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The special material performance, manufacturing process, machining behavior, and operating condition of composite materials
cause uncertainties to inevitably appear in the mechanical properties of composite structures. Therefore, variability in mechanical
properties must be considered in a mechanical response analysis of composite structures. A method is proposed in this paper
to predict the dynamic performance of composite landing gear with uncertainties using experimental modal analysis data and
nonlinear static test data. In this method, the nonlinear dynamic model of the composite landing gear is divided into two parts,
the linear and the nonlinear parts. An experimental modal analysis is employed to predict the linear parameters with a frequency
response function, and the nonlinear parameters caused by large deflection are identified by a nonlinear static test with the nonlinear
least squares method. To check the accuracy and practicability of the method, it is applied to drop impact simulations and tests of
composite landing gear. The results of the simulations are in good agreement with the test results, which shows that the proposed
method is perfectly suited for the dynamic analysis of composite landing gear.

1. Introduction

Landing gear is the undercarriage of an aircraft or spacecraft
andmay be used for either takeoff or landing. For aircraft, the
landing gear supports the craft when it is not flying, allowing
it to take off, land, and taxi without damage. The impact
loads are extremely high when the aircraft is landing [1–4],
and the aircraft equipment would be damaged if the high-
impact loads were transmitted to the airframe.Therefore, the
landing gear is designed to absorb and dissipate the kinetic
energy of the landing impact, reducing the impact loads
transmitted to the airframe. The need to design landing gear
takes into account various requirements of strength, stability,
and stiffness, so accurate analyses are needed in the design of
landing gear.

Composite materials are widely used in aerospace, air-
craft, marine, civil, automotive, sport [5], and even optical
engineering [6–10]. This is due to their outstanding physical,
mechanical, and thermal properties, particularly their high

stiffness and strength to weight ratios, good fatigue strength,
excellent corrosion resistance, and dimensional stability.
Composite materials frequently appear in impact condition.
Increasing numbers of landing gears are being made of
composite materials in the aviation field.

The dynamic characteristic analysis of the composite
structures has recently attracted more attention. The finite
element method is generally used for the analysis of complex
structural behaviors of the composite structures. Many excel-
lent theories are available on the finite element method for
composite structural analysis. The classical analysis theory is
based on the Kirchhoff plate theory, which is the simplest the-
ory among them.The first-order shear deformation theory is
suitable for the global structural behavior of thin and moder-
ately thick laminated composite. Various higher-order shear
deformation theories have overcome limitations in both the
classical and first-order shear deformation theories. Layer-
wise lamination theory, which can predict the interlaminar
stresses accurately, assumes a displacement representation
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formula in each layer, and the theory based on the 3D
continuum can predict a composite laminate’s interlaminar
stress [11].

The theories have made significant progress but are based
on accurate composite material parameters. The material
properties determined from standard specimens tested in the
laboratorymay deviate significantly from those of actual lam-
inated composite componentsmanufactured in a factory [12].
Composite structures exhibit variability and uncertainties in
their material properties with relation to their compositions
and manufacturing processes [13]. Operating conditions,
quality control procedures, and environmental effects are
often difficult to control, which affect the performance of
composite structures [14]. Delamination is a major problem
in composite manufacturing which brings uncertainties in
the material properties of composites [15]. The nonhomoge-
neous and anisotropic nature of composite materials make
their machining behavior differ from metal machining [16],
which can affect the mechanical properties of the composite
structures [17]. Adhesive bonding is common practice in the
interaction of composite parts, and its uncontrollable fea-
ture of consumption makes the parts’ preformation discrete
[18]. To ensure high reliability of the structures, the actual
behaviors of the composite parts in servicemust be accurately
predicted and carefully monitored.Therefore, it is essential to
capture and model the variability and uncertainties inherent
in these material properties.

The properties of composites can be obtained accu-
rately via experimental tests [19], so the mixed numerical-
experimental technique is applied to extract the physical
information of composites. This usually involves minimizing
an error function between the experimental and numerical
outputs [13]. Constructing of predictive computational mod-
els for analysis and design of many complex engineering
systems requires not only a fine representation of the rel-
evant physics and their interactions but also a quantitative
assessment of underlying uncertainties and their impact
on design performance objectives [20]. Hence, a thorough
characterization of the mechanical properties of these struc-
tures is needed to establish reliable designs. Soares et al.
identified elastic properties of laminated composites by using
experimental eigenfrequencies.The stiffness parameters were
identified from the measured natural frequencies of the
laminated composites plate by direct minimization of the
identification function [21]. A similar method was used by
Frederiksen and Araújo. Frederiksen improved the model
used for identification [22]. Araújo used a mixed numerical-
experimental technique to identify the damping properties
of plyometric composites [23]. Cunha et al. identified several
properties of a composite plate froma single test [24].Diveyev
et al. predicted elastic and damping properties of composite
laminated plates on the basis of static three-point bending
tests, measured eigenfrequencies, and refined calculation
schemes [25]. Rikards et al. identified the elastic properties
of cross-ply laminates from the measure eigenfrequencies of
composite plates [26].

The mixed numerical-experimental technique makes the
finite element method suitable for dynamic analysis of the
laminated composites. However, the tests for measuring

eigenfrequencies of composite plates are almost all linear,
as in the works mentioned above, and do not consider the
structural nonlinearities of the laminated composites. There
are obvious geometrical nonlinearities in the work process
of landing gears, so the nonlinear system identification is
needed in the nonlinear structural models of landing gears.
The nonlinear system identification in structural dynamics
has been studied since the 1970s; many excellent methods
are available for identification of nonlinear structuralmodels.
Time-domain methods, such as the restoring force surface
method, the approach based on nonlinear autoregressive
moving average with exogenous input model, and Hilbert
transform-based data decomposition [27], have the advan-
tage that the signals are directly provided by currentmeasure-
ment devices; less time and effort is spent on data acquisition
and processing [28]. The frequency-domain methods con-
sider the data from Fourier spectra, frequency response, and
transmissibility functions, or power spectral densities, and
extend modal analysis to nonlinear structures [28]. Time-
frequency analysis offers useful insight into the dynamics of
nonlinear systems [27]. Modal methods develop nonlinear
system identification techniques based on nonlinear modes
[28]. Black-box modeling concentrates on function which
maps the input to the output [28]. Model updating methods
improve the nonlinear dynamic modeling with test results
[27].

Our study is aimed at expanding a numerical-experi-
mental method based on linear and nonlinear tests for non-
linear modeling and drop impact analysis of composite land-
ing gear.

2. Numerical-Experimental Method

The equation of motion of an 𝑛-degree-of-freedom nonlinear
system can be written in the following form:

Mẍ (𝑡) + Cẋ (𝑡) + (K + Ku) x (𝑡) = F (𝑡) , (1)

where M and K are the real symmetric mass and stiffness
matrices, respectively, C is the damping of the system, x(𝑡)
and F(𝑡) are the displacements and exciting load vectors,
respectively, and Ku is the geometrically nonlinear stiffness
component dependent on displacements. For the relevant
problems, the nonlinear stiffness force vector Kux(𝑡) repre-
sents a deviation from the linear stiffness force vector Kx(𝑡)
and is more than adequately represented by second- and
third-order terms in x(𝑡). When displacements are small, the
second- and third-order terms become negligible and the
total stiffness-related force vector is reduced to the regular
linear term Kx(𝑡).

Any solution to (1) requires knowledge of the system
matrices. In the linear identification works mentioned above,
M, K, and C are generally available. The geometrically
nonlinear stiffness is related to Ku, which is typically not
available within a linear identification work. Therefore, a
mean of numerically evaluating M, K, C, and Ku was devel-
oped.
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A set of coupled modal equations with reduced degrees
of freedom is first obtained by applying the modal coordinate
transformation:

x (𝑡) = Φq (𝑡) , (2)

where Φ is eigenvector matrices of the model defined in (1)
without Ku and q(𝑡) is the vector of the displacement modal
coordinates for each time instance 𝑡.

Generally, a subset of 𝑙 eigenvectors are included in the
solution such that 𝑙 ≤ 𝑛, and 𝑛 is the number of physical
degrees of freedom.

Then, (1) can be expressed as

M̃q̈ (𝑡) + C̃q̇ (𝑡) + Κ̃q (𝑡) + 𝛾 (𝑞1, 𝑞2, . . . , 𝑞𝑙) = F̃ (𝑡) , (3)

where

M̃ = Φ𝑇MΦ = Ι
C̃ = Φ𝑇CΦ = 2𝜉𝜔
Κ̃ = Φ𝑇KΦ = 𝜔2
𝛾 = Φ𝑇KuΦ

F̃ (𝑡) = Φ𝑇F (𝑡) .

(4)

𝑞1, 𝑞2, . . . , 𝑞𝑙 are the components of q(𝑡). 𝜔 is the eigen-
value matrices of the model defined in (1) and 𝜉 is the
damping ratio of the model. Then, (3) can be written as

q̈ (𝑡) + 2𝜉𝜔q̇ (𝑡) + 𝜔2q (𝑡) + 𝛾 (𝑞1, 𝑞2, . . . , 𝑞𝑙)
= ΦΤF (𝑡) . (5)

Equation (5) can be divided into two parts: the linear part

q̈ (𝑡) + 2𝜉𝜔q̇ (𝑡) + 𝜔2q (𝑡) = ΦΤF𝑚 (𝑡) (6)

and the nonlinear part

𝛾 (𝑞1, 𝑞2, . . . , 𝑞𝑙) = ΦΤF𝑠 (𝑡) − 𝜔2q (𝑡) , (7)

where F𝑚(𝑡) is linear identification load and F𝑠(𝑡) is nonlinear
identification load.

In the numerical-experimental method of this paper,
the linear part was identified by experimental eigenvalue
matrices, eigenvectormatrices, and others from experimental
modal analysis, and the nonlinear part was identified by
a nonlinear static test. The flowchart of the numerical-
experimental method is shown in Figure 1.

2.1. Linear Parameters Identification. The linear parameters
were identified by experimental modal analysis. The exper-
imental modal analysis is a method to describe a structure
in terms of its natural characteristics which are the frequen-
cies, damping, and mode shapes. By using signal-analysis
techniques, one can easily measure vibration on operating
structures and make a frequency analysis.

The frequency spectrum is the description of how vibra-
tion levels vary with frequencies which can then be checked

against a specification. The frequency response function
measurement removes forces spectrum from the data and
describes the inherent structural response between defined
points on the structure.

In the time domain, structural properties are given in
terms of mass, stiffness, and damping. The dynamic equilib-
rium of an 𝑛-degree-of-freedom system is generally given by

Mẍ (𝑡) + Cẋ (𝑡) + Kx (𝑡) = F (𝑡) . (8)

The corresponding dynamic equilibrium in frequency
domain can be described as

(K + 𝑖𝜔C − 𝜔2M)X (𝜔) = F (𝜔) , (9)

where 𝜔 is the circular frequency of exciting loads and X(𝜔)
and F(𝜔) are the Fourier transforms of output and input.

X (𝜔) = ∫+∞
−∞

x (𝑡) 𝑒−𝑖𝜔𝑡𝑑𝑡
F (𝜔) = ∫+∞

−∞
F (𝑡) 𝑒−𝑖𝜔𝑡𝑑𝑡.

(10)

The frequency response vector X(𝜔) could be expressed
as

X (𝜔) = (K + 𝑖𝜔C − 𝜔2M)−1 F (𝜔) . (11)

The matrixH(𝜔) is usually called the frequency response
matrix.

H (𝜔) = (K + 𝑖𝜔C − 𝜔2M)−1 (12)

and the frequency response function model is the ratio
of output/input spectra. Then, 𝜔 and Φ, which are the
eigenvalue and eigenvector matrices of the model, could be
obtained fromH(𝜔).
2.2. Nonlinear Parameters Identification. The nonlinear
parameters were identified by a nonlinear static test. This
test measures the nonlinear displacements of the composite
structure x(𝑡) under different loads Fs(𝑡).

The equation of an n-degree-of-freedom under static
loads can be seen as in (7), shown above.

𝛾 (𝑞1, 𝑞2, . . . , 𝑞𝑙) = ΦΤF𝑠 (𝑡) − 𝜔2q (𝑡) . (13)

𝜔 and Φ, being the eigenvalue and eigenvector matrices of
the dynamic system, are obtained from linear parameters
identification. Fs(𝑡) and x(𝑡) are obtained from the nonlinear
static test, and q(𝑡) is converted from

x (𝑡) = Φq (𝑡) . (14)

Muravyov [29] and Kuether et al. [30] wrote the dynamic
equations in modal coordinates and determined nonlinear
stiffness coefficients by combining the linear modes. For the
dynamic analysis, the process of obtaining the nonlinear
stiffness coefficients replaces the procedure of solving the
change ofmodal shapes and frequencies caused by deflection,



4 Shock and Vibration

Experimental modal analysis Experimental static analysis

Nonlinear dynamic model

Nonlinear dynamic equation

Linear part Nonlinear part

Linear parameters
identification

Nonlinear parameters
identification

q̈(t) + 2�흃�흎q̇(t) + �흎�ퟐq(t) + �훾 (q1, q2, . . . , ql) = �횽TF(t)

q̈(t) + 2�흃�흎q̇(t) + �흎�ퟐq(t) = �횽TFm(t) �훾 (q1, q2, . . . , ql) = �횽TFs(t) − �흎�ퟐq(t)

Figure 1: The flowchart of the numerical-experimental method.

and the verification results in their works show that the
method has enough accuracy for the dynamic analysis.

The nonlinear force vector may be expressed in the
following form:

𝛾 (𝑞1, 𝑞2, . . . , 𝑞𝑙) = 𝑙∑
𝑗=1

𝑙∑
𝑘=𝑗

𝑎𝑟𝑗𝑘𝑞𝑗𝑞𝑘

+ 𝑙∑
𝑗=1

𝑙∑
𝑘=𝑗

𝑙∑
𝑚=𝑘

𝑏𝑟𝑗𝑘𝑚𝑞𝑗𝑞𝑘𝑞𝑚
= ΦΤF𝑠 (𝑡) − 𝜔2q (𝑡) ,

(15)

where 𝑎𝑟 and 𝑏𝑟 are the 𝑟th line identification parameters
of 𝛾, and 𝑟 = 1, 2, . . . , 𝑙. 𝑙 is the number of modes used in
parameters identification.

The nonlinear parameters 𝑎 and 𝑏 in (15) were identified
by the nonlinear static test based on the nonlinear least
squares method. The nonlinear least squares method is one
of the most common methods used in practical data analysis
and involves the fitting of a theoretical model to experimental
data. Frequently, the model takes the form of a dependent
variable expressed as a function of several independent
variables. Often themodel will contain one ormore estimated
parameters. This estimation occurs on the basis of fitting the
model to observations using the least squares concept.

There is a model of the following form:

Q = f (𝐾, 𝐿; 𝛼, 𝛽) , (16)

whereQ is viewed as a function of two independent variables𝐾 and 𝐿 and 𝛼 and 𝛽 are two constants. The objective is
to estimate the values of the parameters 𝛼 and 𝛽, which we
shall do by minimizing the sum of squared errors 𝑆 over the
allowable values of 𝛼 and 𝛽:

𝑆 = 𝑆 (𝛼, 𝛽) = ∑[𝑓 (𝐾, 𝐿; 𝛼, 𝛽) − 𝑄]2 . (17)

1400 mm

7mm

40
0

m
m

Junction to fuselage
Junction to wheel

Figure 2: The composite landing gear.

The first-order necessary condition for a minimum is

𝜕𝑆𝜕𝛼 = 0
𝜕𝑆𝜕𝛽 = 0.

(18)

Then, the values of𝐾 and 𝐿 are solved out.
The nonlinear dynamic model is built after the linear

parameters 𝜔, 𝜉, andΦ and nonlinear parameters a and b are
identified.

3. Identification of Composite Landing Gear

3.1. Composite Landing Gear. The composite landing gear, as
shown in Figure 2, is considered as follows. The length of
the landing gear is 1400mm, the height is 400mm, and the
thickness is 17mm.The top of the landing gear is fixed to the
fuselage, and the bottom is the junction to wheels.

Three composite materials, the carbon cloth, the glass
cloth, and the glass fiber with polymeric matrix, are used in
the manufacture of the landing gear, as shown in Figure 3.

3.2. Linear Parameters Identification of the Landing Gear.
The linear parameters of the composite landing gear were
identified by experimental modal analysis. In general, the
database is obtained from direct measurements. The fre-
quency response functions are the measured output that will
be used to construct the experimental realizations of the
linear parameters identification.

The landing gear was tested in fixed constraint at the
junction to the fuselage, as shown in Figure 4.



Shock and Vibration 5

(5)
(4)
(3)
(2)
(1)

(5) Carbon cloth
(4) Glass cloth
(3) Glass fibre
(2) Glass cloth
(1) Carbon cloth

XC

YC

ZC

Figure 3: Composition of the landing gear.

Figure 4: Setup of experimental modal analysis.

Sensor

Figure 5: Locations of sensors.

The sensors were located in the center of both sides of the
landing gear and separated by 20mm, as shown in Figure 5.

The FRFs (frequency response functions) were computed
by a data acquisition and analysis system LMS SCADAS
III, and the experimental natural frequencies and modal
shapes were obtained by modal analyses using LMS Test.Lab
Structure analysis.

The first six modal shapes are shown in Figure 6.
Table 1 gives the first twenty frequencies of each mode.

3.3. Nonlinear Parameters Identification of the Landing Gear.
The nonlinear parameters were identified by nonlinear static
test.The test was performed in fixed constraint at the junction
to the fuselage, and vertical downward loads were applied on
the junction to the wheel, as shown in Figure 7.

The displacement of the landing gear changed as the
load changed. The loads varied from 100N to 1000N with

Table 1: Frequency versus mode number.

Mode Frequency/Hz
1 34.09
2 78.52
3 84.00
4 137.81
5 142.06
6 214.93
7 288.72
8 356.38
9 433.49
10 435.64
11 590.66
12 658.78
13 666.52
14 769.27
15 824.36
16 961.63
17 1068.71
18 1165.20
19 1172.93
20 1303.38

Table 2: Results of the nonlinear static test.

Load/N Displacement/mm
100 2.68
200 5.36
300 7.98
400 10.76
500 14.12
600 17.28
700 19.35
800 23.55
900 25.49
1000 28.61

increment of 100N. The displacements were measured by
height caliper, and the displacements under different loads
are shown in Table 2.

The nonlinear parameters of the composite landing gear
were identified by (15) with the nonlinear least squares
method based on the results of the nonlinear static test. Four
modes were used to identify the nonlinear parameters of the
composite landing gear.

𝛾 (𝑞1, 𝑞2, . . . , 𝑞𝑙) = 𝑙∑
𝑗=1

𝑙∑
𝑘=𝑗

𝑎𝑟𝑗𝑘𝑞𝑗𝑞𝑘

+ 𝑙∑
𝑗=1

𝑙∑
𝑘=𝑗

𝑙∑
𝑚=𝑘

𝑏𝑟𝑗𝑘𝑚𝑞𝑗𝑞𝑘𝑞𝑚
= ΦΤF𝑠 (𝑡) − 𝜔2q (𝑡) .

(19)
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Figure 6: Modal shapes of the composite landing gear.

Load point

Fixed constraint

Figure 7: Setup of nonlinear static test.

The displacements of the landing gear under different
loads were recalculated after the nonlinear parameters were
identified. The results of the identification were compared
with the displacement-loading curve of the nonlinear static
test, as shown in Figure 8.

Figure 8 shows that the results of the identification are
not obviously different from the results of the nonlinear static
structural test.
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Figure 8: Results comparison of identification and test.

3.4. Tire Modeling. The tire modeling of the land gear is clas-
sical tire theory, which is based on the work of Mitschke and
Wallentowitz [31]. In their work, a penetration formulation is



Shock and Vibration 7

Tire

Ground

Flat

Vroll

Fnom

�휃V

x

z

�휏

Figure 9: Tire modeling.

Table 3: Tire parameters.

Parameter Value
Radius 0.1m
Width 0.075m
Vertical stiffness 75000N/m
Lateral stiffness 166.55N/∘

Mass 1.5 kg𝐼𝑥𝑥/𝐼𝑦𝑦 3.45 × 10−3 kg⋅m2
𝐼𝑧𝑧 5.62 × 10−3 kg⋅m2
Damping 175N/(m/s)

used to calculate the normal force of the tire applied by the
ground, as shown in Figure 9.

The normal force applied to the tire is proportional to the
penetration depth and the penetration rate, described as

𝐹nom = 𝐾nom𝜏 + 𝐶nom ̇𝜏, (20)

where 𝐾nom and 𝐶nom are the vertical stiffness and damping
of tire, respectively, and 𝜏 is the penetration depth.

The lateral force of the tire is described as a function of
slip angle. The slip angle 𝜃 is the included angle of the tire’s
velocity and the tires’ longitudinal axes, as shown in Figure 9.
The lateral force is applied to account for the side loading on
the tire and can be written as

𝐹lat = 𝐶lat𝜃, (21)

where 𝐶lat is the lateral stiffness factor of the tire.
The parameters of the tire used in our work were mea-

sured by experimental method and are shown in Table 3.

4. Drop Impact Analysis of the Composite
Landing Gear

The landing gear is designed to absorb and dissipate the
kinetic energy of the landing impact, reducing the impact
loads transmitted to the airframe. Drop impact analysis is
the method most widely used to check performance of the
landing gear. Therefore, three drop impact simulations of the
composite landing gear were carried out with the nonlinear
dynamicmodel identified in Section 3. To check the accuracy
of the method, three drop impact tests were also conducted.

4.1. Method for Drop Simulations. The drop impact simula-
tions were carried out with the identified nonlinear dynamic
model. In the simulations, the composite landing gear was
dropped froma certain height and thewhole process dynamic
response of the landing gear was calculated.

To solve the nonlinear dynamic model, (5) was projected
in the modal space. The modal space could reduce the
differential equation to first order.

The nonlinear part of (7) was written as

𝛾 (𝑞1, 𝑞2, . . . , 𝑞𝑙) = 𝑙∑
𝑗=1

𝑙∑
𝑘=𝑗

𝑎𝑟𝑗𝑘𝑞𝑗𝑞𝑘

+ 𝑙∑
𝑗=1

𝑙∑
𝑘=𝑗

𝑙∑
𝑚=𝑘

𝑏𝑟𝑗𝑘𝑚𝑞𝑗𝑞𝑘𝑞𝑚
= 𝜒 (𝑞1, 𝑞2, . . . , 𝑞𝑙) q (𝑡) .

(22)

Then, the modal space of (5) was

ż (𝑡) = Dz (𝑡) +D𝑥z (𝑡) + VF (𝑡) , (23)

where

z (𝑡) = {q (𝑡)
q̇ (𝑡)}

V = { 0
ΦΤ
}

D = [ 0 𝐼
−𝜔2 −2𝜉𝜔]

D𝑥 = [ 0 0
−𝜒 (𝑞1, 𝑞2, . . . , 𝑞𝑙) 0] .

(24)

Cacciola and Muscolino put forward a new approach to
convert the modal space to iterative equation in discrete time
[32]. Divide the time axis in small intervals of equal lengthΔ𝑡 and let 𝑡0, 𝑡1, . . . , 𝑡𝑘, 𝑡𝑘+1, . . . be the division time.Then, the
numerical solution of (23) can be written as follows:

z𝑘+1 = Γ1 (Δ𝑡)Dx (z𝑘+1) z𝑘+1
+ (Θ0 (Δ𝑡) + Γ0 (Δ𝑡)Dx (z𝑘)) z𝑘
+ Γ0 (Δ𝑡)VF𝑘 + Γ1 (Δ𝑡)VF𝑘+1,

(25)

where

z𝑘 = z (𝑡𝑘)
F𝑘 = F (𝑡𝑘) ,

L (Δ𝑡) = [Θ0 (Δ𝑡) − I]D−1
Γ0 (Δ𝑡) = [Θ0 (Δ𝑡) − 1Δ𝑡L (Δ𝑡)]D−1
Γ1 (Δ𝑡) = [ 1Δ𝑡L (Δ𝑡) − I]D−1.

(26)
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Θ0(𝑡) is the so-called transition or fundamental matrix
which is given as

Θ0 (𝑡) = [−g (𝑡)𝜔
2 h (𝑡)

−h (𝑡)𝜔2 ḣ (𝑡)] , (27)

where g(𝑡), h(𝑡), ġ(𝑡), and ḣ(𝑡) are diagonal matrices whose𝑗th elements are given, respectively, as

𝑔𝑗 (𝑡) = − 1𝜔2𝑗 𝑒
−𝜉𝑗𝜔𝑗𝑡 [cos (𝜔𝐷,𝑗𝑡) + 𝜉𝑗𝜔𝑗𝜔𝐷,𝑗 sin (𝜔𝐷,𝑗𝑡)]

ℎ𝑗 (𝑡) = ̇𝑔𝑗 (𝑡) = 1𝜔𝐷,𝑗 𝑒−𝜉𝑗𝜔𝑗𝑡 sin (𝜔𝐷,𝑗𝑡)

ℎ̇𝑗 (𝑡) = 𝑒−𝜉𝑗𝜔𝑗𝑡 [cos (𝜔𝐷,𝑗𝑡) − 𝜉𝑗𝜔𝑗𝜔𝐷,𝑗 sin (𝜔𝐷,𝑗𝑡)] ,
(28)

and

𝜔𝐷,𝑗 = 𝜔𝑗√1 − 𝜉2𝑗 (29)

is the 𝑗th damped natural frequency.
Then, (25) can be written as follows:

z𝑘+1 = (𝐼 − Γ1 (Δ𝑡)Dx (z𝑘+1))−1
⋅ (Θ0 (Δ𝑡) + Γ0 (Δ𝑡)Dx (z𝑘)) z𝑘
+ (𝐼 − Γ1 (Δ𝑡)Dx (z𝑘+1))−1
⋅ (Γ0 (Δ𝑡)VF𝑘 + Γ1 (Δ𝑡)VF𝑘+1) .

(30)

The solution process of (30) was nonlinear, so an iterative
method was needed. The iterative method used here was the
Newton Raphson method.

In general, we will be searching for one or more solutions
to the equation:

F (x) = 0
⇓

𝑓1 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 0
𝑓2 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 0

...
𝑓𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 0.

(31)

Consider the Taylor-series expansion of the functionF(𝑥)
about a value x = x𝑗:

F (x) = F (x𝑗) + (𝜕F (x)𝜕x )
x𝑗
(x − x𝑗)

+ 12 (𝜕
2F (x)𝜕x2 )

x𝑗
(x − x𝑗)2 + 𝑂 (x3) x𝑗 = 0.

(32)

Figure 10: System of drop tests.

Using only the first two terms of the expansion, a first
approximation to the root of (31) can be obtained from

F (x) = F (x𝑗) + (𝜕F (x)𝜕x )
x𝑗
(x − x𝑗) ≈ 0. (33)

Such approximation is given by

x ≈ x𝑗 − (𝜕F (x)𝜕x )−1
x𝑗
F (x𝑗) . (34)

The Jacobian matrix of F(x) is J(x):

J (x) =
[[[[[[[[[[[
[

𝜕𝑓1𝜕𝑥1
𝜕𝑓1𝜕𝑥2 ⋅ ⋅ ⋅

𝜕𝑓1𝜕𝑥𝑛𝜕𝑓2𝜕𝑥1
𝜕𝑓2𝜕𝑥2 ⋅ ⋅ ⋅

𝜕𝑓2𝜕𝑥𝑛... ... ... ...
𝜕𝑓𝑛𝜕𝑥1

𝜕𝑓𝑛𝜕𝑥2 ⋅ ⋅ ⋅
𝜕𝑓𝑛𝜕𝑥𝑛

]]]]]]]]]]]
]

. (35)

Then, the solution of (31) is

x = x − 𝐽 (x)−1 F (x) . (36)

The convergence criterion of the iterative process was
based on the minimum 2-norm. In the solution process of
(30), while

󵄩󵄩󵄩󵄩z𝑘+1 − z𝑘
󵄩󵄩󵄩󵄩2 ≤ CRIT (37)

the results are convergent.

4.2. Setup of Drop Tests. The drop tests were carried out with
the system shown in Figure 10, and the degrees of freedom
except the vertical direction of the composite landing gear
were limited by the drop-test platform.

The wheels were fixed to the bottom of the landing gear,
and the equivalent mass of the aircraft was fixed to the
junction to fuselage, as shown in Figure 11.



Shock and Vibration 9

Figure 11: Setup of drop tests.

Table 4: Parameters of the drop impact analysis.

Number Equivalent mass/kg Height/m AOA/∘

A 120 0.136 0
B 131 0.46 0
C 136 0.46 12

In drop tests, the composite landing gear was dropped
from the same height as the simulations, and impact loads
of the ground were applied to the wheels. The whole process
dynamic response was collected by sensors, and the data
collection system was LMS SCADAS III.

4.3. Drop Impact Analysis. To check the accuracy of the
identified nonlinear dynamic model, three groups of drop
impact analysis were carried out. Every group contained a
drop simulation and a drop test. The drop simulations were
based on the identified nonlinear dynamic model, and the
experimental method mentioned above was used in the drop
tests.

The analysis parameters of drop impact analysis are
shown in Table 4.

Since the fuselage of the aircraft was replaced by the
equivalent mass, the dynamic responses of the equivalent
mass were measured in the drop impact analysis. In drop
analysis A, the dynamic responses of the equivalentmass after
both the drop simulation and drop test were compared, and
the results are shown in Figure 12.

Figure 12 shows that the result of the simulation is in good
agreement with the result of the test, and the maximum error
of the simulation compared to the test is 4.33%.

The analysis parameters of the second drop impact
analysis are different from those of the first analysis. The
dynamic responses of the equivalent mass after both drop
simulation and the drop test were compared; the results are
shown in Figure 13.

Figure 13 shows that the result of the simulation is
not obviously different from the result of the test, and the

Drop simulation A 
Drop test A
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Figure 12: Comparison of results for drop analysis A.

maximum error of the simulation compared to the test is
5.36%.

In the third drop impact analysis, the dynamic responses
of the equivalent mass after both the drop simulation and
drop test were compared, and the results are shown in
Figure 14.

Figure 14 shows that the result of the simulation is in good
agreement with the result of the test, and the maximum error
of the simulation compared to the test is 4.55%.

5. Conclusion

A method is proposed in this paper to predict the dynamic
performance of composite landing gear with uncertainties
using experimental modal analysis data and nonlinear static
test data. In the method, the nonlinear dynamic model of the
composite landing gear is divided into two parts: the linear
and the nonlinear parts. Experimental modal analysis is
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Drop simulation B 
Drop test B
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Figure 13: Comparison of results for drop analysis B.

Drop simulation C
Drop test C
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Figure 14: Comparison of results for drop analysis C.

employed to predict the linear parameters with a frequency
response function and the geometrically nonlinear parame-
ters are identified by nonlinear static test with the nonlinear
least squares method.

To check its accuracy and practicability, the method is
applied to drop impact analysis of composite landing gear.
Both simulations and tests are conducted for the drop impact
analysis, and the errors of the analyses are extremely small.
Themaximum error of the simulation compared to the test is
4.33% in drop analysis A, themaximum error of drop analysis
B is 5.36%, and the maximum error of drop analysis C is
4.55%. The results of the simulations are in good agreement
with the test results, which shows that the proposed method
can accurately model the dynamic performance of composite
landing gear and themethod is perfectly suitable for dynamic
analysis of composite landing gear.
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R. S. Tavares, “Delamination analysis of carbon fibre reinforced
laminates: Evaluation of a special step drill,” Composites Science
and Technology, vol. 69, no. 14, pp. 2376–2382, 2009.

[18] S. Pantelakis and K. I. Tserpes, “Adhesive bonding of composite
aircraft structures: Challenges and recent developments,” Sci-
ence China: Physics, Mechanics and Astronomy, vol. 57, no. 1, pp.
2–11, 2014.

[19] D. Jiang, Y. Li, Q. Fei, and S.Wu, “Prediction of uncertain elastic
parameters of a braided composite,” Composite Structures, vol.
126, pp. 123–131, 2015.

[20] L. Mehrez, A. Doostan, D. Moens, and D. Vandepitte, “Stochas-
tic identification of composite material properties from lim-
ited experimental databases, part ii: uncertainty modelling,”
Mechanical Systems and Signal Processing, vol. 27, pp. 484–498,
2012.

[21] C. M. M. Soares, M. M. de Freitas, A. L. Araújo, and P.
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