
Quantum Inf Process (2017) 16:21
DOI 10.1007/s11128-016-1487-5

Quantum phase transition, quantum fidelity and fidelity
susceptibility in the Yang–Baxter system

Taotao Hu1 · Qi Yang1 · Kang Xue1 ·
Gangcheng Wang1 · Yan Zhang1 · Xiaodan Li3 ·
Hang Ren2

Received: 28 January 2016 / Accepted: 29 November 2016 / Published online: 18 December 2016
© Springer Science+Business Media New York 2016

Abstract In this paper, we investigate the ground-state fidelity and fidelity suscep-
tibility in the many-body Yang–Baxter system and analyze their connections with
quantum phase transition. The Yang–Baxter system was perturbed by a twist of eiϕ at
each bond, where the parameter ϕ originates from the q-deformation of the braiding
operator U with q = e−iϕ (Jimbo in Yang–Baxter equations in integrable systems,
World Scientific, Singapore, 1990), and ϕ has a physical significance of magnetic
flux (Badurek et al. in Phys. Rev. D 14:1177, 1976). We test the ground-state fidelity
related by a small parameter variation ϕ which is a different term from the one used
for driving the system toward a quantum phase transition. It shows that ground-state
fidelity develops a sharp drop at the transition. The drop gets sharper as system size N
increases. It has been verified that a sufficiently small value of ϕ used has no effect on
the location of the critical point, but affects the value of F(gc, ϕ). The smaller the twist
ϕ, the more the value of F(gc, ϕ) is close to 0. In order to avoid the effect of the finite
value of ϕ, we also calculate the fidelity susceptibility. Our results demonstrate that in
the Yang–Baxter system, the quantum phase transition can be well characterized by
the ground-state fidelity and fidelity susceptibility in a special way.
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1 Introduction

Quantum phase transitions (QPTs) [1], especially in one and two dimensions, have
drawn a considerable interest within many fields of physics till now. Recently, generous
of effort [2–20] has been devoted to the role of fidelity, a concept emerging from
quantum information theory [21], in quantum critical phenomena [22], demonstrating
that fidelity is an efficient probe of quantum criticality [10–13]. Fidelity as well as Berry
phase have also been used to analyze quantum phase transitions from a geometrical
perspective recently. In [23], Venuti et al. unified these two approaches showing that
the underlying mechanism is the critical singular behavior of a complex tensor over
the Hamiltonian parameter space. The advantage of the fidelity is that it is a space
geometrical quantity; no a priori knowledge of the order parameter and symmetry
breaking is required in studies of QPTs.

In particular, the minimum of fidelity near a critical point has been established
in several models [3,13]. For a recent review of the fidelity approach to QPTs, see
Ref. [12], most of these studies consider the case where the system undergoes a
quantum phase transition as the coupling λ is varied. The quantum fidelity is then
defined corresponding to the same parameter. Apart from some studies [9,23–25],
relatively little attention has been given to the case where the quantum fidelity is
defined with respect to a parameter different from λ. Here, we consider this case in
detail for the many-body Yang–Baxter system and show that the QPTs can be well
characterized by the ground-state fidelity and fidelity susceptibility in a special way, in
which we get the ground-state fidelity as a function of coupling g to study QPTs under
the perturbation of a different meaningful spectrum parameter in the Yang–Baxter
system.

YBE was originated from solving the δ-function interaction model by Yang [26,27]
and statistical models by Baxter [28,29], respectively. Then, it was introduced by Fad-
deev [30] and Leningrad scholars to solve many quantum integrable models. In recent
years, the YBE has been introduced to the field of quantum information and quantum
computation. It has been shown that YBE has a very deep connection with entangle-
ment swapping and topological quantum computation [31–42] in a series of papers.
Unitary solutions of the quantum Yang–Baxter equation(QYBE) and unitary solutions
of the braided Yang–Baxter (i.e., the braid group relation) can often be identified with
universal quantum gates [43,44]. A Hamiltonian usually can be constructed from the
unitary R̆(θ, ϕ) matrix through Yang–Baxterization approach. Yang–Baxterization
[45,46] has been applied [38,47–50] to derive a Hamiltonian for the unitary evolu-
tion of entangled states. In Ref. [38], based on the unitary Ř matrices, Chen et al.
constructed a set of Hamiltonians, then explored the Berry phase and quantum crit-
icality of the Yang–Baxter system. And in Ref. [51], our team studied the QPT-Like
phenomenon in a Two-Qubit Yang–Baxter System.

Considering the special role of YBE in quantum information and crucial role of
fidelity in quantum critical phenomena, so in this work, we extend our previous work
to the many-body Yang–Baxter system. We investigate the fidelity and fidelity sus-
ceptibility for the many-body Yang–Baxter system and analyze their connections with
QPTs. The paper is organized as follows. In Sect. 2, based on the YBE, via Yang–Baxter
R̆(θ, ϕ) matrix, we get the many-body Yang–Baxter system. In Sect. 3, we calculate
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the ground-state fidelity and fidelity susceptibility of the Yang–Baxter model as a func-
tion of coupling g, while the twist ϕ is varied, to investigate the critical properties of
QPTs in the Yang–Baxter system. It demonstrates that in the many-body Yang–Baxter
system, the QPTs really happen and can be well characterized by the ground-state
fidelity and fidelity susceptibility in a special way. We end with a summary in the last
section.

2 R-matrices and Hamiltonians

In Refs. [34,48,49], the unitary R̆i,i+1(θ, ϕ)-matrices have been introduced via the
Yang–Baxterization approach [45,46] so as to investigate their properties and appli-
cations in physics. To make this paper be self-contained, we briefly review them as
follows.

For the 4 × 4 Yang–Baxter systems of two qubits, the rational solution of the YBE,
R̆(μ) can a be written in terms of a unitary transformation U as the following way:
R̆(μ) = a(μ)I + b(μ)U , with U satisfying the TLA as follows,

U 2
i = dUi , Ui+1UiUi+1 = Ui+1, UiUi+1 = Ui+1Ui (1)

where|i − j | ≥ 2, and d represents the single loop in the knot theory which does
not depend on the sits in the lattices. When d = √

2, the unitary matrix U is of the
following form,

U =

⎛
⎜⎜⎝

1 0 0 eiϕ

0 1 iε 0
0 −iε 1 0

e−iϕ 0 0 1

⎞
⎟⎟⎠ (2)

where ε = ± and ϕ is real. According to the above U-matrix, we can get the unitary
matrix Ři,i+1(θ, ϕ) through the Yang–Baxterization approach [45,46] as follows:

R̆i,i+1(θ, ϕ) =

⎛
⎜⎜⎝

cos θ 0 0 −ieiϕ sin θ

0 cos θ ε sin θ 0
0 ε sin θ cos θ 0

−ie−iϕ sin θ 0 0 cos θ

⎞
⎟⎟⎠ . (3)

The unitary R̆i,i+1-matrix satisfies the YBE which is of the form,

R̆i,i+1(μ)R̆i+1,i+2(μ + υ)R̆i,i+1(υ) = R̆i+1,i+2(υ)R̆i,i+1(μ + υ)R̆i+1,i+2(μ), (4)

Based on the YBE, two-spin interaction Hamiltonians usually can be constructed.
As R̆i,i+1 is unitary, it can define the evolution of a state |Ψ (0)〉

|Ψ (t)〉 = R̆i,i+1(t)|Ψ (0)〉, (5)
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Taking the Schrödinger equation i h̄∂|Ψ (θ, ϕ)〉/∂t = H(θ, ϕ)|Ψ (θ, ϕ)〉 into account,
we let R̆i,i+1(θ, ϕ) be time-independent, where parameters θ and ϕ are all time-
independent. Let us consider a system of two spin-1/2 particles (particle i and i+1)
described by an initial Hamiltonian H0:

H0 = μi S
z
i + μi+1S

z
i+1 + gSzi S

z
i+1 (6)

Next we introduce two parameters Ji = μi−μi+1
2 and Bi = μi+μi+1

2 for convenience of
calculations. According to Eq. (5), also by taking partial derivative of the state |Ψ (t)〉
with respect to time t , we get an equation

i h̄
∂|Ψ (t)〉

∂t
= R̆i,i+1(θ, ϕ)H0|Ψ (0)〉
= Hi,i+1(θ, ϕ)|Ψ (t)〉
= R̆i,i+1(θ, ϕ)H0 R̆

−1
i,i+1(θ, ϕ)|Ψ (t)〉, (7)

Then according to Eqs. (3), (6) and (7), and corresponding to the form of R̆i,i+1(θ, ϕ),
the two-body interaction Hamiltonian Hi,i+1 can be written in the form of spin oper-
ators S+

i = Sxi + i Syi and S−
i = Sxi − i Syi as follows,

Hi,i+1(θ, ϕ) = B cos θ
(
Szi + Szi+1

) + J cos θ
(
Szi − Szi+1

) + gSzi S
z
i+1

+ i B sin θ
(
eiϕS+

i S+
i+1 − e−iϕS−

i S−
i+1

)

− Jε sin θ
(
S+
i S−

i+1 + S−
i S+

i+1

)
(8)

To simplify the calculation in the following, we let θ = π
2 , Bi = 1

2 , Ji = 0. Then we
get the Yang–Baxter model,

H =
∑
i=1

(
gSzi S

z
i+1 + i

2

(
eiϕS+

i S+
i+1 − e−iϕS−

i S−
i+1

))
(9)

3 Quantum phase transition and quantum fidelity

In Sect. 2, we have got the Yang–Baxter model as Eq. (9)

H(g, ϕ) =
∑
i=1

(
gSzi S

z
i+1 + i

2

(
eiϕS+

i S+
i+1 − e−iϕS−

i S−
i+1

))
(10)

here we can see that just a twist of ϕ is applied at every bond comparing to the model
H = ∑

i=1(gS
z
i S

z
i+1 + i

2 (S+
i S+

i+1 − S−
i S−

i+1)) (this is also a Yang–Baxter model, just
ϕ = 0), the parameter ϕ is the spectrum parameter of the Yang–Baxter system which
originates from the q-deformation of the braiding operator U with q = e−iϕ [52], and
ϕ has a physical significance of magnetic flux [53]. Next, we will calculate the ground-
state fidelity of this model as a function of coupling g, while the twist ϕ is varied. It is
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Fig. 1 The fidelity F(g, ϕ) as a function of coupling g for system size from 6 to 16. The system size N is
indicated in the legend, the twist ϕ = 10−3. The drop gets sharper as system size N increases. The inset
corresponds to enlarged picture for the parameter range of g near to gc

special that here the quantum fidelity is not defined with respect to the same parameter
g as most of studies have done, but with respect to the twist ϕ. It means that we get the
ground-state fidelity as a function of coupling g to study QPTs under the perturbation
of a different meaningful spectrum parameter ϕ in the Yang–Baxter system. This can
be done through the overlap of the ground state with ϕ = 0 and a nonzero ϕ. Using
Ψ0(g, ϕ) the ground state of this Yang–Baxter system, with respect to the twist in the
limit where ϕ → 0, the ground-state fidelity can then be written as [11]:

F(g, ϕ) = |〈Ψ0(g, 0)|Ψ0(g, ϕ)〉| (11)

A series expansion of the GS fidelity in ϕ yields,

F(g, ϕ) = 1 − (ϕ)2

2

∂2F

∂g2 + · · · (12)

where ∂2
g F is called the fidelity susceptibility [12]. If the higher order terms are taken

to be negligibly small then the fidelity susceptibility is defined as,

χ(g) = 2 [1 − F(g, ϕ)]

ϕ2 (13)

To compute F(g, ϕ) and χ(g), we first calculate the ground state |Ψ0(g, 0)〉 of the
unperturbed Hamiltonian through numerical matrix exact diagonalization. Then, the
system was perturbed by adding a twist of eiϕ at each bond, and we recalculate the
ground state |Ψ0(g, ϕ)〉, here periodic boundary conditions were assumed. Through
Eq. (11), we get F(g, ϕ), the results are shown in Figs. 1 and 2, one can see that
in the many-body Yang–Baxter system, the QPTs really happen and can be well
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Fig. 2 The fidelity F(g, ϕ) as a function of coupling g for system size N = 8 for four different twist ϕ.
The smaller the twist ϕ, the more the value of F(gc, ϕ) is close to 0. The twist ϕ is indicated in the legend

characterized by the ground-state fidelity. In Fig. 1, for all data the twist ϕ was taken
to be 10−3, we observe that the critical region is clearly marked by a sudden drop of
the fidelity F(g, ϕ), it is almost constant and equal to 1 for all parameter ranges of g,
apart from the very narrow range around the critical point gc, where it has a significant
sudden drop. Such behavior of the overlap function around the critical point can be
ascribed to the fact that the ground state for g = gc becomes completely delocalized
along one of two rotated axes, as opposed to the localized ground state outside of the
critical point. From the inset of Fig. 1, we can see that the drop gets sharper as system
size N increases. In all cases, it has been verified that a sufficiently small value of
ϕ used has no effect on the location of the critical point, but it affects the value of
F(gc, ϕ). In Fig. 2, we give an example for system size N = 8, plot the ground-state
fidelity F(g, ϕ) as a function of coupling g for four different twist ϕ, it demonstrates
that the smaller the twist ϕ, the more the value of F(gc, ϕ) is close to 0. In order to
avoid the effect of the finite value of ϕ, we also get the fidelity susceptibility from
the corresponding fidelity. We calculate χ(g) through Eq. (13), the result for ln χ(g)
versus g is shown in Fig. 3. One can see that fidelity susceptibility also denotes the
QPTs very well, the critical region is clearly marked by a sudden raise of the value of
ln χ(g), it is almost close to 0 in all parameter ranges of g, apart from the very narrow
range around the critical point gc, where it has a significant sudden raise.

4 Summary

In this paper, we move the discussion of QPTs into relatively new territory by engaging
the mathematical sophistication of Yang–Baxter system analysis, especially into the
many-body Yang–Baxter system. The numerical simulations performed together with
our analytical arguments demonstrate that in the many-body Yang–Baxter system; the
QPTs really happen and can be well characterized by the ground-state fidelity and
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Fig. 3 The fidelity susceptibility χ(g) as a function of coupling g for system size from 6 to 16. The system
size N is indicated in the legend, the twist ϕ = 10−3. The raise gets sharper as system size N increases.
The inset corresponds to enlarged picture for the parameter range of g near to gc

fidelity susceptibility in a special way. Here, the quantum fidelity is not defined with
respect to the same parameter g as most of studies have done, but with respect to the
twist ϕ. In this way, one can see that here just the twist ϕ is the very small parameter
perturbation (not δg), and then we can get the ground-state fidelity as a function of
coupling g to study QPTs under the perturbation of a meaningful spectrum parameter
ϕ in the Yang–Baxter system. Our work correlates the QPTs with the Yang–Baxter
system through a twist of ϕ which is the spectrum parameter in the Yang–Baxter system
and originates from the q-deformation of the braiding operator U with q = e−iϕ [52],
and ϕ has a physical significance of magnetic flux [53]. It shows that ground-state
fidelity develops a sharp drop at the transition, the critical region is clearly marked by
a sudden drop of the fidelity F(g, ϕ), and the drop of F(g, ϕ) gets sharper as system
size N increases. In all cases, it has been verified that a sufficiently small value of ϕ

used has no effect on the location of the critical point, but affects the value of F(gc, ϕ).
The smaller the twist ϕ, the more the value of F(gc, ϕ) is close to 0. In order to avoid
the effect of the finite value of ϕ, we also calculate the fidelity susceptibility from the
corresponding fidelity. It shows that fidelity susceptibility also denotes the QPTs very
well. Wish this work can provide valuable insights into the special role of YBE in
quantum information and condensed matter physics.
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