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Abstract: This paper presents an optimal control-based inverse method used to determine the
distribution of the electrodes for the electroosmotic micromixers with external driven flow from the
inlet. Based on the optimal control method, one Dirichlet boundary control problem is constructed
to inversely find the optimal distribution of the electrodes on the sidewalls of electroosmotic
micromixers and achieve the acceptable mixing performance. After solving the boundary control
problem, results are also provided to demonstrate the effectiveness of the proposed method; the
step-shaped distribution of the external electric potential imposed on the sidewalls is obtained, and
the electrodes with an interlaced arrangement are inversely derived according to the obtained external
electric potential.

Keywords: electroosmotic micromixer; electrode distribution; optimal control

1. Introduction

Lab-on-a-chip is the generic term for the integration of microdevices to carry out conventional
analytical laboratory tests. Such devices offer significant benefits over traditional laboratory tests
in terms of device size as well as sample/reagent usage, and can provide much faster results for
chemical and biochemical analyses [1,2]. Because of these advantages, such devices are considered to
be a promising option for miniaturization in the area of the environmental and defense monitoring,
chemical synthesis, and biomedical applications. Lab-on-a-chip integrates various subcomponents,
such as pumps, mixers, reactors, and dilution chambers. Therefore, the study of fluid flow in microscale
(i.e., microfluidics) has become central to the development of corresponding devices [3–5]. Micromixers
are often vital components for lab-on-a-chip devices, as mixing is required for chemical applications,
biological applications, and the detection/analysis of chemical or biochemical content [6–8].

Owing to small channel dimensions and low flow rates, the Reynolds number of the flows in
microfluidic devices is typically very small. Mixing through turbulent flow induced by inertial/viscous
effects for aqueous solutions become unfeasible, because diffusion is the dominant mechanism in
micromixing due to the absence of turbulence. An effective mixing in low Reynolds number flow
regimes can be obtained by the chaotic advection mechanism, which can occur in regular smooth
flows [9] and provides an effective increase of the interfacial contact area [10]. Electroosmosis is one
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of the most common nonmechanical means for achieving chaotic advection in microfluidics. When a
charged solid surface comes in contact with an electrolyte, an electric double layer (EDL) of ions is
formed due to the interplay between electrical and diffusive forces [11]. The flow of liquids containing
dissolved ions under the influence of electrical body forces is known as electroosmosis; it is a subject
treated in the electrokinetic transport literature [12–14]. Several methods have been systematically
discussed for mixing low Reynolds number electroosmotic flows with patterned grooves [15,16].
These grooves induce spiral circulations around the flow axis, and stretch and fold the streams, with
the result that a complete mixing is achieved within a short mixing length. The use of unstable
electrokinetic flow to achieve a chaotic mixing effect has also been presented in [17–21]. Several
numerical analytical investigations on electroosmotic mixing have been performed [13,22,23], and the
mixing efficiency has been enhanced based on the periodic electroosmotic flow [24], modulation
of electric fields [25–27], and shape optimization [28]. The pattern of electroosmotic flow is
mainly determined by the electrode distribution. Due to the complexity of electroosmotic flow,
physical intuition-based determination of electrode distribution has its limitations. To overcome this
limitation, it is necessary to develop the inverse termination method for the electrode distribution of
electroosmotic micromixers.

In electroosmotic micromixers, the mixing efficiency is mainly determined by the electrode
distribution used to carry the externally applied electric potential. Therefore, this paper is focused
on the method used to inversely determine the electrode distribution for electroosmotic micromixers.
The discussed inverse termination method is built based on the optimal control method, which has
been utilized to implement airfoil design, sensor deployment, and control the convection diffusion and
electric field for electrorheological fluids [29,30]. Based on the optimal control method, one boundary
control problem is constructed for the electroosmotic micromixer in this paper. After solving the
problem, the electrode distribution can be determined according to the obtained step-shaped externally
applied electric potential.

2. Methodology

2.1. Modeling

When a micromixer is used to mix two fluidic flows with different solutes, the desired effect is the
mixing of the two flows with anticipated concentration distribution at the outlet of the micromixer.
The anticipated concentration distribution at the outlet can be specified by the designer based on the
desired performance of the micromixer. The mixing performance of the micromixer can be measured
by the least square variance between the obtained concentration c and the anticipated concentration ca

at the outlet, named “mixing measurement” [8,31]:

Ψ (c) =
∫

Γo
(c− ca)

2 dΓ
/ ∫

Γi

(cr − ca)
2 dΓ (1)

where Γi and Γo are the inlet and outlet of the micromixer, respectively; cr is the reference concentration
distribution, which is usually chosen to be the given concentration distribution at the inlet. The required
performance for micromixers is that sufficient mixing of the two solutes is achieved. Therefore, the
anticipated concentration ca is specified to be the ideal concentration distribution of the solute at
the outlet after sufficient mixing. In an electroosmotic micromixer with fixed geometry, the mixing
efficiency is determined by the distribution of the external electric potential induced by the electrode
potential. The distribution of the electrode potential lies on the distribution of the electrodes at
the sidewalls of the electroosmotic micromixer. Then, the problem is how to find a reasonable
distribution of the electrodes that minimizes the mixing measurement and achieves sufficient mixing in
an electroosmotic micromixer. In this paper, the optimal control method is adopted, and one Dirichelet
boundary control problem is constructed to solve this problem.
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Under the precondition of the continuum assumption, the electroosmotic flow is described by
the Navier–Stokes equations modified to include an electrical driving force term to represent the
interaction between the excess ions of the electrical double layer (EDL) and the external electric field
induced by the electrode potential, where an assumption is made that the Joule heating effect is
negligible and can be ignored [32]. In electroosmotic flows, the electric potential can be decomposed
into an external electric potential due to the imposition of the externally applied electrode potential
and an electric potential due to surface wall charge [33]. Then, the body force imposed on the fluid is
the electric force of these two potentials. Based on the above description, the governing equations of
the electroosmotic flow are

ρu · ∇u = ∇ ·
[
−pI + η

(
∇u +∇uT

)]
+

ε

λ2
D

ψ∇φ, in Ω

−∇ · u = 0, in Ω
(2)

where u is the fluid velocity; p is the fluid pressure; ρ and η are the density and viscosity of the fluid,
respectively; λD is the Debye length, which is the characteristic thickness of the EDL for a given
solid–electrolyte liquid interface, and it is calculated to be λD =

(
εε0kbT/2n0z2e2)1/2, with ε and

ε0 representing the dielectric constant of the electrolyte solution and free space, kb representing the
Boltzmann constant, T representing the temperature, n0 and z representing the concentration and
valence of the ion in the electrolyte solution, and e representing the charge of the electron [12]; ψ is the
electric potential due to surface wall charge; φ is the external electric potential; Ω is the space domain
occupied by the electroosmotic flow, and the boundaries of Ω include the inlet port Γi, the outlet
port Γo, and the sidewalls Γw (Figure 1). The imposed boundary conditions for the Navier–Stokes
equations are:

u = ui, on Γi

u = 0, on Γw[
−pI + η

(
∇u +∇uT

)]
· n = 0, on Γo

(3)

where ui is a given velocity distribution at the inlet port; n is the unit outward normal vector
on the boundary of Ω. In micromixing, the two factors that influence the mixing performance
of a micromixer are diffusion and chaotic advection. The mixing of flows is described using the
convection–diffusion equation

u · ∇c = D∇2c, in Ω (4)

where D is the diffusion constant of the fluid. The imposed boundary conditions for the
convection–diffusion equation are:

c = ci (x) , on Γi

∇c · n = 0, on Γw ∪ Γo
(5)

where ci is the given concentration distribution at the inlet port of the electroosmotic micromixer. For a
symmetrical and univalent electrolyte at room temperature, the Debye length is on the magnitude
10 nm for a concentration of 10−3 M. In other words, the Debye length is very small compared to
the characteristic length of the microchannel [32]. Moreover, within the EDL, the electrical potential
drops from the zeta potential to zero [12,32]. In general, the zeta potential is on the order of 0.1 V.
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The ion distribution in the EDL is influenced primarily by the zeta potential, and the distribution of
the potential due to surface wall charge can be obtained by solving the equation

∇2ψ =
1

λ2
D

ψ, in Ω (6)

For Equation (6), the imposed boundary conditions are

ψ = −ζ, on Γw

∇ψ · n = 0, on Γi ∪ Γo
(7)

where ζ is the zeta potential. Since the external electric potential arises from external charges, it satisfies
a Laplacian equation within the fluid domain

∇2φ = 0, in Ω (8)

and the corresponding boundary conditions are

φ = φc (x) , on Γw

∇φ · n = 0, on Γi ∪ Γo
(9)

where φc is the electrode potential on the sidewalls of the electroosmotic micromixer. Then, the
micromixing in the electroosmotic flow can be described using the coupled system of Equations (2),
(4), (6), and (8).

Figure 1. Schematic for the electroosmotic flow in the micromixer.

Based on the above description, the optimal control problem used to find the reasonable
distribution of the electrode potential and minimize the mixing measurement can be constructed
with the mixing measurement as objective, the coupling system of Equations (2), (4), (6), and (8) as
constraints, and the electrode potential as control variable. Because the control variable (i.e., electrode
potential) is defined on the sidewalls (the Dirichlet boundary of the coupled system), the constructed
optimal control problem is a Dirichlet boundary control problem. In the optimal control problem,
the admissable set of the control variable is set to be [φcl , φch], where the values of φcl and φch can be
determined due to the engineering reality. In order to ensure the manufacturability of the obtained
electrode distribution, the distribution of the electrode potential corresponding to the electrode
distribution should satisfy the conditions as demonstrated in Figure 2: the electrode potential on every
electrode should be an electric level corresponding to the constant potential φcl or φch; the size of the
transition region—filled with insulators—between two neighboring electrodes should be large enough
to avoid excess high electric field strength and capacitor breakdown. These conditions can be ensured
using the filter and projection methods and by imposing a constraint on the electric field strength,
where the control variable is filtered using the Helmholtz filter and the filtered variable is projected
using the threshold method in this paper [34–36]. The control variable is evolved using the robust
numerical optimization algorithm MMA (the method of moving asymptotes) [37,38]. Based on the
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filtering of the control variable, the reasonable distance between two neighboring electrodes at the
sidewall can be ensured, and the filter is implemented by solving the following Helmholtz-type PDE:

− r2∇2
Γφ̃c + φ̃c = φc, on Γw

nΓ · ∇Γφ̃c = 0, at ∂Γw
(10)

where φ̃c is the filtered control variable; r is the filter radius; ∇Γ is the gradient operator defined on
Γw; nΓ is the unit outward normal vector on the boundary Γw. The distance between two neighboring
electrodes can be controlled by reasonably choosing the value of the filter radius to control the size
of the transition region. Generally, a higher value of filter radius corresponds to a larger size of the
transition region. The threshold projection can ensure that the change of the external electric potential
is as linear as possible in the transition region between two neighboring electrodes on the sidewall,
and it is performed using the following formulation:

φ̃c =
tanh (βξ) + tanh

(
β
(
φ̃c − ξ

))
tanh (βξ) + tanh (β (1− ξ))

(11)

where φ̃c is the projected control variable; ξ ∈ [0, 1] and β are the threshold and projection parameters
for the threshold projection, respectively. On the choice of the values of ξ and β, one can refer to [39].
Using the threshold projection, the filtered control variable can also be projected to φcl or φch at the
points in the region corresponding to the electrodes, and the interim values in (φcl , φch) are avoided
effectively; i.e., the external electric potential applied on the control boundary will only have the
constant values φcl and φch, which can be realized by fabricating separated electrodes on the sidewall
of the electroosmotic micromixer. To avoid excess high electric field strength, the electric field strength
induced by the external electric potential is constrained as∫

Ω
|∇φ|2 dΩ ≤ C0 (12)

where C0 is a constant, chosen based on numerical experiments and engineering reality.
In Equation (12),

∫
Ω |∇φ|2 dΩ is constrained to be less than an upper bound. In fact, the least

upper bound supΩ |∇φ|—the maximum of the electric field strength on Ω—should be constrained.

Mathematically, supΩ |∇φ| and
(∫

Ω |∇φ|2 dΩ
)1/2

are equivalent, because they are respectively the

∞- and 2-norm of |∇φ| on Ω. Therefore, the well-posed
(∫

Ω |∇φ|2 dΩ
)

is used to impose the
constraint for the upper bound of the electric field strength. Then, the manufacturability of the design
corresponding to the result of the optimal control problem is ensured based on the Helmholtz filter,
threshold projection, and electric field strength constraint. For summary, the optimal control problem
for inverse determination of the electrode distribution for electroosmotic micromixer can be constructed
to be:

min Ψ (c) =
∫

Γo
(c− ca)

2 dΓ
/ ∫

Γi

(cr − ca)
2 dΓ

s.t.



ρu · ∇u = ∇ ·
[
−pI + η

(
∇u +∇uT

)]
+

ε

λ2
D

ψ∇φ, in Ω

−∇ · u = 0, in Ω

u · ∇c = D∇2c, in Ω

∇2ψ =
1

λ2
D

ψ, in Ω∫
Ω
|∇φ|2 dΩ ≤ C0

(13)
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By solving the optimal control problem, the electrode distribution corresponding to the external
electric potential can be determined, and minimal of the mixing measurement can be derived.

Figure 2. Schematic for the electrode and the corresponding external electric potential at the sidewall
of the electroosmotic micromixer.

2.2. Analyzing and Solving

The constructed optimal control problem in Section 2.1 is an optimization problem with partial
differential equation constraints, and it can be analyzed using the adjoint method [40]. In this paper,
the optimal control problem is solved by the finite element method. To use the linear elements for
the partial differential equations, the Navier–Stokes equations and convection–diffusion equation
are stabilized using the generalized least squares (GLS) and the streamline upwind Petrov–Galerkin
(SUPG) technologies, respectively [41]. Then, the stabilized weak forms are∫

Ω
ρu · ∇u · v +

∫
Ω

[
−pI + η

(
∇u +∇uT

)]
: ∇v dΩ−

∫
Ω

ε

λ2
D

ψ∇φ · v dΩ−
∫

Ω
q∇ · u dΩ

+
Ne

∑
i=1

∫
Ωi

τGLS∇p · ∇q dΩ = 0, ∀v ∈ H1 (Ω) , ∀q ∈ L2 (Ω)

u = ui, on Γi

u = 0, on Γw

(14)

for the Navier–Stokes equations, and

∫
Ω

u · ∇c s dΩ +
∫

Ω
D∇c · ∇s dΩ +

Ne

∑
i=1

∫
Ωi

τSUPGu · ∇s (u · ∇c) dΩ = 0,

∀s ∈ H1 (Ω)

c = ci, on Γi

(15)

for the convection–diffusion equation, where H1 (Ω) and L2 (Ω) are the first-order Sobolev space and
the second-order Lebesgue integrable functional space, respectively; Ne is the number of elements
used to discretize the computational domain; and Ωi is the domain of the i-th element; τGLS and τSUPG
are the stabilization parameters. The stabilization parameters are chosen according to [41,42]

τGLS =
h2

12η

τSUPG =

(
4

h2D
+

2 |u|
h

)−1 (16)
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where h is the element size. Based on the adjoint analysis of the objective in Equation (1), the weak
form of the adjoint equations of the convection–diffusion equation, the Navier–Stokes equations,
and the Laplacian equation are obtained as: find ca ∈ H1 (Ω), ua ∈ H1 (Ω), pa ∈ L2 (Ω), and
φa ∈ H1 (Ω) satisfying

∫
Ω
(u · ∇s ca +∇s · ∇ca) dΩ +

Ne

∑
i=1

∫
Ωi

τSUPGu · ∇ca (u · ∇s) dΩ

+
∫

Γo
2 (c− ca) s dΓ

/ ∫
Γi

(cr − ca)
2 dΓ = 0, ∀s ∈ H1 (Ω)

ca = 0, on Γi

(17)

for the convection–diffusion equation, and∫
Ω

{
ρ (v · ∇u + u · ∇v) · ua +

[
η
(
∇v +∇vT

)
− qI

]
: ∇ua − pa∇ · v

}
dΩ+

Ne

∑
i=1

∫
Ωi

τGLS∇q · ∇pa dΩ = −
∫

Ω
v · ∇c ca dΩ−

Ne

∑
i=1

∫
Ωi

[ (
∂τSUPG

∂u
· v
)
(u · ∇ca) (u · ∇c)

+ τSUPGv · ∇ca (u · ∇c) + τSUPG (u · ∇ca) (v · ∇c)
]

dΩ, ∀v ∈ H1 (Ω) ,

∀q ∈ L2 (Ω)

ua = 0, on Γi ∪ Γw

(18)

for the Navier–Stokes equations, and

−
∫

Ω
∇φa · ∇ϕ dΩ +

∫
Ω

ε

λ2
D
∇ · (ψua) ϕ dΩ−

∫
Γo

ε

λ2
D

ψua · nϕ dΓ = 0, ∀ϕ ∈ H1 (Ω)

φa = 0, on Γw

(19)

for the Laplacian equation, where ca, ua, pa, and φa are the adjoint variables corresponding to c, u, p,
and φ, respectively. In the adjoint analysis, Equation (6) need not be included, because the potential
due to surface wall charge is independent of the externally applied potential. The adjoint sensitivity of
the optimal control problem can be obtained as

δΨ̂ =
∫

Γw
−∇φa · n (φch − φcl)

dφ̃c

dφ̃c

dφ̃c

dφc
δφc dΓ (20)

For the constraint in Equation (12), the weak form of the adjoint equation is∫
Ω
∇ (φa − φ) · ∇ψ dΩ = 0, ∀ϕ ∈ H1 (Ω)

φa = 0, on Γw

(21)

and the adjoint sensitivity is

δC =
∫

Γw
∇ (φ− φa) · n (φch − φcl)

dφ̃c

dφ̃c

dφ̃c

dφc
δφc dΓ (22)

In the discretization of the sensitivities in Equations (20) and (22), dφ̃c
dφc

should be treated skillfully
to avoid the inverse of matrix; for details, one can refer to [34].
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Solving of the optimal control problem is implemented using the gradient-based iterative
approach listed in Table 1. In the iterative procedure, the coupled system of Equations (2), (4),
(6), and (8), and the corresponding adjoint equations in the weak form are solved by the finite element
method using the commercial software COMSOL Multiphysics (version 3.5) with linear elements
(http://www.comsol.com). Then, the adjoint derivative can be obtained according to Equation (20).
The discretized control variable is updated using MMA until the convergence criteria are satisfied,
where the convergence criteria are set to be the maximal change of the control variable in consecutive
5 iterations less than 1× 10−3 or the maximal iteration number 400.

Table 1. Procedure of the iterative approach for solving the optimal control problem.

1. Give the initial value of the control variable φc;
2. Solve the coupled system of Equations (2), (4), (6), and (8) by the finite element method;
3. Solve the weak form adjoint equations (Equations (17)–(19), and (21));
4. Compute the adjoint derivatives (Equations (20) and (22)) and

the corresponding objective and constraint values;
5. Update the control variable by MMA;
6. Check for convergence; if the stopping conditions are not satisfied, go to 2; and
7. Post-processing

3. Results and Discussion

To demonstrate the effectiveness of the proposed method used to inversly determine the electrode
distribution for electroosmotic micromixers, an electroosmotic micromixer in a straight microchannel
with externally applied electric potential imposed on the sidewalls is investigated numerically in the
following. The schematic of the electroosmotic micromixer is shown in Figure 3, where the parabolic
fluid velocity is loaded at the inlet Γi. In the numerical computation, the electroosmotic micromixer
shown in Figure 3 is discretized using the mesh with rectangular elements shown in Figure 4, where
the element size increases exponentially from the wall to the center of the channel. This mesh is fine
enough to ensure that the EDL is discretized by 10 elements in the scale of 10 nm. The Reynolds number
and Péclet number of the flow in the micromixer are 1 and 1000, respectively. The dielectric constant of
the electrolyte solution, the Debye length, and the zeta potential are set to be 7.4× 10−11 C2/ (N ·m)2,
765 nm, and 0.1 V, respectively. The bounds of the external electric potential are set as φcl = 0 V
and φch = 200 V. The upper bound of the constraint in Equation (12) is chosen to be C0 = 5.7× 105.
Such choice of the parameter C0 is to enforce that the externally applied electric field strength is no
more than the general value 107 V/m [22].

Figure 3. Schematic of the electroosmotic micromixer in a straight microchannel.

Figure 4. The mesh with rectangular elements used in the numerical computation, where the element
size increases exponentially from the wall to the center of the channel. This mesh is fine enough to
ensure the EDL is discretized by 10 elements in the scale of 10 nm.

http://www.comsol.com
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Based on the optimal control theory in Section 2, the optimal distribution of the electrode
potential is obtained as shown in Figure 5a. In Figure 5a, the low and high levels correspond to
the electrodes with electric potentials equal to 0 V and 200 V, respectively; the declining parts between
the neighboring low and high levels correspond to the regions filled with insulators used to separate
neighboring electrodes. Therefore, the electrode distribution at the sidewalls of the electroosmotic
micromixer can be determined according to the above analysis of the obtained optimal distribution
of the externally applied electric potential (Figure 5b). Figure 5b shows that the electrodes have
an interlaced arrangement. The interlaced arrangement of the low and high levels can effectively
avoid the counteraction of the electric force loaded on the electrolyte; the electrodes are different sizes
and the separation distances are different along the length of the microchannel; this is because two
fluidic flows are mixed and the concentration distributions are different in different cross-sections
of the microchannel. The distribution of the electric potential, induced by the electrode potential, is
shown in Figure 5c. From Figure 5c, one can see that a high gradient of electric potential (electric
strength) is produced near the region between neighboring electrodes. The high electric potential
gradient results in the large electric force load on the electrolyte. Therefore, the streamlines of the
microflow are distorted impetuously, and vortexes arise along with the distortion of the streamlines in
the straight microchannel (Figure 5d). The distortion of the streamline and induced vortexes along the
flow direction give rise to the enhancement of the chaotic advection, which is an interplay between the
inertial, centrifugal, and viscous effects of the fluid flow. The enhancement of the chaotic advection
strongly deforms the interface between fluids, the area of the interface grows exponentially, and
diffusion becomes efficient (Figure 5e). As shown in Figure 5e, the electrical forces are loaded on the
electrolyte in the electrical double layer, and this results in the reverse fluid velocity in the electrical
double layer; furthermore, the reverse fluid velocity induces the chaotic advection of the flows in the
micromixer. Therefore, the electrode distribution corresponding to the obtained electrode potential
improves the micromixing effectively, and this can be confirmed based on the comparison between
Figure 6a,b.

In the following, the postprocessing of the numerical results is performed. With the electrode
distribution shown in Figure 5b, the distribution of the electric potential, streamline, and concentration
are computed and shown in Figure 7. From the comparison between the results in Figures 5
and 7, the consistency between the electric potential distributions corresponding to the optimal
control method and the electrode distribution determined according to the electrode potential can be
confirmed; and the effectiveness of the proposed method used to determine the electrode distribution
for electroosmotic micromixers is demonstrated.

For manufacturability, the offset distance caused by fabrication tolerance will increase the distance
between the electrodes on the two sides of the channel, when the electrodes are offset from the
wall; sequentially, the electric field strength will be decreased and the electrical forces loaded on
the electrolyte are weakened. Therefore, the mixing efficiency of the electroosmotic micromixer
will be decreased when the electrodes are offset from the wall. In this paper, we considered the
two-dimensional model. Therefore, the electrodes are assumed to cover the whole wall height. The
case with the electrodes only covering a part of the wall height should be considered using the model
in three dimensions. This will be implemented in our further and future research.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5. (a) Electrode potential obtained using the optimal control method; (b) electrode distribution
corresponding to the obtained electrode potential; (c) logarithmic distribution and contours of the
square of the electric field; (d) electric potential distribution induced by the obtained wall potential;
(e) streamline distribution in the electroosmotic micromixer; (f) velocity distribution (red arrows) and
anticipated concentration contour (blue curve) in the electroosmotic flow, where the chaotic advection
and deformation of the interface between fluids is demonstrated.
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(a)

(b)

Figure 6. (a) Concentration distribution in the microchannel without electrode potential, where the
value of the mixing measurement is 0.6; (b) concentration distribution with the electrode potential
shown in Figure 5a, and the corresponding value of the mixing measurement is 0.015, which is lower
than the threshold level of mixing, defined as 0.050 [8]. Therefore, complete mixing is achieved
when the electrode potential obtained using optimal control method is imposed on the sidewalls of the
electroosmotic micromixer in Figure 3.

(a)

(b)

(c)

Figure 7. (a) Electric potential distribution corresponding to the electrode distribution shown in
Figure 5b; (b) streamline distribution induced by the electrode distribution shown in Figure 5b;
(c) concentration distribution in the electroosmotic micromixer with electrode distribution as shown in
Figure 5b, and the value of the mixing measurement is 0.025 lower than the mixing threshold 0.050.

4. Conclusions

In this paper, the inverse method used to determine the electrode distribution for electroosmotic
micromixers has been proposed based on the optimal control method. The electrode distribution
is inversely determined based on solving one optimal control problem to minimize the mixing
measurement. Additionally, the optimal control problem is constrained by the governing equations of
the electroosmotic micromixing. The control variable is set to be the electrode potential distribution
applied on the sidewall of the electroosmotic micromixer. The electric field strength in the micromixer
has also been constrained to avoid the capacitor breakdown phenomenon. Based on the adjoint
analysis of the optimal control problem, the control variable is evolved using MMA to derive potential
distribution with low and high levels, which correspond to the electrode on the sidewall of the
electroosmotic micromixer. The manufacturability of the obtained electrode distribution is ensured by
the filtering and projection of the control variable. Numerical results demonstrated that the electrodes
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with an interlaced arrangement can effectively avoid the counteraction of the electric force loaded on
the electrolyte; and the łeffectiveness of the proposed method is confirmed by the postprocessing of
the numerical results. In addition, this method can be extended to determine the electrode distribution
for the electroosmotic micromixers with unsteady flow caused by the AC electroosmosis. This will be
investigated in future work.
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