challenging problem to conventional 

solutions. In Ref. [14], a spectral-spatial adaptive hypers-

pectral total variation (SSAHTV) denoising model was proposed, 

in which the regulation parameters accommodated to the 

differences of the spectral noise and the spatial information. 

Nevertheless, the results for heavy stripes are not satisfactory, 

because this model fails to consider the unidirectional property 

of stripes.

Different from a single image, HSIs usually have hundreds 

of bands. Furthermore, high spectral correlation exists between 

adjacent bands. If the stripes are suppressed in the spatial 

domain only, spectral distortion will be introduced in the 

destriped image. However, little effort has been devoted to 

dealing with the spectral correlation. Recently, the sparse 

representation technique has been successfully applied in 

denoising problems [15-18]. It is based on the assumption 

that the noise-free image can be estimated by a linear 

combination of a few atoms in a redundant dictionary, which 

can be learned by utilizing the correlation and redundancy 

in an image [19]. 

Motivated by the success of the adaptive mechanism in 

SSAHTV model and the sparse representation in exploiting 

HSI correlation, we propose a unified spectral-spatial adaptive 

unidirectional variation and sparse representation method to 

counter the above problems. The proposed model consists 

of two l1-norm terms to stress the stripes adaptively, and 

an l2-norm term to handle the spectral correlations. The 

main ideas and contributions of the proposed approach are 

threefold as follows: i) Unidirectional variation and the 

spectral-spatial adaptive mechanism are combined to tackle 

the striping issue. Our method taps into the anisotropic 

characteristic of the stripes and the differences of spectral-

spatial information simultaneously. ii) Spectral redundancy 

and correlation are exploited through a sparse representation 

prior imposed on the cost function to prevent spectral 

distortion. iii) The split Bregman algorithm is applied to 

solve and accelerate the model optimization, which is 

demonstrated to be remarkably effective and efficient.

This paper is organized as follows. In Section 2, we 

describe the spectral-spatial adaptive unidirectional variational 

model, the sparsity constraint, and the optimization process. 

Section 3 presents experimental results on synthetic and 

real images, and discusses the selection of optimal parameters. 

Finally, summarizations and conclusions are presented in 

Section 4.

II. METHODOLOGY

2.1 Problem Formulation

In this paper, the stripes are assumed to be additive, and 

the noisy HSI f can be modeled as

f = u + s (1)

where u is the noise-free HSI, and s is the vertical stripe 

noise. f ∈ R
M×N×B

 is the noisy HSI. M and N refer to the 

height and width of the image, and B stands for the band 

number. Formally, the objective of HSI destriping is to 

retrieve u by removing s from f, which is a typical inverse 

problem and can be solved in the variational framework 

[20-23].

The stripes are highly anisotropic and have a directional 

property, which indicates that only the gradient perpendicular 

to the stripes is influenced. Motivated by this observation, 

the authors of Ref. [10] formulated an intuitive unidirectional 

variation (UV) model as 

( )
11

min
jyjjjx

u
ufu

j

∇+−∇ τ (2)

where ∇  and ∇ denoted vertical (i.e., x-coordinates) 

and horizontal (i.e., y-coordinates) derivative operators, respecti-

vely. Here, j indexes the spectral channel. The UV model 

is comprised of a fidelity term to preserve the l1-norm of 

the vertical gradient, and a regulation term to penalize the 

l1-norm of the horizontal gradient. The regulation parameter 

τ j determines the destriping strength. 

The simplest way to destripe HSIs with the UV model 

is to handle each single band with possibly different τ j. 

However, selecting τ j band by band manually is very 

time-consuming, as HSIs have hundreds of bands. Therefore, 

a natural extension to a hyperspectral unidirectional variational 

(HUV) model is averaging out (2) with the same parameter 

τ  for all the B bands, 

( )[ ]∑
=
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(3)

Then, by taking partial derivatives of the cost function 

(3) with respect to uj, ∇, and ∇, we arrive at the 

following Euler-Lagrange equation, 




∇





∇
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∇  (4)

where ⋅ represents the absolute value operator. Eq. (4) 

indicates that different bands are still considered as independent. 

That is, HSIs are destriped channel by channel, which has 

the following drawbacks. For different bands, large values 

of τ  are prone to destroy fine features in the bands with 

slight stripes, and conversely, small values of τ  may lead 

to incomplete removal of noise in the bands with severe 

stripes. For the same band, the stripes in flat regions will 

not be well suppressed if τ  is too small, and detail information 

in the regions with abundant textures will be blurred if τ 
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is too large. Obviously, the parameter τ  should be spectrally 

and spatially adaptive. 

2.2. Spectral-spatial Adaptive Unidirectional Variation 

Model

To make the HUV model spectrally adaptive, we borrow 

the color total variation (CTV) model from Ref. [24] and 

redefine the HUV model as follows: 

( ) ( )
11

1

1
min uRfu

B
yjjx

B

j
u

∇+−∇∑
=

τ (5)

Here,
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(6)

introduces a coupling among all the spectral bands, where 

R( ․ ) is the root mean square (RMS) operator. A similar 

SSAHTV model for Gaussian noise was proposed previously 

in Ref. [9], where the TV model of each band was added 

together, without tapping into the directional characteristic 

of the stripes. 

Similarly, the Euler-Lagrange equation derived from (5) 

takes the following form,
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(7)

It is shown that a coupling term ∇∇  appears, 

and strikes a balance of the regularization strength between 

different bands. In essence, it is small for the bands with 

slight stripes, which turns down the regularization to preserve 

data genuineness. On the contrary, it is large for the bands 

with severe stripes, which emphasizes the regularization to 

entirely remove the stripes. 

Besides the spectrally adaptive property discussed above, 

the spatially dependent property in different regions remains 

a critical problem. We use a simple spatial information 

extractor dj called difference curvature [24-26] to distinguish 

edges from ramps in the presence of noise, 

    (8)

Here, η  corresponds to the gradient direction, and ε  is the 

direction perpendicular to η . ujη η  and ujεε
 
are the second-

order directional derivatives of uj, as defined in Ref. [27]. 

Then, we define a spatially adaptive weighting matrix W, 

whose elements are defined as 

 



(9)

Here, µ is a positive constant, and ri is the i-th element of 

R(d). Note that d =  

 . For the pixels in the flat 

areas, ri is small and Wi approaches 1, which leads to a 

large regularization strength to well suppress the stripes. 

Conversely, for the pixels corresponding to the structural 

details, ri is large and Wi approaches null, which weakens 

the regularization strength to preserve textures. The weighting 

matrix W is justified since it depends explicitly on the 

edge indicator, hence, it adapts implicitly to the spatial property. 

Embedding the weight in Eq. (9) into Eq. (5), a novel 

spectral-spatial adaptive unidirectional variational (SSAUV) 

model is thus

( ) ( )
11

1
min jyx
u

uWRfu
B

∇+−∇ τ (10)

2.3. Sparse Representation Regulation

The above SSAUV model fails to take the spectral correlation 

into consideration. To tackle this problem, we merge the 

SSAUV model with a sparse representation, in which the 

spectral correlation is utilized to learn a dictionary and the 

noise-free image can be approximated by a linear combination 

of its atoms [19].

The denoising model based on sparse representation for 

HSIs can be defined as the following minimization problem:  

 arg min ∥∥



∥∥



       


∥∥
                         (11)

u,D,α k

Here, γ  and ξ  are the regulation parameters. The operator 

Pk extracts the k-th overlapping block from the image u. 

The dictionary D, which is crucial to the denoising perfor-

mance, is learned by the K-SVD algorithm from the degraded 

images [19]. The coefficient α k is sparsely coded with the 

orthogonal matching pursuit (OMP) method [28]. Then, a 

closed-form solution exists for an estimation of the clear 

image u, given by

 













 (12)

Given the computational efficiency and implementation 

simplicity, we reshape the 3D HSI cube by concatenating 

all its vertical spectral slices into a B×MN matrix [15]. 

The column denotes the spectral reflectance of each pixel, 

and the row represents the reshaped image of each band. 

The reshaped Washington DC Mall data in subsection 3.1 

is depicted in Fig. 1. 

To this end, we arrive at the final cost function with the 

constraint of the spectral sparsity imposed on the SSAUV 

model, that is

2
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FIG. 1. The reshaped Washington DC Mall data.

Here in, W is the weighting matrix, which contains M×N 

elements. Formula (13) involves two unsmooth and inseparable 

l1-norm terms. It is difficult to minimize directly. In the next 

subsection, we apply the standard split Bregman algorithm 

[29] to minimize (13) for its efficiency and fast convergence 

to solve the l1-regularized optimization problem. 

2.4. Optimization Procedure

Following Ref. [29], (13) is transformed to the following 

constrained problem by introducing two auxiliary variables 

dx and dy,

2
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Sequentially, (14) is further converted into an unconstrained 

minimization problem by using a quadratic penalty function:
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where α  and β  are the penalization parameters, and bx 

and by are the introduced Bregman variables to accelerate 

the iteration. The above optimization problem can be decoupled 

into three subproblems (16), (18) and (20), together with 

Bregman updates (21).

The u-related subproblem is

2
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which is a least-square problem. Nulling the first derivative 

of (16) yields the following formula
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which is strictly diagonal and can be solved using the Gauss-

Seidel algorithm.

The dx-related subproblem is
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whose solution is
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where in shrink(x, s)=sgn(x) ․ max(-s, 0).

Similarly, the solution to the dy-related subproblem is
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Then, we update the Bregman variables as follows:
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Finally, the normalized mean square error (NMSE) 
2

2

1
2

2
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/

++ − kkk
uuu

 
is applied as the stopping criterion. 

III. RESULTS AND DISCUSSION

To validate the destriping performance, we performed 

simulations and actual experiments, and compared our method 

with the combined wavelet-Fourier filter (wavelet-FFT) [5], 

the variational stationary noise remover method (VSNR) 

[30], the SSAHTV method [14], and the UV method [10]. 

For fair comparison, parameters in these algorithms were 

kept equal for each band. They were tuned until the best 

performance was obtained.

In all cases, the gray values of HSIs were normalized between 

[0, 1]. We refer to peak signal-to-noise ratio (PSNR) and 

structural similarity (SSIM) [31] to quantitatively assess the 

improvement. The mean indices of all the bands are 

denoted as MPSNR and MSSIM. Generally, larger index 

values indicate better restoration results.

3.1. Simulation Results

In this subsection, the Washington DC Mall data, acquired 

by Hyperspectral Digital Imagery Collection Experiment 

(HYDICE), was utilized to test the effectiveness of the proposed 

method. This HSI contained 307 × 307 pixels and 191 

spectral bands. 

Under the assumption that the raw data was noise-free, 

the striped images were obtained by adding the same zero-mean 

Gaussian noise n∈R
1×307

, with the standard deviation (STD) 
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(a) (b) (c)

(d) (e) (f)

FIG. 2. Destriped results of band 58 in Scenario 1. (a) Original 

image. (b) Noisy image. (c)Wavelet-FFT. (d) SSAHTV. (e) 

Proposed model without SR term. (f) Proposed model.

(a) (b) (c)

(d) (e) (f)

FIG. 3. Destriped results of band 156 in Scenario 1. (a) 

Original image. (b) Noisy image. (c) Wavelet-FFT. (d) 

SSAHTV. (e) Proposed model without SR term. (f) Proposed 

model.

(a) (b) (c)

(d) (e) (f)

FIG. 4. Destriped results of band 58 in Scenario 2. (a) Original 

image. (b) Noisy image. (c) Wavelet-FFT. (d) SSAHTV. (e) 

Proposed model without SR term. (f) Proposed model.

(a) (b) (c)

(d) (e) (f)

FIG. 5. Destriped results of band 156 in Scenario 2. (a) 

Original image. (b) Noisy image. (c) Wavelet-FFT. (d) 

SSAHTV. (e) Proposed model without SR term. (f) Proposed 

model.

σ , to all the rows at each band. The addition of the stripes 

was simulated in two different scenarios: (1) For different 

bands, the magnitudes of stripes were equal, i.e., the STD 

σ  was 0.12 for all the bands. (2) For different bands, the 

magnitudes of the stripes were different, i.e., the STD σ 

increased from 0.10 to 0.16 uniformly.

Bands 58 and 156 are selected as typical bands. The 

results for Scenario 1 are shown in Figs. 2 and 3, and Scenario 

2 in Figs. 4 and 5. It is obvious that the proposed method 

achieves the best destriping results, where the stripes are 

altogether removed and the structural details are well preserved. 

In comparison, the band-wise wavelet-FFT method can 

remove most of the stripes and improve the visual quality 

of the images, but a few residual stripes still remain as 

indicated by the ellipse marks. Even worse, the image contrast 

is unexpectedly decreased. The results via the SSAHTV 

model are over-smoothed and exhibit severe loss of details. 

Although this model has taken into account the differences 

of the spectral and spatial information, it fails to exploit 

the directional property of the stripes. Essentially, it is an 

isotropic model, which accounts for the residual stripes. 

The effect of sparse representation (SR) was also investigated. 

The SR term was removed and the stripes were suppressed 

in the SSAUV model. The results in Figs. 2(e)-5(e) show 

that some vertical structures, i.e., the road in the ellipse 

marks, are degraded together with the stripes, which 

implies that spectral distortion may be induced. This is 

primarily because the SSAUV model only emphasizes the 
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                 (a) (b) (c)                  (d)

FIG. 6. Spectrum difference between the noise-free and the destriped image at pixel (100,200) of Scenario 2. (a) Wavelet-FFT. (b) 

SSAHTV. (c) Without SR. (d) Proposed.

                 (a) (b) (c)                  (d)

FIG. 7. Spectrum difference between the noise-free and the destriped image at pixel (300,300) of Scenario 2. (a) Wavelet-FFT. (b) 

SSAHTV. (c) Without SR. (d) Proposed.

 (a)   (b)

FIG. 8. Band-wise PSNR and SSIM values in Scenario 1. (a) 

PSNR. (b) SSIM.

TABLE 1. Quantitative evaluation of the simulated experiments before and after destriping

Scenario Index Wavelet-FFT SSAHTV Without SR Proposed

1
M-MPSNR 29.32(0.03) 28.86(0.03) 29.51(0.04) 32.07(0.03)

M-MSSIM 0.8562(0.0005) 0.6929(0.0013) 0.8952(0.0005) 0.9335(0.0005)

2
M-MPSNR 29.47(0.03) 28.85(0.04) 29.54(0.04) 32.11(0.03)

M-MSSIM 0.8563(0.0005) 0.6708(0.0014) 0.8927(0.0006) 0.9552(0.0006)

 (a)   (b)

FIG. 9. Band-wise PSNR and SSIM values in Scenario 2. (a) 

PSNR. (b) SSIM.

smoothness perpendicular to the stripes, and the spectral 

correlation is ignored. For Scenario 2, Figs. 6 and 7 plot 

the spectrum differences at pixels (100, 200) and (300, 

300) of each band, respectively. It is apparent that the 

proposed method inhibits spectral distortion, benefiting from 

the sparsity constraint. 

Band-wise PSNR and SSIM values of the two scenarios 

are presented in Figs. 8 and 9. The proposed method 

achieves a consistent improvement of over 2 dB in terms 

of PSNR, illustrating that our method is rather noise 

insensitive. In addition, the simulations were repeated 10 

times using different random noise patterns. The arithmetic 

mean of MPSNR and MSSIM with their uncertainties, 

denoted by M-MPSNR and M-MSSIM, is condensed in 

Table 1. The numbers in parentheses correspond to Type 

A standard uncertainty. Consistent with the visual performance, 
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(a) (b) (c)

(d) (e) (f)

FIG. 10. Destriped results of band 96 in EO-1 data. (a) Noisy 

image. (b) Wavelet-FFT. (c) SSAHTV. (d) VSNR. (e) UV. (f) 

Proposed.

(a) (b) (c)

(d) (e) (f)

FIG. 11. Destriped results of band 173 in EO-1 data. (a) Noisy 

image. (b) Wavelet-FFT. (c) SSAHTV. (d) VSNR. (e) UV. (f) 

Proposed.

the proposed method outperforms other methods in point 

of PSNR and SSIM values. The simulations have demon-

strated the compelling performance of our method in 

preserving details and suppressing stripes with less spectral 

distortion, regardless of stripe intensities.

3.2. Actual Results

3.2.1. EO-1 Results

The Earth Observing-1 (EO-1) Hyperion data was acquired 

by the Hyperion sensor over Hualien County, Taiwan on 

May 4th, 2005. The original data, with random noise and 

stripes, was composed of 242 bands in spectrum range of 

0.4 to 2.5 mm. Each band contained 256×6974 pixels. After 

removing some bands with little information, the final test 

data was cropped to the size of 256×256×149. The band 

indexes of the test data were 8~57, 77~115, 117~120, 

131~133, 135, 138, 140~162, 164, 171~176, 179~180, 

182, 184, 195~209, and 222~223, respectively.

The results of band 96 with tiny stripes are shown in 

Fig. 10. As the band-wise wavelet-FFT and VSNR methods 

neglect the spectrally varying intensities of the stripes, the 

global parameters appear so large for this band that the 

destriped images are excessively smoothed. Hence, heavy 

artifacts are introduced. For the SSAHTV method, these 

slight stripes are removed, without causing noticeable artifacts. 

The destriped image in Fig. 10(e) seems plausible. However, 

the UV method focuses too much on the destriping, which 

leads to loss of useful information.

The results of band 173 with severe stripes are shown 

in Fig. 11. For the wavelet-FFT method, although most of 

the stripes are alleviated and visually pleasant results are 

achieved, some residual stripes persist in the ellipse area 

marked in Fig. 11(b). For the results via the SSAHTV model, 

quite a part of stripes can be observed. Even worse, the 

images appear over-smoothed and suffer from significant 

loss of details. Similar results are achieved by the VSNR 

method. According to the destriping result of UV, this method 

is less robust than the proposed method, because we can 

still see stripe artifacts in the ellipse area in Fig. 11(e).

Evidently, our approach provides the best destriping results. 

The stripes in smooth regions are fully erased, while the 

detail information is well preserved, which is attributed to 

the adaptive mechanism in the spatial domain. Furthermore, 

the spectrally varying intensities of the stripes are sufficiently 

considered: On one hand, small denoising strengths are 

enforced to band 96, thus the maximum data genuineness 

is preserved in Fig. 10(f). On the other hand, large denoising 

strengths are enforced to band 173, thus the stripes are 

effectively removed in Fig. 11(f). Besides, benefiting from 

the sparse representation term, the spectral correlation is 

exploited and the contrast of the destriped image is not 

decreased. 

Figs. 12 and 13 display the mean cross-track profiles of 

bands 96 and 173 before and after destriping, respectively. 

Owing to the existence of the stripes, the curves in Figs. 

12(a) and 13(a) exhibit rapid fluctuations. It can be seen 

that the curves of our results are quite smooth and follow 

the similar trend as the raw data. For the wavelet-FFT method, 

the curves appear over smoothed, indicating that the textures 

are unexpectedly degraded. Even though the fluctuations in 

Figs. 12(c), 12(d), 13(c), and 13(d) are somewhat suppressed, 

a few burrs, indicating residual stripes, still remain. For the 

UV method, the trend of the cross-track profile in Fig. 12(e) 

differs a lot from Fig. 12(a), which indicates that brightness 

distortion is introduced in the destriping process.

3.2.2. Urban Results

The Urban scene in Texas was collected by the HYDICE 

sensor, which could be downloaded online at http://www.

tec.army.mil/hypercube. This HSI was ravaged by random 
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(a) (b) (c)

(d) (e) (f)

FIG. 12. Mean cross-track profiles for the images shown in 

Fig.10.

(a) (b) (c)

(d) (e) (f)

FIG. 13. Mean cross-track profiles for the images shown in 

Fig.11.

(a) (b) (c)

(d) (e) (f)

FIG. 14. Destriped results of band 109 in Urban data. (a) 

Noisy image. (b) Wavelet-FFT. (c) SSAHTV. (d) VSNR. (e) 

UV. (f) Proposed.

(a) (b) (c)

(d) (e) (f)

FIG. 15. Destriped results of band 204 in Urban data. (a) 

Noisy image. (b) Wavelet-FFT. (c) SSAHTV. (d) VSNR. (e) 

UV. (f) Proposed.

noise and stripes simultaneously, and consisted of 307×307 

pixels and 210 bands ranging from 0.4 to 2.4 mm. Bands 

104-108, 139-151, and 207-210 were abandoned for high 

degree of noise and little useful information. The remaining 

test data was 307×307×188 in size. 

The destriping results of bands 109 and 204 are presented 

in Figs. 14 and 15, respectively. Subjectively, the proposed 

model is superior to the other four contrasting methods. In 

the band-wise wavelet-FFT method, the damping factor depends 

on the whole data cube and stays constant for each band. 

Consequently, for the bands with slight stripes, the constant 

damping factor is too large to preserve details, as shown 

in Fig. 15(b). The SSAHTV method is capable of eliminating 

the slight stripes, as shown in Fig. 15(c), whereas a few 

severe stripes in Fig. 14(c) still exist since the directional 

characteristic of stripes is not taken into consideration. Besides, 

random noise is suppressed to some extent. For the VSNR 

method and the UV method, the residual stripes are still 

significant in Figs. 15(d) and 15(e), respectively.

3.3. Convergence Speed and Parameter Selection

To measure the convergence speed of the proposed method, 

Fig. 16(a) plots NMSE as a function of iteration numbers 

on the simulated experiment Scenario 2. The NMSE curve 

decreases significantly in the first five iterations due to the 

efficiency of the split Bregman method. Since the evolution 

curve converges after about 17 iterations, the maximum 

number of iterations kmax was empirically set to 20 throughout 

the experiments in this paper. 

The selection of regulation parameters τ 1 and τ 2 plays a 

critical role in the denoising process. To confirm the robustness 

of the proposed method, we plot the curve of MPSNR 

versus τ 1 on Scenario 2 in Fig. 16(b), and the mean absolute 

error (MAE) of the spectrum difference at pixel (100,200) 

versus τ 2 in Fig. 16(c), respectively. In Fig. 16(b), MPSNR 
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                 (a) (b)                              (c)

FIG. 16. (a) Curve of NMSE versus iteration number. (b) Curve of MPSNR versus τ
1
. (c) Curve of MAE of spectrum difference at 

pixel (100, 200) versus τ
2
.

values change little with τ 1 in the interval [0.05, 0.4]. In 

addition, as the stripe intensities are different at each band 

in Scenario 2, it further confirms that our method is robust 

to the variation of stripe intensities. The robustness is 

attributed to the adaptive mechanism in the spectral and 

spatial domain. In this paper, τ 1 was fixed to 0.2. 

As seen in Fig. 16(c), the MAE curve decreases gradually 

with the increase of τ 2 and keeps almost invariable when 

τ 2 exceeds 3. That is, the variation of τ 2 has little effect 

on MAE values, which confirms the robustness over a 

wide range. Empirically, τ 2 was set over 3. Moreover, when 

τ 2 is equal to 0, the sparsity term is abandoned, and the 

proposed model degenerates to the SSAUV model. In this 

case, the MAE values are about 0.04 higher than that of 

the proposed method, which further validates the effectiveness 

of the sparsity regulation. Less spectral distortion is ascribed 

to that sparse representation can preserve the spectral 

correlation via dictionary learning in the spectral domain.

To test the parameter η  on the proposed model, PSNR 

values are tested on the simulation experiment when η  is 

selected to be 5, 10, 15, 20, and 25, respectively. PSNR 

values change little when η  varies from 5 to 25, which 

indicates that the proposed method is robust with the 

parameter η . Thus, η  is fixed to 15 throughout this paper.

Selection principles of the parameters in split Bregman 

and sparse representation methods are not particularly discussed, 

as they are beyond the scope of this paper. 

IV. CONCLUSION

In this paper, we present a variational method to destripe 

HSIs. We take the stripe noise properties of unidirection, 

spectral correction, and variation of stripe intensities in 

different bands and regions into full consideration. Instead 

of manual selection band by band, regulation parameters 

adapt to the spectrally varying intensities of stripes and the 

spatially varying texture information. Moreover, spectral 

correlation is exploited via the sparse representation constraint 

to prevent spectral distortion. Then, the split Bregman 

method is employed to optimize the minimization problem. 

Experiment results demonstrate that the proposed method 

can remove the stripes in different bands and different regions 

efficiently, without distortion in the spectral domain and 

loss of structural details. In addition, the proposed method 

is robust to parameter selection and stripe intensities. 

The proposed method may be computationally complex, 

as any iterative algorithm. Future extension of this work 

may include speeding up the method with parallel techniques, 

such as graphic processing units (GPUs). Destriping, as 

well as deblurring, dehazing, and super resolution is a typical 

inverse problem. It may be interesting to tackle these issues 

simultaneously in one framework.
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