Inorganic Chemistry

Article pubs.acs.org/IC

Enhancement of Eu³⁺ Red Upconversion in Lu₂O₃: Yb³⁺/Eu³⁺ Powders under the Assistance of Bridging Function Originated from Ho³⁺ Tridoping

Guotao Xiang,^{*,†©} Yan Ma,[†] Wen Liu,^{‡,§©} Jiapeng Wang,[†] Zhiwei Gu,[†] Ye Jin,^{||} Sha Jiang,[†] Xiaobing Luo,[†] Li Li,[†] Xianju Zhou,[†] Yongshi Luo,[‡] and Jiahua Zhang^{*,‡}

[†]Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, 2 Chongwen Road, Chongqing 400065, China

[‡]State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern South Lake Road, Changchun 130033, China

[§]Graduate School of Chinese Academy of Sciences, Beijing 100039, China

School of Science, Chongqing University of Technology, 69 Hongguang Street, Chongqing 400054, China

S Supporting Information

ABSTRACT: The red upconversion (UC) emission of Eu³⁺ ions in Lu₂O₃: Yb³⁺/ Eu³⁺ powders was successfully enhanced by tridoping Ho³⁺ ions in the matrix, which is due to the bridging function of Ho³⁺ ions. The experiment data manifest that, in Yb³⁺/Eu³⁺/Ho³⁺ tridoped system, the Ho³⁺ ions are first populated to the green emitting level ${}^{5}F_{4}/{}^{5}S_{2}$ through the energy transfer (ET) processes from the excited Yb³⁺ ions. Subsequently, the Ho³⁺ ions at ${}^{5}F_{4}/{}^{5}S_{2}$ level can transfer their energy to the Eu³⁺ ions at the ground state, resulting in the population of Eu³⁺ ${}^{5}D_{0}$ level. With the assistance of the bridging function of Ho³⁺ ion, this ET process is more efficient than the cooperative sensitization process between Yb³⁺ ion and Eu³⁺ ion. Compared with Lu₂O₃: 5 mol % Yb³⁺/1 mol % Eu³⁺, the UC intensity of Eu³⁺ ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition in Lu₂O₃: 5 mol % Yb³⁺/1 mol % Eu³⁺/0.5 mol % Ho³⁺ is increased by a factor of 8.

INTRODUCTION

Trivalent rare-earth ion-doped UC luminescent materials can convert light from near-infrared (NIR) region to visible region.¹ Moreover, the UC materials possess a lot of excellent performances, such as low toxicity, negligible autofluorescence background, high photostability, long luminescence lifetime, and sharp emission bandwidths.^{2–6} The above intrinsic advantages render the UC materials excellent systems for applications in many areas, such as photodynamic therapy, biomedical imaging, three-dimensional display, and so on.^{7–10}

Generally speaking, Yb³⁺ ion, which owns a large absorption cross-section of ~980 nm, is the preferred sensitizer for UC luminescence.^{11–13} Correspondingly, the rare-earth ions that own appropriate metastable energy levels that match well with the excited level of Yb³⁺ ion are usually chosen as the activators, such as Er^{3+} ion, Ho³⁺ ion, and Tm³⁺ ion.^{14–17} Therefore, the Yb³⁺ ion can easily transfer its energy to Er^{3+} ion, Ho³⁺ ion, or Tm³⁺ ion through a series of energy transfer (ET) processes, and then UC luminescence can eventually be realized. However, some certain rare-earth ions without the suitable metastable energy level, such as Eu^{3+} ion and Tb³⁺ ion, can also produce UC luminescence with Yb³⁺ ion as the sensitizer through a cooperative sensitization process.^{18–21} More specifically, utilizing a cooperative sensitization process, a pair of sensitizers Yb^{3+} ions can transfer their energy to one nearby activator ion in the ground state simultaneously without the assistance of intermediate energy level.^{22,23} In this way, the activator ion can be populated at the high energy state, resulting in the UC emission.

Nevertheless, the emission intensity of the UC luminescence that occurred due to the cooperative sensitization process is much weaker than that by the ET process because of the large energy-level gap between sensitizers and activators. Recently, several groups have reported the improvement of the cooperative sensitization UC process.^{24,25} For instance, Yan et al. have realized the UC enhancement of Yb³⁺/Tb³⁺ and Yb³⁺/Eu³⁺ in NaGdF₄ nanoparticles through building a core– shell structure, and Qiu et al. have achieved the increased UC intensity of Yb³⁺/Tb³⁺ in NaYF₄ by tridoping optically inert ions Li⁺.^{26,27} However, as far as we know, there is hardly any investigation concerning the cooperative sensitization of UC enhancement realized by changing the ET processes from doping rare-earth luminescent centers.

In current research, the UC properties of Yb^{3+} and Eu^{3+} codoped Lu_2O_3 have been carefully explored by the visible and

Received: August 13, 2017 Published: November 2, 2017

NIR spectra as well as the decay curves. The experiment data show that, although the ET process from Yb³⁺ ions to Eu³⁺ ions can occur through a cooperative sensitization process, the UC intensity of Eu³⁺ ions is very weak. Therefore, the Ho³⁺ ions are employed as the bridging ions between Yb³⁺ ions and Eu³⁺ ions for the aim of increasing the Eu³⁺ UC intensity. Fortunately, compared with the Yb³⁺/Eu³⁺ codoped Lu₂O₃ powders, the Eu³⁺ UC intensities of the Yb³⁺/Eu³⁺/Ho³⁺ tridoped samples are sharply enhanced, resulting from the bridging function of Ho³⁺ ions. In addition, the ET mechanisms in Yb³⁺/Eu³⁺/Ho³⁺ tridoped Lu₂O₃ are also illuminated in detail.

EXPERIMENTAL SECTION

Chemicals. SpecPure grade rare-earth oxides $(Eu_2O_3, Ho_2O_3, Yb_2O_3, Lu_2O_3, 99.99\%)$, obtained from Beijing Founde Star Science and Technology Company Limited, were employed as starting materials without further purification.

Synthesis of Lu₂O₃: 5 mol % Yb³⁺/x mol % Eu³⁺/y mol % Ho³⁺. The Lu₂O₃: 5 mol % Yb³⁺/x mol % Eu³⁺/y mol % Ho³⁺ powders were prepared by the conventional high-temperature solid-state method, specifically as follows. Weigh the starting materials proportionally, add them in an agate mortar, mix them homogeneously for 30 min, move the powders to an alumina crucible with a lid, and then sinter in a box furnace at 1550 °C for 5 h in air.

Characterization. Powder X-ray diffraction (XRD) data were identified by Cu K α radiation ($\lambda = 1.54056$ Å) on a Bruker D8 advance diffractometer. An FLS920 spectrometer purchased from Edinburgh Instruments was used to collect the visible and NIR spectral data. The fluorescence lifetimes were recorded by a Tektronix digital oscilloscope (TDS 3052) equipped with an optical parametric oscillator (OPO) as the excitation source. The lifetimes were calculated by integrating the area under the corresponding lifetime curves with the normalized initial intensity.

RESULTS AND DISCUSSION

Structure. The XRD patterns for Lu_2O_3 : 5 mol % Yb^{3+}/x mol % Eu^{3+}/y mol % Ho^{3+} powders are collected and depicted in Figure 1. The positions and relative intensity of the

Figure 1. XRD patterns of Lu_2O_3 : 5 mol % Yb³⁺/x mol % Eu³⁺/y mol % Ho³⁺ powders with the standard XRD data of cubic Lu_2O_3 (JCPDS No. 43–1021).

diffraction peaks for each sample exhibit a single cubic phase Lu_2O_3 with space group *Ia3* (No. 206), corresponding to the standard Card No. JCPDS 43–1021, declaring that the Yb³⁺ ions, Eu³⁺ ions, and Ho³⁺ ions are all incorporated into Lu_2O_3 matrix to form a so-called "solid solution structure".

The UC Properties of Lu₂O₃: Yb³⁺/Eu³⁺ Powders. Figure 2 shows the emission spectra of Lu₂O₃: Yb³⁺/Eu³⁺ powders with a fixed concentration of Yb³⁺ 5 mol % and various Eu³⁺ concentrations under 980 nm wavelength excitation. For the Eu^{3+} -free sample, there is no emission peak existing in the range of 580-630 nm. However, for the Yb3+ ions and Eu3+ ions codoped samples, three typical Eu³⁺ ions emission bands can be monitored distinctly, including the $Eu^{3+} {}^5D_0 \rightarrow {}^7F_0$ transition that peaked at 586 nm, the Eu³⁺ ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition that peaked at 500 hm, the Eu³⁺ ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition that peaked at 610 nm. Since the Eu³⁺ ions cannot be excited directly by 980 nm wavelength, Yb³⁺ ions can transfer their energy to Eu³⁺ ions, and then the UC phenomenon of Eu³⁺ ions can happen.¹⁹ Meanwhile, the UC intensity is enhanced first when the Eu³⁺ doping concentration increases from 0 to 1 mol % and then is decreased dramatically resulting from the Eu³⁺ concentration quenching. That is to say, the optimum concentration of Eu³⁺ ions is 1 mol % in this case.

To offer further evidence for the ET from Yb³⁺ ions to Eu³⁺ ions, the NIR region spectra of Yb³⁺ ions in Lu₂O₃: 5 mol % $Yb^{3+}/x \mod \% Eu^{3+}$ powders excited by 980 nm wavelength are measured and shown in Figure 3a. As described in Figure 3a, two emission bands exist in the range of 1000-1100 nm, peaked at 1030 and 1078 nm, respectively, all belonging to the ${}^{12}F_{5/2} \rightarrow {}^{2}F_{7/2}$ transition of Yb³⁺ ions. Furthermore, when the Eu³⁺ ions concentration raises from 0 to 2 mol %, the intensity of $Yb^{3+2}F_{5/2} \rightarrow {}^2F_{7/2}$ transition is reduced, certifying the existence of ET from Yb³⁺ ions to Eu³⁺ ions. The decay curves of the as-prepared powders are also collected under 980 nm wavelength excitation. Seen from Figure 3b, it can be noticed that the lifetimes present a falling tendency with the increased Eu³⁺ ion doping concentration, demonstrating that the Eu³⁺ ion doping provides a new route for Yb³⁺ ions to decay: ET from Yb³⁺ ions to Eu³⁺ ions. Moreover, the decay of Yb³⁺ ions is very fast in the beginning period and then becomes slow. This can be explained as follows: in Yb³⁺ and Eu³⁺ codoped system, under 980 nm wavelength excitation, the population of ⁵D₂ level of Eu³⁺ ion needs to obtain energy from two nearby excited Yb³⁺ ions simultaneously, which will be demonstrated in the following paragraph; in lifetime measurement, after being irradiated by 980 nm pulsed laser, a certain amount of Yb³⁺ ions around the Eu^{3+} ions are excited to $^{2}\mathrm{F}_{5/2}$ level; therefore, the ET process from Yb³⁺ ions to Eu³⁺ ions is very efficient in this period, resulting in the fast decay of Yb³⁺ ions; with the expenditure of the excited Yb³⁺ ions, the Eu³⁺ ions are difficult to receive energy from two nearby excited Yb³⁺ ions simultaneously, giving rise to the decrease of the decay rate of Yb³⁺ ions. Utilizing the decay curves, the decay times of the synthesized powders can be acquired, and then the ET efficiency η_{ETE} can be obtained by the following equation

$$\eta_{\text{ETE,Eu}(x\%)} = 1 - \tau_{\text{Eu}(x\%)} / \tau_{\text{Eu}(0)}$$

where $\tau_{Eu(x\%)}$ is the decay time of $Yb^{3+}{}^5F_{5/2}$ level with different Eu^{3+} ion doping concentration, and $\tau_{Eu(0)}$ represents the decay time of $Yb^{3+}{}^5F_{5/2}$ level in Eu^{3+} -free sample. Consequently, the calculated values of the ET efficiency for Lu_2O_3 : 5 mol % $Yb^{3+}/1$ mol % Eu^{3+} and Lu_2O_3 : 5 mol % $Yb^{3+}/2$ mol % Eu^{3+} are 6.89% and 31.12%, respectively.

According to the previous reports, the UC emission intensity *I* should depend on the pump intensity *P* via the equation $I \propto P^n$, where *n* represents the number of the required NIR photons for emitting one visible photon and can be obtained by the

Figure 2. Emission spectra of Lu_2O_3 : 5 mol % Yb^{3+}/x mol % Eu^{3+} powders (x = 0, 0.1, 0.5, 1.0, 2.0) in the range of 580–630 nm excited by 980 nm wavelength.

Figure 3. (a) The NIR spectra of Lu_2O_3 : 5 mol % Yb³⁺/x mol % Eu³⁺ powders (x = 0, 0.1, 0.5, 1.0, 2.0) excited by 980 nm wavelength. (b) The decay curves of Yb³⁺²F_{5/2} level in Lu_2O_3 : 5 mol % Yb³⁺/x mol % Eu³⁺ powders (x = 0, 1.0, 2.0) excited by 980 nm wavelength.

slope of the double logarithmic plots between I and P.^{28,29} Hence, to explore the detailed ET mechanism in Yb³⁺ and Eu³⁺ codoped system, the relationship between the UC intensity of $Eu^{3+5}D_0 \rightarrow {}^7F_2$ transition in Lu_2O_3 : 5 mol % Yb³⁺/1 mol % Eu³⁺ powder and the 980 nm wavelength pump power was investigated. As shown in Figure 4, the *n* value is ~ 1.95 , close to integer 2, manifesting a two-photon process for Eu³⁺ ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition. Therefore, on the basis of the energy-level positions of Yb³⁺ ions and Eu³⁺ ions, we propose that, in Yb³⁺ and Eu³⁺ codoped system, under 980 nm wavelength excitation, two excited Yb³⁺ ions can transfer their energy to one nearby Eu³⁺ ion in the ground state simultaneously by cooperative sensitization process, and then the Eu^{3+} ion is populated to ${}^{5}D_{2}$ level. Subsequently, the Eu^{3+} ion in ${}^{5}D_{2}$ level can relax nonradiatively to ${}^{5}D_{0}$ level followed by the red UC emission, as depicted in Figure 5.

The UC Properties of Lu₂O₃: Yb³⁺/Eu³⁺/Ho³⁺ Powders. On the basis of the above narrative, it can be seen clearly that, although Yb³⁺ ions can transfer their energy to Eu³⁺ ions, this ET process is not very efficient, resulting in a weak ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition, due to the large energy level mismatch between Yb³⁺

Figure 4. Power dependence curve of Eu^{3+} $^5D_0 {\rightarrow}^7F_2$ transition in Lu₂O₃: 5 mol % Yb^{3+}/1 mol % Eu^{3+} powder excited by 980 nm wavelength.

Article

Figure 5. Energy levels of Yb^{3+} ions and Eu^{3+} ions along with the involved ET processes.

ions and Eu³⁺ ions. To enhance the UC emission of Eu³⁺ ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition, the Lu₂O₃: 5 mol % Yb³⁺/1 mol % Eu³⁺ powders tridoped with various Ho³⁺ ions concentration were prepared, trying to employ Ho³⁺ ion as a bridging ion between Yb³⁺ ion and Eu³⁺ ion to achieve this goal.

Figure 6 describes the UC spectra of Lu₂O₃: 5 mol % Yb³⁺/1 mol % Eu³⁺/y mol % Ho³⁺ powders as a function of Ho³⁺ doping contents. As the Ho³⁺ doping content increased from 0 to 2 mol %, the Eu³⁺ UC intensity is dramatically enhanced first and then is decreased. The corresponding Ho³⁺ doping concentration for the maximum UC intensity of Eu³⁺ $^{5}D_{0}\rightarrow^{7}F_{2}$ transition is 0.5 mol %. Considering both of the Ho³⁺ ions and Eu³⁺ ions cannot be excited directly by 980 nm wavelength, we propose that the Ho³⁺ ions play a role of bridge during the ET process from Yb³⁺ ions to Eu³⁺ ions, resulting in the Eu³⁺ UC enhancement. The related demonstration of the Ho³⁺ ion bridging function will be provided in the following paragraphs. Besides, the decrease of Eu³⁺ UC intensity as the Ho³⁺ doping concentration quenching. Followed by the increase of

 Ho^{3+} doping concentration from 0 to 2 mol %, the UC emission intensity of Ho^{3+} ions (see Figure S1) owns the similar variation trend with that of Eu^{3+} ions, suggesting 0.5 mol % is also the optimal concentration for Ho^{3+} UC emission in this case. That is to say, when the Ho^{3+} doping content is beyond 0.5 mol %, the Ho^{3+} concentration quenching phenomenon occurs, which hinders the ET process between Ho^{3+} ions and Eu^{3+} ions, giving rise to the decrease of Eu^{3+} UC intensity.

The Lu₂O₃: 5 mol % Yb³⁺/x mol % Eu³⁺/0.5 mol % Ho³⁺ powder (x = 0, 0.1, 0.5, 1.0, 2.0) was synthesized to investigate the Ho³⁺ ions bridging function between Yb³⁺ ions and Eu³⁺ ions. As depicted in Figure 7, the UC intensity of Eu³⁺ is strongly enhanced and then reduced with the increase of Eu³⁺ doping content. The optimal Eu³⁺ doping concentration appears at 1 mol % for its UC emission, which is the same as that of Yb³⁺ ions and Eu³⁺ ions codoped system. Compared with Lu₂O₃: 5 mol % Yb³⁺/1 mol % Eu³⁺ powder, the UC intensity of Eu^{3+ 5}D₀ \rightarrow ⁷F₂ transition in Lu₂O₃: 5 mol % Yb³⁺/1 mol % $Eu^{3+}/0.5$ mol % Ho^{3+} powder is increased by a factor of 8, as exhibited in Figure 8. However, as the increase of Eu³⁺ concentration, the UC emission intensity of Ho³⁺ is reduced distinctly (see Figure S2), which is a direct proof for the existence of ET from Ho³⁺ ions to Eu³⁺ ions. Moreover, the decay times of the green emitting level ${}^{5}F_{4}/{}^{5}S_{2}$ of Ho³⁺ are also decreased with the increased Eu³⁺ concentration (see Figure 9), providing another evidence for the ET between Ho3+ ions and Eu³⁺ ions. Considering the Ho³⁺ ion cannot be excited directly by 980 nm wavelength, it can be concluded that the Ho³⁺ ions play a role of bridge during the ET process from Yb³⁺ ion to Eu³⁺ ion. By the utilization of the ET efficiency calculation formula mentioned above, the η_{ETE} of Ho^{3+ 5}F₄/⁵S₂ level of the samples with different Eu³⁺ doping concentrations was acquired and listed in Table 1. Obviously, excited by 980 nm wavelength, the ET from Ho³⁺ ions to Eu³⁺ in Yb³⁺/Eu³⁺/Ho³⁺ tridoped system is more efficient than the ET from Yb³⁺ ions to Eu³⁺ in Yb^{3+}/Eu^{3+} codoped system.

The 980 nm wavelength pump power dependence of the UC intensity of $Eu^{3+} {}^5D_0 \rightarrow {}^7F_2$ transition in Lu_2O_3 : 5 mol % Yb³⁺/1

Figure 6. UC emission spectra of Lu_2O_3 : 5 mol % Yb³⁺/1 mol % Eu³⁺/y mol % Ho³⁺ powders (y = 0, 0.1, 0.5, 1.0, 1.5, 2.0) in the range of 580–630 nm excited by 980 nm wavelength.

Figure 7. UC emission spectra of Lu_2O_3 : 5 mol % Yb³⁺/x mol % Eu³⁺/0.5 mol % Ho³⁺ powders (x = 0, 0.1, 0.5, 1.0, 2.0) in the range of 580–630 nm excited by 980 nm wavelength.

Figure 8. Normalized integral intensity of Eu^{3+ 5}D₀ \rightarrow ⁷F₂ transition in Lu₂O₃: 5 mol % Yb³⁺/x mol % Eu³⁺ powders and Lu₂O₃: 5 mol % Yb³⁺/x mol % Eu³⁺/0.5 mol % Ho³⁺ powders under 980 nm wavelength excitation.

Figure 9. Decay curves of $\text{Ho}^{3+5}\text{F}_4/^5\text{S}_2\rightarrow^5\text{I}_8$ transition in Lu_2O_3 : 5 mol % Yb^{3+}/x mol % $\text{Eu}^{3+}/0.5$ mol % Ho^{3+} powders (x = 0, 0.1, 0.5, 1.0, 2.0) under 980 nm wavelength excitation.

Table 1. Lifetimes and η_{ETE} of Ho^{3+ 5}F₄/⁵S₂ Level in Lu₂O₃: 5 mol % Yb³⁺/x mol % Eu³⁺/0.5 mol % Ho³⁺ Powders (x = 0, 0.1, 0.5, 1.0, 2.0) under 980 nm Wavelength Excitation

concentration of Eu^{3+} (mol %)	lifetime (μs)	η_{ETE} (%)
0	229.7	0
0.1	188.7	17.85
0.5	172.0	25.12
1.0	130.3	43.27
2.0	63.2	72.49
1.0 2.0	130.3 63.2	43.27 72.49

mol % Eu³⁺/0.5 mol % Ho³⁺ powder was measured and shown in Figure 10. The *n* value is 1.91, signifying the Eu³⁺ ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition remains a two-photon process in Yb³⁺/Eu³⁺/Ho³⁺ tridoped system. Figure 11 delineates the involved ET processes among Yb³⁺ ions, Ho³⁺ ions, and Eu³⁺ ions. Under 980 nm wavelength excitation, the Yb³⁺ ions in the ground state can be excited to ${}^{2}F_{5/2}$ level by absorbing one 980 nm photon. Next, the excited Yb³⁺ ions can transfer their energy to the

Figure 10. Power dependence curve of $Eu^{3+} {}^5D_0 \rightarrow {}^7F_2$ transition in Lu_2O_3 : 5 mol % Yb³⁺/1 mol % Eu³⁺/0.5 mol % Ho³⁺ powder excited by 980 nm wavelength.

Ho³⁺ ions through the ET1 and ET3 processes, and then the green emitting level ${}^{5}F_{4}/{}^{5}S_{2}$ of the Ho³⁺ ions are populated. The Ho³⁺ ions at ${}^{5}I_{6}$ level can relax nonradiatively to the ${}^{5}I_{7}$ level and then receive energy from Yb³⁺ ions via ET2 process, resulting in the population of the red-emitting level ${}^{5}F_{5}$ of the Ho³⁺ ions. Besides, ⁵F₅ level of Ho³⁺ ions can also be populated by the nonradiative relaxation process from the ${}^{5}F_{4}/{}^{5}S_{2}$ level and the cross relaxation (CR) process between ${}^{5}F_{4}/{}^{5}S_{2}$ level and ⁵I₇ level. As for the population of Eu³⁺ ions, since the energy levels of Ho³⁺ ions match the ${}^{2}F_{5/2}$ level of Yb³⁺ ions much better than that of Eu³⁺ ions, it is difficult for Eu³⁺ ions to receive energy directly from Yb³⁺ ions. Nevertheless, the Eu³⁺ ions in the ground state can remain excited by 980 nm wavelength, because of the bridging function of Ho³⁺ ions. The Ho³⁺ ions at ${}^{5}F_{4}/{}^{5}S_{2}$ level can transfer their energy to the Eu³⁺ ions by ET4 process, resulting in the population of $Eu^{3+} {}^{5}D_{0}$ level. The radiative transitions from $Eu^{3+} {}^{5}D_{0}$ level to ${}^{7}F_{0}$ level, ${}^{7}F_{1}$ level, and ${}^{7}F_{2}$ level give rise to the red UC emission, centered at 586, 592, and 610 nm, respectively.

CONCLUSIONS

In summary, the UC properties of Yb³⁺ and Eu³⁺ codoped Lu₂O₃ have been investigated in detail. Under 980 nm wavelength excitation, one Eu³⁺ ion can gain energy from two excited Yb³⁺ ions simultaneously via a cooperative sensitization process, resulting in the red UC emission. However, because of the large energy-level mismatch between Yb^{3+} ion and Eu^{3+} ion, it is inefficient for the Eu^{3+} UC emission. Therefore, the Ho³⁺ ions tridoped Lu₂O₃: Yb³⁺/Eu³⁺ powders were synthesized for the attempt to change the ET processes between Yb3+ ions and Eu3+ ions and then realize the UC emission improvement of Eu³⁺ ions. The experiment data indicate that, in Yb³⁺/Eu³⁺/Ho³⁺ tridoped system, the Ho³⁺ ions can play a role of bridge between Yb^{3+} ions and Eu^{3+} ions. Under 980 nm wavelength excitation, the excited Yb³⁺ ions first transfer their energy to Ho³⁺ ions, generating the population of $Ho^{3+} {}^{5}F_{4}/{}^{5}S_{2}$ level. Subsequently, the Eu³⁺ ions can be populated to 5D_0 level by receiving energy from the Ho³⁺ ions at ${}^{5}F_{4}/{}^{5}S_{2}$ level, which is more efficient than the cooperative sensitization process between Yb^{3+} ions and Eu^{3+} ions. With the assistance of the bridging function of Ho^{3+} ions, the red UC intensity of Eu³⁺ ions is increased obviously. Compared with Lu_2O_3 : 5 mol % Yb³⁺/1 mol % Eu³⁺, the UC

intensity of $Eu^{3+5}D_0 \rightarrow {}^7F_2$ transition in Lu_2O_3 : 5 mol % Yb³⁺/1 mol % $Eu^{3+}/0.5$ mol % Ho³⁺ is increased almost 8 times.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorg-chem.7b02086.

The UC spectra of Lu_2O_3 : Yb³⁺/Eu³⁺/Ho³⁺ powders in the range of 500–700 nm (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: zhangjh@ciomp.ac.cn. (J.Z.)

*E-mail: xianggt@cqupt.edu.cn. (G.X.)

ORCID 0

Guotao Xiang: 0000-0003-3587-6654 Wen Liu: 0000-0001-5792-6830

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work is financially supported by National Natural Science Foundation of China (Nos. 11674044 and 11704054), Chongqing Research Program of Basic Research and Frontier Technology (No. CSTC2017jcyjAX0046), and Science and Technology Research Program of Chongqing Municipal Education Commission (No. KJ1704071).

REFERENCES

(1) Auzel, F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. *Chem. Rev.* **2004**, *104*, 139–173.

(2) Huang, Y. N.; Xiao, Q. B.; Hu, H. S.; Zhang, K. C.; Feng, Y. M.; Li, F. J.; Wang, J.; Ding, X. G.; Jiang, J.; Li, Y. F.; Shi, L. Y.; Lin, H. Z. 915 nm Light-Triggered Photodynamic Therapy and MR/CT Dual-Modal Imaging of Tumor Based on the Nonstoichiometric Na_{0.52}YbF_{3.52}: Er Upconversion Nanoprobes. *Small* **2016**, *12*, 4200– 4210.

(3) Dong, H.; Sun, L. D.; Wang, Y. F.; Ke, J.; Si, R.; Xiao, J. W.; Lyu, G. M.; Shi, S.; Yan, C. H. Efficient Tailoring of Upconversion Selectivity by Engineering Local Structure of Lanthanides in Na_xREF_{3+x} Nanocrystals. *J. Am. Chem. Soc.* **2015**, *137*, 6569–6576.

(4) Xiang, G. T.; Zhang, J. H.; Hao, Z. D.; Zhang, X.; Pan, G. H.; Luo, Y. S.; Lü, W.; Zhao, H. F. Importance of Suppression of Yb³⁺ De-Excitation to Upconversion Enhancement in β -NaYF₄: Yb3+/Er3+@ β -NaYF4 Sandwiched Structure Nanocrystals. *Inorg. Chem.* **2015**, *54*, 3921–3928.

(5) Xiang, G. T.; Zhang, J. H.; Hao, Z. D.; Zhang, X.; Pan, G. H.; Chen, L.; Luo, Y. S.; Lü, S. Z.; Zhao, H. F. Solvothermal synthesis and upconversion properties of about 10 nm orthorhombic LuF₃: Yb3+, Er3+ rectangular nanocrystals. *J. Colloid Interface Sci.* **2015**, 459, 224– 229.

(6) Cui, S. S.; Chen, H. Y.; Zhu, H. Y.; Tian, J. M.; Chi, X. M.; Qian, Z. Y.; Achilefu, S.; Gu, Y. Q. Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light. *J. Mater. Chem.* **2012**, *22*, 4861–4873.

(7) Liu, K.; Liu, X. M.; Zeng, Q. H.; Zhang, Y. L.; Tu, L. P.; Liu, T.; Kong, X. G.; Wang, Y. H.; Cao, F.; Lambrechts, S. A. G.; Aalders, M. C. G.; Zhang, H. Covalently Assembled NIR Nanoplatform for Simultaneous Fluorescence Imaging and Photodynamic Therapy of Cancer Cells. ACS Nano **2012**, *6*, 4054–4062.

(8) Yang, T. S.; Sun, Y.; Liu, Q.; Feng, W.; Yang, P. Y.; Li, F. Y. Cubic sub-20 nm NaLuF₄-based upconversion nanophosphors for high-

contrast bioimaging in different animal species. *Biomaterials* **2012**, *33*, 3733–3742.

(9) Tian, G.; Gu, Z. J.; Zhou, L. J.; Yin, W. Y.; Liu, X. X.; Yan, L.; Jin, S.; Ren, W. L.; Xing, G. M.; Li, S. J.; Zhao, Y. L. Mn²⁺ Dopant-Controlled Synthesis of NaYF₄:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery. *Adv. Mater.* **2012**, *24*, 1226–1231.

(10) Chatterjee, D. K.; Gnanasammandhan, M. K.; Zhang, Y. Small Upconverting Fluorescent Nanoparticles for Biomedical Applications. *Small* **2010**, *6*, 2781–2795.

(11) Kaiser, M.; Würth, C.; Kraft, M.; Hyppänen, I.; Soukka, T.; Resch-Genger, U. Power-dependent upconversion quantum yield of NaYF₄:Yb³⁺, Er³⁺ nano- and micrometer-sized particles – measurements and simulations. *Nanoscale* **2017**, *9*, 10051–10058.

(12) Zhang, H. X.; Jia, T. Q.; Chen, L.; Zhang, Y. C.; Zhang, S. A.; Feng, D. H.; Sun, Z. R.; Qiu, J. R. Depleted upconversion luminescence in NaYF₄:Yb³⁺,Tm³⁺ nanoparticles via simultaneous two-wavelength excitation. *Phys. Chem. Chem. Phys.* **2017**, *19*, 17756–17764.

(13) Li, J.; Zhang, J. H.; Hao, Z. D.; Zhang, X.; Zhao, J. H.; Luo, Y. S. Intense upconversion luminescence and origin study in Tm³⁺/Yb³⁺ codoped calcium scandate. *Appl. Phys. Lett.* **2012**, *101*, 121905.

(14) Tamilmani, V.; Kumari, A.; Rai, V. K.; Unni Nair, B.; Sreeram, K. J. Bright Green Frequency Upconversion in Catechin Based Yb³⁺/ Er³⁺ Codoped LaVO₄ Nanorods upon 980 nm Excitation. *J. Phys. Chem.* C **2017**, *121*, 4505–4516.

(15) Plohl, O.; Kraft, M.; Kovač, J.; Belec, B.; Ponikvar-Svet, M.; Würth, C.; Lisjak, D.; Resch-Genger, U. Optically Detected Degradation of $NaYF_4$; Yb, Tm-Based Upconversion Nanoparticles in Phosphate Buffered Saline Solution. *Langmuir* **2017**, *33*, 553–560.

(16) Jin, L. M.; Chen, X.; Siu, C. K.; Wang, F.; Yu, S. F. Enhancing Multiphoton Upconversion from NaYF₄:Yb/Tm@NaYF₄ Core–Shell Nanoparticles via the Use of Laser Cavity. *ACS Nano* **2017**, *11*, 843– 849.

(17) Li, T.; Guo, C. F.; Suo, H.; Zhao, P. J. Dual-mode modulation of luminescence chromaticity in $AgLa(MoO_4)_2$:Yb³⁺,Ho³⁺ up-conversion phosphors. *J. Mater. Chem. C* **2016**, *4*, 1964–1971.

(18) Wei, X. T.; Zhao, J. B.; Zhang, W. P.; Li, Y.; Yin, M. Cooperative energy transfer in Eu^{3+} , Yb³⁺ codoped Y_2O_3 phosphor. *J. Rare Earths* **2010**, *28*, 166–170.

(19) Wang, H. S.; Duan, C. K.; Tanner, P. A. Visible Upconversion Luminescence from Y_2O_3 : Eu3+, Yb3+. J. Phys. Chem. C 2008, 112, 16651–16654.

(20) Giri, N. K.; Rai, D. K.; Rai, S. B. UV–visible emission in Tb–Yb codoped tellurite glass on 980-nm excitation. *Appl. Phys. B: Lasers Opt.* **2007**, *89*, 345–348.

(21) Yamashita, T.; Ohishi, Y. Spectroscopic properties of Tb³⁺-Yb³⁺- codoped borosilicate glasses for green lasers and amplifiers. *Proc. SPIE* **2006**, *6389*, *6389*12.

(22) Chen, D. Q.; Wang, Y. S.; Zheng, K. L.; Guo, T. L.; Yu, Y. L.; Huang, P. Bright upconversion white light emission in transparent glass ceramic embedding $\text{Tm}^{3+}/\text{Er}^{3+}/\text{Yb}^{3+}$: β -YF3 nanocrystals. *Appl. Phys. Lett.* **2007**, *91*, 251903.

(23) Lin, H.; Chen, D. Q.; Yu, Y. L.; Shan, Z. F.; Huang, P.; Wang, Y. S.; Yuan, J. L. Nd^{3+} -sensitized upconversion white light emission of Tm^{3+}/Ho^{3+} bridged by Yb^{3+} in β -YF₃ nanocrystals embedded transparent glass ceramics. *J. Appl. Phys.* **2010**, *107*, 103511.

(24) Xue, M.; Zhu, X. J.; Qiu, X. C.; Gu, Y. Y.; Feng, W.; Li, F. Y. Highly Enhanced Cooperative Upconversion Luminescence through Energy Transfer Optimization and Quenching Protection. *ACS Appl. Mater. Interfaces* **2016**, *8*, 17894–17901.

(25) Zhou, B.; Yang, W. F.; Han, S. Y.; Sun, Q.; Liu, X. G. Photon Upconversion Through Tb^{3+} -Mediated Interfacial Energy Transfer. *Adv. Mater.* **2015**, *27*, 6208–6212.

(26) Dong, H.; Sun, L. D.; Wang, Y. F.; Xiao, J. W.; Tu, D. T.; Chen, X. Y.; Yan, C. H. Photon upconversion in $Yb^{3+}-Tb^{3+}$ and $Yb^{3+}-Eu^{3+}$ activated core/shell nanoparticles with dual-band excitation. *J. Mater. Chem.* C **2016**, *4*, 4186–4192.

(27) Gao, Y.; Hu, Y. B.; Ren, P.; Zhou, D. C.; Qiu, J. B. Effect of Li^+ ions on the enhancement upconversion and stokes emission of NaYF₄:

Tb, Yb co-doped in glass-ceramics. J. Alloys Compd. 2016, 667, 297–301.

(28) Pollnau, M.; Gamelin, D. R.; Lüthi, S. R.; Güdel, H. U.; et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2000**, *61*, 3337–3346.

(29) Xiang, G. T.; Zhang, J. H.; Hao, Z. D.; Zhang, X.; Pan, G. H.; Luo, Y. S.; Zhao, H. F. Decrease in particle size and enhancement of upconversion emission through Y^{3+} ions doping in hexagonal NaLuF₄:Yb³⁺/Er³⁺ nanocrystals. *CrystEngComm* **2015**, *17*, 3103–3109.