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A B S T R A C T

We report the ferromagnetic enhancement in a rare-earth and nitrogen co-doped ZnO thin film. To reveal the
origin of ferromagnetism, we perform a comparative study on undoped, Nd-doped, N-doped and (Nd, N)-
codoped ZnO thin films by combining experiments with first-principles calculations. Compared with the Nd-
doped ZnO, the N incorporation into the Nd-doped ZnO to form 2NdZn-NO complex leads to the more stable
ferromagnetic coupling between two Nd atoms, which is well supported by first-principles calculations. Our
results suggest that the electronic structure alteration via codoping engineering plays a critical role in stabilizing
the ferromagnetic orderings.

1. Introduction

Over the past two decades, diluted magnetic semiconductors
(DMSs) have attracted much attention due to their potential
applications in spin electronics and magnetic devices [1,2].
Compared with the conventional semiconductor, cations in DMSs
are partly substituted by magnetic ions so that DMSs are expected to
have high Curie temperature (TC) exceeding room temperature [3,4]
and utilize both charge and spin degrees of freedom [1,5–7]. The
novel behavior of DMSs leads to the potential applications in the
new emerging fields of semiconductor spintronic devices, spin
polarized light emitting diodes, photovoltaics and sensors [8–13].
Among the various material candidates as DMSs [14,15], most of
researches have been mainly focused on ZnO owing to the theore-
tically predicted room temperature ferromagnetism [16–20].
Furthermore, ZnO has excellent properties, such as a direct wide-
bandgap of 3.37 eV and a large exciton binding energy of 60 meV at
room temperature [21–23]. Although room temperature ferromag-
netism in transition metals (TMs) doped ZnO has been reported, the
magnetism is often weak [24]. Compared with TMs, rare-earth (RE)
metals with open f shells, often offer larger magnetic moment.
Indeed, both theoretical and experiments studies revealed that Gd-
doped GaN exhibits a colossal magnetic moment [25,26]. Therefore,

it remains an open question whether RE doping can induce strong
room temperature ferromagnetism in ZnO. However, up to now, RE
elements have been much less pursued as dopants in ZnO that shows
room temperature ferromagnetism, even if recent theoretical and
experiments studies have indicated that RE-doped (RE=Gd, Nd)
doped ZnO films only show paramagnetic behavior or very weak
ferromagnetism at room temperature [27–30]. In the recent years,
the codoping approach, especially donor-acceptor cooping, has been
intensively studied due to the possibility to tailor the position and
occupancy of the Fermi energy of doped DMSs [31]. For instance,
Wang et al. observed room temperature ferromagnetism in the (Mn,
N)-codoped ZnO [32]. In our previous work, it was also observed
that donor-acceptor complex in SnO2 induce room temperature
ferromagnetism [33]. Therefore, codoping is likely to be a potential
approach to enhance the ferromagnetism of ZnO.

In this article, we conducted a comparative study on undoped, Nd-
doped, N-doped and (Nd, N)-codoped ZnO via complementary experi-
ments and first-principles calculations based on spin-polarized density
functional theory (DFT). In the (Nd, N)-codoped ZnO thin film, we
observed ferromagnetic enhancement at room temperature. The first-
principles calculations reveal that the N incorporation into the Nd-
doped ZnO results in the more stable ferromagnetic ordering between
two Nd atoms, which well supports our experimental results.
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2. Experimental and first-principles calculations details

Undoped, Nd-doped, N-doped and (Nd, N)-copded ZnO films were
deposited on c-plane sapphire substrates by radio-frequency (RF)
magnetron sputtering. The pure and Nd-doped ZnO ceramic targets
were sintered by high purity ZnO (99.99%, Alfa Aesar) and the mixture
of the ZnO and Nd2O3 (99.99%, Alfa Aesar) powder with a mole ratio of
99:1, respectively. The pressure of the growth chamber was evacuated
to be 3×10−4 Pa before deposition, and then filled with sputtering gas
and was kept at 1.0 Pa during depositing process. The pure Ar gas was
used as work gas for the undoped and Nd-doped ZnO films, and the
mixed gases of Ar and N with a flow ratio of 3:1 for the N-doped and
(Nd, N)-codoped ZnO films. All thin films were sputtered for 1 h at
deposition temperature of 500 °C.

X-ray diffraction (XRD) was used to determine crystal structures
using an X-ray diffractometer with Cu Kα radiation (λ=0.15418 nm).
Chemical states and compositions were determined using X-ray
photoelectron spectroscopy (XPS). The adventitious C 1s peak at
284.6 eV was used to calibrate the binding energy. The concentrations
of Nd and N for the Nd-doped and N-doped ZnO films were determined
to be 2.8 at% and 1.0 at%, as well as 2.6 at% and 1.8 at% for the (Nd,
N)-codoped ZnO films, respectively. Magnetization measurements
were performed using a superconducting quantum interference device
magnetometer (SQUID, Quantum Design, MPMSXL-5). The optical
absorption measurements were performed using a UV–vis–near-IR
spectrophotometer. The photoluminescence (PL) measurements were
performed using a He–Cd laser with a 325-nm line as the excitation
source.

In the first-principles calculations based on density functional
theory (DFT), we adopted the VASP code with the projector augmented
wave (PAW) potentials for the electronic interaction and the general-
ized gradient approximation (GGA) for the electron exchange and
correlation [34–37]. The cutoff energy of 400 eV for the plane-wave
basis was used and a 72-atom 3×3×2 supercell with the wurtzite
structure was constructed. In the ZnO supercells, we constructed three
different configurations for simulating the doped ZnO: (i) Two nearest-
neighbor O atoms are substituted by two N atoms to form NO-NO

configuration; (ii) Two nearest-neighbor Zn atoms are substituted by
two Nd atoms to form NdZn-NdZn configuration; (iii) One O atom
between two Nd atoms are substituted by one N atom to form 2NdZn-
NO complex. For the Brillouin-zone integration, a 3×3×3 Monkhorst-
Pack k-point mesh was used; a more refined (8×8×8) k-point mesh was
used for the density-of-states (DOS) calculations. In the supercell

optimization calculations, all the atoms are allowed to relax until the
Hellmann-Feynman forces acting on them become less than 0.01 eV/Å.

3. Results and discussion

Fig. 1 shows the XRD patterns of undoped ZnO, Nd-doped ZnO, N-
doped ZnO and (Nd, N)-codoped ZnO films grown on c-Al2O3

substrates. For all the samples, only ZnO (002) diffraction peak is
observed, indicating the ZnO films have the wurtzite structure with a
preferred orientation and no impurity phase is detected. The enlarged
ZnO (002) peaks are shown in the right panel of Fig. 1 for clearly
demonstrating the peak positions. The (002) diffraction peaks of the
doped ZnO films have a shift towards low diffraction angle with respect
to the undoped ZnO films. The ionic radii of the Nd, Zn, N and O are
0.98, 0.74, 1.46 and 1.40 Å determined by Shannon [38]. The larger
ionic radius of Nd and N than Zn and O lead to the lattice expansion,
resulting in the peak shift towards to low diffraction angle. Therefore,
the diffraction peak shifts confirm that the corresponding doping atoms
are incorporated into ZnO lattices.

To determine the chemical states of dopants in ZnO, XPS measure-
ments were carried out. Fig. 2(a) shows the XPS spectra of Nd 3d in the
ZnO:Nd and ZnO:(Nd,N) films. The binding energy values obtained for
Nd 3d3/2 and Nd 3d5/2 are 998.7 and 982.1 eV, respectively, confirming
the trivalent state of Nd in the Nd doped and (Nd, N)-codoped ZnO
films [39]. Fig. 2(b) shows the XPS spectra of N 1s in the ZnO:N and
ZnO:(Nd,N) films. The N 1s spectrum displays one peak at 395.8 eV. It
should be pointed that the binding energy of N 1s state varies from 395
to 408 eV as chemical environment of nitrogen atom changes [40]. The
peak at 396 eV is assigned to nitrogen substitution at oxygen site (NO),
acting as acceptor [41].

Fig. 3 shows the optical absorption data of (αhν)2 versus hν, where
α is the absorption coefficient and hν is the photon energy. Using Tauc
rule [42]: αhν∝(hν−Eg)1/2, the bandgaps of undoped ZnO, N-doped
ZnO, Nd-doped ZnO and (Nd, N)-codoped ZnO are 3.29, 3.26, 3.33 and
3.31 eV, respectively. The bandgap of the N-doped ZnO is slightly
smaller than the undoped ZnO, which is ascribed to the occurrence of
band tail states introduced by N acceptor incorporation. The bandgap
of the Nd-doped and (Nd, N)-codoped ZnO is significantly larger than
the undoped ZnO, which is due to Burstein-Moss effect [43,44]. It
should be noted that the absorption edge of the (Nd, N)-codoped ZnO
is smaller than the Nd-doped ZnO. The doped Nd and N atoms act as
donors and acceptors in ZnO film, respectively. As a result, a passivated
donor-acceptor impurity band can occur in the bandgap when a large

Fig. 1. Normalized XRD patterns of the undoped, Nd-doped, N-doped and Nd-N codoped ZnO thin films. The enlarged ZnO (002) peaks are shown in the right panel.
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number of donor-acceptor complexes are presented in the film [45].
Therefore, the narrowing of band gap is attributed to the emergence of
the donor-acceptor complexes.

Fig. 4(a) shows the raw data of magnetization versus magnetic field
(M-H) measured at room temperature for the undoped, Nd-doped, N-
doped and (Nd, N)-codoped ZnO thin films, without subtracting the
substrate contribution. The M-H curve of the ZnO:(Nd,N) clearly
exhibits ferromagnetic behavior superimposed on diamagnetism from
sapphire substrates. Fig. 4(b) shows the M-H curves after subtracting
the diamagnetic contributions from the sapphire substrates. For the
undoped and Nd-doped ZnO films, the M-H curves include paramag-
netic and weak ferromagnetic behavior. The weak ferromagnetism is
attributed to intrinsic defects in ZnO [16,46–49]. The observed
paramagnetic behavior in the Nd-doped ZnO is consistent with the
previous reports [27]. The ferromagnetic behavior is observed for the
N-doped and (Nd, N)-codoped ZnO films. Compared with the N-doped

ZnO, the (Nd, N)-codoped ZnO shows a double ferromagnetic en-
hancement, indicating the (Nd, N)-codoping plays an important role in
enhancing ferromagnetism of ZnO.

Fig. 3. The (ɑhv)2 versus hv of the undoped ZnO, ZnO:Nd, ZnO:N and ZnO:(Nd,N) thin
films.

Fig. 4. (a) Magnetization versus magnetic field curve at room temperature for the
undoped ZnO, ZnO:Nd, ZnO:N and ZnO:(Nd,N) thin films. (b) The corresponding
ferromagnetic hysteresis loops after subtracting the diamagnetic contribution from the
substrates.

Fig. 2. XPS spectra of (a) Nd 3d states in the ZnO:Nd and ZnO:(Nd,N) thin films as well as (b) N 1s states in the ZnO:N and ZnO:(Nd,N) thin films.
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To search for the possible defects related to the origin of ferro-
magnetism, we performed low temperature PL measurement because
PL is an effective tool to reveal the defect characteristics in semicon-
ductors. Fig. 5 shows the 80 K PL spectra of undoped ZnO, Nd-doped
ZnO, N-doped ZnO and (Nd, N)-codoped ZnO films. For the undoped
ZnO film, a sharp peak is found at 3.37 eV, which is assigned to
radiative recombination of free exciton (FX) [50,51]. The observation
of FX indicates that the prepared sample is of high quality. The
emission peak of the Nd-doped ZnO film shows a blueshift with respect
to the undoped ZnO, which is attributed to Burstein–Moss effect
[43,44]. The N-doped ZnO film exhibits three near-band-edge (NBE)
peaks at 3.36 eV, 3.35 eV and 3.31 eV. The emission at 3.36 eV can be
unambiguously assigned to excitons bound to the neutral donors (D0X)
[43,44], which is due to the donor defects of ZnO. The emission around
3.35 eV is ascribed to the excitons bound to the neutral acceptors
(A0X), which is related to N acceptor doping. The origin of 3.31 eV PL
emission is due to the stacking faults related to acceptors [52,53]. For
the (Nd, N)-codoped ZnO films, besides the peaks at 3.36 eV, 3.35 eV
and 3.31 eV, an obvious emission peak at 3.25 eV is observed, which
originates from radiative recombination of donor-acceptor pairs (DAP)
[54]. The emergence of the DAP emission is likely to related to the of
the ferromagnetic property of (Nd, N)-codoped ZnO as we will discuss
later.

The electrical properties of the undoped, Nd-doped, N-doped and
(Nd, N) codoped films are summarized in Table 1. The undoped ZnO
film show an n-type conduction with an electron concentration of
5.3×1018 cm−3 and high mobility of 14.7 cm2 V−1 s−1. The electron
concentration of the Nd-doped ZnO film increases to 3.5×1020 cm−3

due to the incorporation of shallow Nd donor. A p-type conduction with
a hole concentration of ~1017 cm−3 is obtained for the N-doped ZnO
film. The p-type conduction is due to N substituting O site as an

acceptor in ZnO. Interestingly, a significant decrease of carrier
concentration is observed for the (Nd, N)-codoped ZnO due to the
compensation of N acceptors to Nd donors.

To check the stability of ferromagnetic couplings, the electronic
structures and total energies of Nd-doped, N-doped and (Nd, N)-codoped
ZnO systems were calculated using first-principles methods. We con-
structed the three different ZnO supercell configurations: NO-NO, NdZn-
NdZn configurations and 2NdZn-NO complex. The energy differences
between antiferromagnetic (AFM) and ferromagnetic (FM) states
(ΔE=EAFM−EFM) for the NO-NO, NdZn-NdZn configurations and 2NdZn-NO

complex are 40, 18 and 104 meV, respectively. The small ΔE value for the
NdZn-NdZn configuration indicates a paramagnetic behavior, which is in
agreement with the previous reports [27]. The ΔE value for the NO-NO

configuration is consistent with the calculated result of 44 meV by Wang
et al. [55] and is also in accordance with the weak ferromagnetism of
ZnO:N observed experimentally [56]. In these configurations, the large ΔE
for the 2NdZn-NO complex indicates the most stable FM coupling, well

Fig. 5. 80 K PL spectra of the undoped ZnO, ZnO:Nd, ZnO:N and ZnO:(Nd,N) thin films.

Table 1
The electrical properties of the undoped and doped ZnO thin films.

Doping
element

Resistivity
(Ω cm)

Carrier
density
(cm−3)

Mobility
(cm2 V−1 s−1)

Conduction type

undoped 0.08 5.3×1018 14.7 n
Nd 1.5×10−3 3.5×1020 11.9 n
N 85.5 2.4×1017 0.3 p
Nd-N 0.02 1.2×1020 2.6 n

Fig. 6. (a) Calculated total and partial DOS and (b) spin density distributions of the 72-
atom ZnO supercell with 2NdZn-NO complex. The Fermi level is set at zero.
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supporting the observed room temperature magnetism. In order to further
determine whether the formation of the 2NdZn-NO complex is stable in
ZnO, we calculated the binding energy of the complex: Eb=Etot(2NdZn-
NO)+Etot(ZnO)−Etot(2NdZn)−Etot(NO), where Etot is the total energy of the
system calculated with the same supercell. The calculated binding energy Eb

for the 2NdZn-NO complex is −1.7 eV, indicating that the complex is stable
with respect to the isolated Nd and N dopants in ZnO.

To well understand the origin of ferromagnetism, the total and
partial spin-resolved DOS of the ZnO system with 2NdZn-NO complex
were calculated, as shown in Fig. 6(a). There exists a significant spin
splitting in the conduction band, which is contributed by the Nd-f
states. We obtained a magnetic moment of 3.2 μB for each Nd atom.
Fig. 6(b) shows the spatial distributions of spin density for the ZnO
supercell with 2NdZn-NO complex. Most of the spin densities were
localized in the vicinity of Nd dopants, which was consistent with
results from the DOS calculations.

4. Conclusions

In summary, we carried out a comparative study on magnetism of
undoped, Nd-doped N-doped and (Nd, N)-codoped ZnO by combining
experiments with first-principles calculations. Our results demon-
strated unambiguously a ferromagnetism enhancement in (Nd, N)-
codoped ZnO, suggesting that donor-acceptor complex plays a key role
for establishing ferromagnetic order in ZnO.
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