Highly Efficient Green-Emitting Phosphors $Ba_2Y_5B_5O_{17}$ with Low Thermal Quenching Due to Fast Energy Transfer from Ce^{3+} to Tb^{3+}

Yu Xiao,^{†,‡} Zhendong Hao,^{*,†} Liangliang Zhang,[†] Wenge Xiao,^{†,‡} Dan Wu,^{†,‡} Xia Zhang,[†] Guo-Hui Pan,[†] Yongshi Luo,[†] and Jiahua Zhang^{*,†}

[†]State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern South Lake Road, Changchun 130033, China

[‡]University of Chinese Academy of Sciences, Beijing 100049, China

ABSTRACT: This paper demonstrates a highly thermally stable and efficient green-emitting $Ba_2Y_5B_5O_{17}:Ce^{3+}$, Tb^{3+} phosphor prepared by high-temperature solid-state reaction. The phosphor exhibits a blue emission band of Ce^{3+} and green emission lines of Tb^{3+} upon Ce^{3+} excitation in the near-UV spectral region. The effect of Ce^{3+} to Tb^{3+} energy transfer on blue to green emission color tuning and on luminescence thermal stability is studied in the samples codoped with 1% Ce^{3+} and various concentrations (0–40%) of Tb^{3+} . The green emission of Tb^{3+} upon Ce^{3+} excitation at 150 °C can keep, on average, 92% of its intensity at room temperature, with the best one showing no intensity decreasing up to 210 °C for 30% Tb^{3+} . Meanwhile, Ce^{3+} emission intensity only keeps 42% on average at 150 °C. The high thermal stability of the green emission is attributed to suppression of Ce^{3+} thermal de-excitation through fast energy transfer to Tb^{3+} , which in the green-emitting excited states is highly thermally stable such that no lifetime

shortening is observed with raising temperature to 210 $^{\circ}$ C. The predominant green emission is observed for Tb³⁺ concentration of at least 10% due to efficient energy transfer with the transfer efficiency approaching 100% for 40% Tb³⁺. The internal and external quantum yield of the sample with Tb³⁺ concentration of 20% can be as high as 76% and 55%, respectively. The green phosphor, thus, shows attractive performance for near-UV-based white-light-emitting diodes applications.

1. INTRODUCTION

In recent years, white light-emitting diodes (LEDs) have been extensively investigated for application in solid-state lighting.¹⁻¹⁶ In the strategy of phosphor-converted white LEDs, combining blue InGaN LED chips with yellow-emitting phosphors is most common.^{17,18} Alternatively, combining near-UV LED chips with red-, green-, and blue-emitting phosphors is also an attractive scheme, because near-UV light can be fully converted to white light with high color rendering index.¹⁹ The latter scheme thus arouses a great research concern.^{20–34} Further improving the white LED devices requires not only advances in the near-UV LED chips but also the development of novel phosphors.^{35,36}

Efficient phosphors with high thermal stability are desirable for applications. For the purpose of achieving applicable greenemitting phosphors for near-UV LED excitation, rare-earth Ce^{3+} and Tb^{3+} codoped materials have been widely studied and made great progress in recent years.^{37–42} Wang et al. reported a novel blue-green emitting phosphor NaBaScSi₂O₇:Ce³⁺,Tb³⁺ with an internal quantum efficiency of 36%. Lin et al. observed highly efficient emission with an internal quantum yield of 45.1% in BaLuSi₃O₁₀:Ce³⁺, Tb³⁺. Additionally, few reports demonstrated a high thermal stability of the green emission. Jin et al. reported that the green emission keeps 80% of its roomtemperature intensity at 150 °C in Gd_{4.67}Si₃O₁₃:Ce³⁺, Tb³⁺. Zhang and his co-workers declared that the green emission keeps almost 100% of its room-temperature intensity up to 160 $^{\circ}$ C in an optimized green-emitting LaOBr:Ce³⁺, Tb³⁺ phosphor, but the quantum yield was not indicated.

Recently, Hermus et al. reported a novel efficient blueemitting Ba₂Y₅B₅O₁₇:Ce³⁺ (BYBO:Ce³⁺) phosphor for near-UV excitation.43Accordingly, BYBO could be another attractive host for Ce^{3+} and Tb^{3+} codoped green phosphor. The blue emission of Ce³⁺ in BYBO, however, shows a quenching temperature of only 130 °C, seemingly unsuitable for achieving thermally stable green emission of Tb³⁺ with energy transferred from Ce³⁺. In this paper, we report a thermally stable greenemitting phosphor by adding green-emitting Tb³⁺ into BYBO:Ce³⁺. Emission color tuning from blue to green through energy transfer from Ce3+ to Tb3+ was studied by means of photoluminescence (PL) and photoluminescence excitation (PLE) spectra in the samples codoped with 1% Ce³⁺ and various concentrations of Tb³⁺.The predominant green emission with the internal and external quantum yield of 76% and 55%, respectively, at room temperature is achieved. Temperature dependence of PL intensity exhibits that the green emission can keep an average of 92% of its room-

Received: January 18, 2017 Published: March 30, 2017

temperature intensity at 150 °C with the best one showing no intensity decreasing up to 210 °C for 30% Tb^{3+} . The high thermal stability of the green emission was analyzed.

2. EXPERIMENTAL SECTION

2.1. Materials and Preparation. The $Ba_2Y_5B_5O_{17}:Ce^{3+}$, Tb^{3+} samples were synthesized by traditional high-temperature solid-state reaction. The starting materials used for the studied phosphors were Ba_2CO_3 (A.R.), H_3BO_3 (A.R.), Y_2O_3 (4N), CeO_2 (4N), Tb_4O_7 (4N), and they were mixed and ground according to the given stoichiometric ratio. The weighed powder was mixed in an agate mortar and placed in an alumina crucible. This crucible was prefired at 450 °C for 4 h and finally heated at 1200 °C for 8 h in a CO reducing atmosphere. After they cooled to room temperature (RT), the final products were white powders.

2.2. Measurement Characterization. The powder X-ray diffraction (XRD) patterns were collected on a Bruker D8 Focus diffractometer, in the 2θ range from 15° to 80° with Cu K α radiation $(\lambda = 1.54056 \text{ Å})$ operated at 40 kV and 40 mA. The XRD data were collected with step size of 0.02° and count time of 2 s/step. The diffraction pattern was indexed using the TREOR90 program.44 Rietveld analysis was conducted using the GSAS package.⁴⁵ The measurements of PL and PLE spectra were performed with a Hitachi F-7000 spectrometer equipped with a 150 W xenon lamp as the excitation source. And the temperature-dependent PL spectra were also performed on F-7000 spectrometer with an external heater. A process controller (OMEGA CN76000) equipped with a thermocouple was used to measure the temperature and control the heating rate. In fluorescence decay measurements, an optical parametric oscillator (OPO) was used as an excitation source, and the signal was detected by a Tektronix digital oscilloscope (TDS 3052). All the measurements were conducted at room temperature unless mentioned specially.

3. RESULTS AND DISCUSSION

3.1. Phase Identification and Rietveld Refinements. The phase purities and the crystal structures of the as-prepared powder samples BYBO: 1% Ce^{3+} , x $Tb^{3+}(x = 0\%, 2\%, 10\%, 10\%)$ 20%, 30%, 40%) were characterized by XRD at room temperature. All the samples exhibit the almost similar XRD patterns with the diffraction peaks coincident with the Powder Diffraction File No. 00-056-0113 for BYBO. No obvious impurities were detected, indicating that the obtained samples were single phase and that the doped ions were completely dissolved in the BYBO host without significant changes of the crystal structure. To further understand the microstructure of the as-prepared samples, detailed Rietveld refinements were performed. Figure 1a presents the XRD powder patterns of BYBO: 1% Ce^{3+} , x Tb^{3+} (x = 2%, 20%, 40%), and Figure 1b shows the Rietveld refinements for BYBO: 1% Ce³⁺, 20% Tb³⁺, as an example. The crystal lattice parameters determined by the Rietveld refinements for the all samples are listed in Table 1.

Figure 2 shows the crystal-structure diagram of BYBO according to the refinement. The compound crystallizes as an orthorhombic crystal system with space group *Pbcn* (No. 60). The lattice parameter (a = 17.44 Å, b = 6.64 Å, c = 13.01 Å) and unit cell volume (V = 1506.989 Å³) become larger with increasing Tb³⁺ concentration. The cell parameters of BYBO: 1% Ce³⁺, 40% Tb³⁺ are a = 17.45 Å, b = 6.67 Å, c = 13.06 Å, and V = 1520.85 Å³, respectively. This phenomenon can be ascribed to Ce³⁺ (1.14 Å) and Tb³⁺ (1.04 Å) substitution for small Y³⁺ (1.02 Å). There are two crystallographically independent, fully occupied Y³⁺ sites and a third Y³⁺ site that is shared with Ba²⁺. These coordination polyhedra form a distorted octahedron around atom Y3, a distorted capped

Figure 1. XRD patterns (a) and Rietveld refinements (b) for BYBO: 1% Ce³⁺, x% Tb³⁺.

trigonal prism around atom Y4, and a distorted pentagonal bipyramid around the mixed Y2/Ba2 site. Ba²⁺ mainly occupies one crystallographic position and is mixed with Y³⁺ in a 10-coordinate, highly distorted polyhedral. All of the boron atoms are three-coordinated by oxygen forming slightly distorted trigonal planar units.⁴³ During the refinement of the fully order crystal structure, anomalous isotropic displacement factors were obtained for two of the cation sites, namely, Ba1 and Y2. Statistically mixing Ba and Y on these positions satisfied the refinement allowing the refinement to converge. One of the positions is Ba1/Y1 with a majority Ba, Wyckoff site 8*d*, whereas the second site is Y2/Ba2 with a majority Y, Wyckoff site 4*c*. This phenomenon is not unprecedented and is observed in other borates like Ba_{2.55}Y_{1.445}B₃O₉, where Ba and Y share all crystallographic sites.⁴⁶

3.2. Emission Color Tuning Due to Ce³⁺-Tb³⁺ Energy Transfer. Figure 3a shows the PLE and PL spectra of BYBO: 1% Ce³⁺. The PLE spectrum monitored at 445 nm contains three distinctive bands peaked at 265, 308, and 345 nm, which are assigned to the 4f-5d transitions of Ce³⁺. The strong PLE band at 345 nm is well-matched to the near-UV LED chip. Under near UV excitation at 345 nm, the PL spectrum exhibits an asymmetric blue emission band peaked at 443 nm, which is assigned to the transition from the lowest 5d state to the 4f ground state of Ce³⁺.The asymmetric emission band can be well-fitted with two Gaussian bands peaking at 426 nm (23 446 cm^{-1}) and 464 nm (21 571 cm^{-1}). Their energy difference is \sim 1875 cm⁻¹, being consistent with the energy separation between the ${}^{2}F_{7/2}$ and the ${}^{2}F_{5/2}$ substates of the ground state of Ce^{3+,47} The Tb³⁺ singly doped BYBO: 2% Tb³⁺ presents the well-known green fluorescence with the main emission line at 543 nm, originating from ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transition, and two weak lines at 585 nm from ${}^5\mathrm{D}_4{\rightarrow}{}^7\mathrm{F}_4$ and at 625 nm from ${}^{5}D_{4} \rightarrow {}^{7}F_{3}$ transitions (see Figure 3b). The PLE spectrum of Tb³⁺ singly doped sample includes the transitions from the ground-state ⁷F₆ to the excited states ⁵D₄, ⁵D₃, and the 4f⁷5d states. Clearly, a big spectral overlap between Ce³⁺ PL band and Tb³⁺ PLE band corresponding to ${}^{7}F_{6} \rightarrow {}^{5}D_{4}$ absorption is observed, indicating the possibility of energy transfer from Ce³⁺

x	a (Å)	<i>b</i> (Å)	c (Å)	V (Å ³)	$R_{\rm WP}$ (%)	$R_{\rm P}$ (%)
0%	17.431 73	6.648 15	13.019 37	1508.799	4.77	3.39
2%	17.432 84	6.649 27	13.020 69	1509.302	4.16	2.95
10%	17.4360	6.649 27	13.0296	1511.608	4.24	3.06
20%	17.445 75	6.659 74	13.04387	1515.490	5.88	3.49
30%	17.449 78	6.665 05	13.05299	1518.110	4.45	2.95
40%	17.4573	6.669 82	13.06156	1520.852	3.98	2.60

Figure 2. Crystal structure schematic diagram of $Ba_2Y_5B_5O_{17}$ and crystallographically independent cation coordination environments.

Figure 3. PLE and PL spectra of BYBO: 1% Ce³⁺ (a), BYBO: 2% Tb³⁺ (b), and BYBO: 1% Ce³⁺, 2% Tb³⁺ (c).

to Tb³⁺ according to Dexter's theory.⁴⁸ The energy transfer is confirmed by the luminescent properties of Ce³⁺ and Tb³⁺ codoped BYBO, as shown in Figure 3c. It is found that the PLE spectrum of BYBO: 1% Ce³⁺, 2% Tb³⁺ monitored Tb³⁺ emission at 543 nm exhibits only the characteristic PLE bands of Ce³⁺ in the near-UV region. Meanwhile, not only Ce³⁺

emission but also strong Tb³⁺emission appear upon Ce³⁺ excitation at 345 nm. This phenomenon gives us a confirmation of occurrence of Ce³⁺ to Tb³⁺ energy transfer, and the excitation of Tb³⁺ is governed by energy transfer from Ce³⁺ rather than near-UV absorption by Tb³⁺ itself.

To understand the effect of energy transfer on luminescent properties of Ce^{3+} and Tb^{3+} codoped BYBO, the PL spectra for a fixed 1% Ce^{3+} but various concentrations of Tb^{3+} are studied, as shown in Figure 4. It is observed that the intensity of the

Figure 4. PL spectra of BYBO: 1% Ce^{3+} , x% Tb^{3+} for various Tb^{3+} concentrations under 345 nm excitation.

Ce³⁺ emission decreases rapidly with the increase of Tb³⁺ concentration *x*. Meanwhile Tb³⁺ emission is enhanced considerably with the increase of *x* up to 20%, reflecting the enhanced energy-transfer efficiency. The Ce³⁺ emission becomes very weak, and Tb³⁺ emission dominates the PL spectra for $x \ge 10\%$, implying the occurrence of highly efficient energy transfer. However, Tb³⁺ emission intensity starts to decrease for x > 20%. The decrease is attributed to the Tb³⁺-Tb³⁺ internal concentration quenching based on the experimental observation of the fluorescence lifetime shortening of Tb³⁺ on increasing *x*, as shown in Figure 5.

On the basis of the data shown in Figures 4 and 5, the Tb³⁺ concentration dependence of Ce³⁺, Tb³⁺ emission intensities, Tb³⁺ fluorescence lifetimes, and energy-transfer efficiencies are obtained and plotted in Figure 5. The efficiencies ($\eta_{\rm ET}$) of energy transfer from sensitizer Ce³⁺ to activator Tb³⁺ are calculated by⁴⁹

$$\eta_{\rm T} = 1 - \frac{I_{\rm S}}{I_{\rm S0}} \tag{1}$$

Figure 5. Fluorescence decay curves of Tb^{3+} in BYBO: 1% Ce^{3+} , *x*% Tb^{3+} after pulse excitation at 345 nm while monitored at 543 nm. The lifetimes correspond to the area under the decay curves.

where I_{S0} and I_S denote the luminescence intensity of Ce³⁺ in the absence and in the presence of Tb³⁺, respectively. We observe the transfer efficiencies increase monotonously on increasing x and approaching 100% (96%) at 40% Tb³⁺. However, the strongest Tb³⁺ emission occurs at 20% Tb³⁺, because the Tb³⁺ fluorescence lifetimes, as the indication of Tb³⁺ emission efficiencies, decrease with increasing x. We also simulated the Tb³⁺ emission intensities using the product of transfer efficiency and Tb³⁺ fluorescence lifetime. The simulated intensities coincide well with the directly measured intensities, as shown in Figure 6. The internal and external quantum yield for 20% Tb³⁺ is measured to be 76% and 55%, respectively, under 345 nm excitation.

The emission color tuning of Ce^{3+} and Tb^{3+} codoped BYBO samples as a function of Tb^{3+} concentration is illustrated in the Commission International de l'Eclairage (CIE) 1931 chromaticity diagram, as shown in Figure 7. The color can vary from blue (0.1519, 0.1067) to green (0.2820, 0.5028).

3.3. Thermally Stable Tb³⁺ Emission Due to Fast Energy Transfer. Figure 8 shows the PL spectra of BYBO: 1% Ce³⁺, BYBO: 1% Ce³⁺, 20% Tb³⁺, and BYBO: 1% Ce³⁺, 30% Tb³⁺ at different temperatures. It is observed that Tb³⁺ emission

Figure 7. Emission colors of samples in CIE 1931 chromaticity diagram together with their photograph for BYBO: $1\% \text{ Ce}^{3+}$, $x\% \text{ Tb}^{3+}$ upon 345 nm excitation. The digital photos of the samples are taken under 365 nm UV lamp irradiation.

declines much slower than Ce^{3+} emission with increasing temperature. This behavior can be clearly seen in Figure 8 that shows the temperature dependence of the area intensities of Ce^{3+} , Tb^{3+} emissions.

In Figure 9 the Ce³⁺ emissions in the codoped BYBO exhibit the similar thermal quenching behavior to Ce³⁺ singly doped BYBO and intensity only keeps 42% on average at 423 K (150 °C). The quenching temperature, at which 50% of the roomtemperature intensity is lost, is determined to be ~403 K (130 °C), which is in agreement with the result reported by Hermus et al.⁴⁰ More interestingly, the Tb³⁺ emissions are thermally stable for all the samples. The green emissions of all the samples at 403 K keep on average 95% of their intensities at room temperature, including the best one, which shows no intensity decreasing from room temperature to 483 K (210 °C)

Figure 6. (a)Dependence of Ce^{3+} , Tb^{3+} emission intensities, Tb^{3+} fluorescence lifetimes, energy-transfer efficiencies on Tb^{3+} concentration in BYBO:1% Ce^{3+} , x% Tb^{3+} . (b) Dependence of Tb^{3+} emission intensities and simulated Tb^{3+} emission intensities on Tb^{3+} concentration in BYBO: 1% Ce^{3+} , x% Tb^{3+} . All data are normalized to their individual maximum.

Figure 8. PL spectra of BYBO: 1% Ce^{3+} (a), BYBO: 1% Ce^{3+} , 20% Tb^{3+} (b), and BYBO: 1% Ce^{3+} , 30% Tb^{3+} (c) at different temperatures under 345 nm excitation.

Figure 9. Temperature dependence of Ce^{3+} emission intensity (a) and Tb^{3+} emission intensity (b) in BYBO: 1% Ce^{3+} , *x*% Tb^{3+} under 345 nm excitation.

for 30% Tb³⁺. At 423 K, the green emission intensities keep an average of 92% at room temperature. To understand the origin of high thermal stability of Tb³⁺ emission, we measured the fluorescence lifetimes of Tb³⁺ from room temperature to 483 K after Ce³⁺ is excited at 345 nm. We found that the lifetimes were not shortened at all on increasing temperature to 483 K, indicating a thermally stable quantum efficiency of the green emission of Tb³⁺ in the temperature range of this work. As a result, the thermal behavior of energy-transfer efficiency directly reflects the thermal behavior of Tb³⁺ emission. On the basis of thermal activation model, there exists a competition among energy transfer, intrinsic decay, and thermal activation in the 5d state side excitation of Ce³⁺ after Ce³⁺ is excited. The quantum efficiency of energy transfer as a function of temperature can be written as

$$\eta_{\rm ET} = \frac{W_{\rm ET}}{\gamma_0 + W_{\rm ET} + Ae^{-\Delta E/kT}} \tag{2}$$

Article

where $W_{\rm ET}$ is energy transfer rate, γ_0 is the intrinsic decay rate of the lowest 5d state of Ce³⁺, and it is independent of temperature, A is a constant, ΔE is the activation energy for thermal de-excitation of Ce³⁺ 5d states, and k is Boltzmann constant. Equation 2 clearly indicates that a big transfer rate can slow transfer efficiency decreasing as temperature is raised. As shown in Figure 10, the process ① represents fast energy

Figure 10. Energy levels model for the energy-transfer processes of $Ce^{3+}{\rightarrow}Tb^{3+}.$

transfer. If the transfer rate is fast enough to compete with the thermal activation rate, a small thermal quenching of transfer efficiency is expected, and thus a thermally stable Tb^{3+} emission is observed. One may question why the thermal stability of Ce^{3+} emission is hardly improved in the presence of energy transfer. The quantum efficiency of sensitizer Ce^{3+} emission is expressed by

$$\eta_{\rm Ce} = \frac{\gamma_0}{\gamma_0 + W_{\rm ET} + Ae^{-\Delta E/kT}} \tag{3}$$

Similar to eq 2, eq 3 also needs a big transfer rate against thermal de-excitation for slowing the thermal quenching of Ce^{3+} emission. However, the transfer rates have a wide distribution, because the doped dopants are randomly distributed in space resulting in a distribution of the distance between Ce³⁺ and Tb³⁺. Accordingly, the Ce³⁺ ions can be classified into two groups in terms of transfer rates shown in Figure 10. One has a slow rate of energy transfer to Tb³⁺ marked as $Tb_{(s)}^{3+}$, and therefore it makes the main contribution to Ce³⁺ emission. The other has a fast transfer rate, and it makes the main contribution to Tb³⁺ emission marked as $Tb_{(f)}^{3+}$. The process ② stands for relatively slow energy transfer, and we may infer that the Ce^{3+} with a slow transfer rate cannot compete with the thermal activation process, and then the Ce³⁺ emission still shows a pronounced thermal quenching in the codoped BYBO, whereas the Ce3+ with a fast transfer rate (process ①) can compete with the thermal activation process, and thus the Tb³⁺ emission shows a high thermal stability.

The fast energy transfer is supported by the behavior of fluorescence decay of Ce^{3+} in the codoped BYBO as shown in Figure 11. The fluorescence lifetime of Ce^{3+} is observed to be shortened from 47 ns in the absence of Tb^{3+} to 22 ns at 40% Tb^{3+} , decreasing by 53%. Meanwhile, Figure 5 shows that the Ce^{3+} emission intensity decreases by 96% from 0% Tb^{3+} to 40% Tb^{3+} . The small reduction of the lifetimes implies the existence

Figure 11. Fluorescence decay curves of Ce^{3+} in BYBO: 1% Ce^{3+} , x% Tb³⁺ samples after pulse excitation at 345 nm while monitored at 443 nm.

of a fast decay of Ce³⁺ emission that is too fast to be detected. The fast decay can result from a fast energy transfer that quenches the Ce³⁺ emission rapidly without luminescence detected. The difference between 96% and 53% determines the fast component to be 43% at 40% Tb³⁺. The fast transfer may take place between the nearest Ce³⁺-Tb³⁺ pair, as observed in Y₂O₃:Er³⁺, Yb³⁺ in our previous work.⁵⁰

4. CONCLUSIONS

Green-emitting Ba₂Y₅B₅O₁₇:Ce³⁺, Tb³⁺ phosphor for near-UV excitation was prepared by high-temperature solid-state reaction. The XRD patterns and Rietveld refinements indicate the purity of the crystal phase for the as-prepared samples. The phosphor shows a blue emission band of Ce³⁺ centered at 445 nm and simultaneously a group of green emission lines of Tb³⁺ with the main peak at 543 nm through energy transfer from Ce³⁺. Emission color tuning from blue to green was achieved by continuously increasing Tb³⁺ concentration to enhance energy transfer. The green emission of Tb^{3+} dominates the luminescence for Tb^{3+} concentration of at least 10%. The strongest Tb³⁺ emission was observed at 20% Tb³⁺ with the external quantum efficiency of 55%. The blue emission of Ce³⁺ appears the similar thermal stability to Ce³⁺ singly doped sample. The green emissions of all the samples at 423 K keep an average of 92% of their intensities at room temperature, including the best one, which shows no intensity decreasing from room temperature to 483 K for 30% Tb³⁺. The high thermal stability of the green emission upon Ce³⁺ excitation is ascribed to suppression of Ce3+ thermal deexcitation by fast energy transfer to thermally stable Tb³⁺ emitters. The relatively low thermal stability of Ce³⁺ emission in the codoped BYBO is attributed to a slow transfer rate of the emitting Ce³⁺ ions that hardly compete with the thermal deexcitation. The greenemitting Ba₂Y₅B₅O₁₇:Ce³⁺, Tb³⁺ phosphor shows sufficient thermal stability for near-UV-based white LED applications.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: haozd@ciomp.ac.cn. (Z.H.) *E-mail: zhangjh@ciomp.ac.cn. (J.Z.)

ORCID 🔍

Yu Xiao: 0000-0002-0165-4335

Wenge Xiao: 0000-0002-3719-9434

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was partially supported by the National Key R&D Program of China (Grant Nos. 2016YFB0701003 and 2016YFB0400605), National Natural Science Foundation of China (Grant Nos. 61275055, 11274007, 51402284, and 11604330), Natural Science Foundation of Jilin province (Grant Nos. 20140101169JC, 20150520022JH, and 20160520171JH), and the prior sci-tech program of innovation and entrepreneurship of oversea Chinese talent of Jilin province.

REFERENCES

(1) Oh, J. H.; Yang, S. J.; Do, Y. R. Healthy, natural, efficient and tunable lighting: four-package white LEDs for optimizing the circadian effect, color quality and vision performance. *Light: Sci. Appl.* **2014**, *3*, e141.

(2) Ding, X.; Wang, Y. Novel orange light emitting phosphor $Sr_9(Li,Na,K)Mg(PO_4)_7$:Eu²⁺ excited by NUV light for white LEDs. *Acta Mater.* **2016**, *120*, 281–291.

(3) Park, W. B.; Kim, H.; Park, H.; Yoon, C.; Sohn, K. S. The Composite Structure and Two-Peak Emission Behavior of a $Ca_{1,5}Ba_{0,5}Si_5O_3N_6$:Eu²⁺ Phosphor. *Inorg. Chem.* **2016**, *55* (5), 2534–2543.

(4) Kang, F.; Peng, M.; Lei, D. Y.; Zhang, Q. Y. Recoverable and Unrecoverable Bi^{3+} -Related Photoemissions Induced by Thermal Expansion and Contraction in LuVO4: Bi^{3+} and ScVO₄: Bi^{3+} Compounds. *Chem. Mater.* **2016**, *28* (21), 7807–7815.

(5) Wu, D.; Hao, Z.; Zhang, X.; Pan, G. H.; Luo, Y.; Zhang, L.; Zhao, H.; Zhang, J. Efficient energy back transfer from Ce^{3+} 5d state to $Pr^{3+1}D_2$ level in $Lu_3Al_5O_{12}$ upon Pr^{3+} 4f5d excitation. *J. Lumin.* **2017**, 186, 170–174.

(6) You, P. Effect of Tb³⁺-Coped Concentration on Properties of Li₂SrSiO₄:Tb³⁺ Phosphor. *Adv. Mater. Res.* **2014**, *919*, 2052–2056.

(7) Xie, R. J.; Hirosaki, N.; Mitomo, M.; et al. Highly efficient whitelight-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors. *Appl. Phys. Lett.* **2006**, 88 (10), 101–104.

(8) Pulli, T.; Dönsberg, T.; Poikonen, T.; Manoocheri, F.; Kärhä, P.; Ikonen, E. Advantages of white LED lamps and new detector technology in photometry. *Light: Sci. Appl.* **2015**, *4*, e332.

(9) Cao, Y.; Ding, X.; Wang, Y. A Single-Phase Phosphor NaLa₉(GeO₄)₆O₂:Tm³⁺,Dy³⁺ for Near Ultraviolet-White LED and Field-Emission Display. *J. Am. Ceram. Soc.* **2016**, *99*, 3696–3704.

(10) Xia, Z.; Wang, X.; Wang, Y.; Liao, L.; Jing, X. Synthesis, structure, and thermally stable luminescence of Eu^{2+} -doped Ba₂Ln-(BO₃)₂Cl (Ln = Y, Gd and Lu) host compounds. *Inorg. Chem.* **2011**, 50 (20), 10134–10142.

(11) Lü, W.; Huo, J.; Feng, Y.; Zhao, S.; You, H. Photoluminescence, energy transfer and tunable color of Ce^{3+} , Tb^{3+} and Eu^{2+} activated oxynitride phosphors with high brightness. *Dalton. T.* **2016**, *45*, 9676–9683.

(12) Wang, Z.; Liang, H.; Wang, J.; Gong, M.; Su, Q. Red-lightemitting diodes fabricated by near-ultraviolet InGaN chips with molybdate phosphors. *Appl. Phys. Lett.* **2006**, *89* (7), 071921.

(13) Zhang, R.; Lin, H.; Yu, Y.; Chen, D.; Xu, J.; Wang, Y. A new – generation color converter for high-power white LED: transparent Ce³⁺: YAG phosphor-in-glass. *Laser. Photonics. Rev.* **2014**, *8* (1), 158–164.

(14) Wang, B.; Lin, H.; Xu, J.; Chen, H.; Wang, Y. $CaMg_2Al_{16}O_{27}$: Mn^{4+} -based red phosphor: a potential color converter for high-powered warm W-LED. *ACS Appl. Mater. Interfaces* **2014**, *6* (24), 22905–22913.

(15) Chen, J.; Li, C.; Hui, Z.; Liu, Y. Mechanisms of Li^+ Ions in the Emission Enhancement of $KMg_4(PO_4)_3$:Eu²⁺ for White Light Emitting Diodes. *Inorg. Chem.* **2017**, *56*, 1144–1151.

(16) Xia, Z.; Meijerink, A. Ce³⁺-Doped garnet phosphors: composition modification, luminescence properties and applications. *Chem. Soc. Rev.* **2017**, *46* (1), 275–299.

(17) Lim, S. H.; Ko, Y. H.; Rodriguez, C.; Gong, S. H.; Cho, Y. H. Electrically driven, phosphor-free, white light-emitting diodes using gallium nitride-based double concentric truncated pyramid structures. Light: Sci. Appl. 2016, 5 (2), e16030.

(18) Pimputkar, S.; Speck, J. S.; DenBaars, S. P.; Nakamura, S. Prospects for LED lighting. Nat. Photonics 2009, 3, 180-182.

(19) Jung, K. Y.; Lee, H. W.; Jung, H. Luminescent properties of (Sr,Zn)Al₂O₄: Eu²⁺,B³⁺ particles as a potential green phosphor for UV LEDs. Chem. Mater. 2006, 18, 2249-2255.

(20) Xiao, W.; Zhang, X.; Hao, Z.; Pan, G. H.; Luo, Y.; Zhang, L.; Zhang, J. Blue-Emitting K₂Al₂B₂O₇:Eu²⁺ Phosphor with High Thermal Stability and High Color Purity for Near-UV-Pumped White Light-Emitting Diodes. Inorg. Chem. 2015, 54 (7), 3189-3195.

(21) Guo, C. F.; Huang, D. X.; Su, Q. Methods to improve the fluorescence intensity of CaS: Eu²⁺ red-emitting phosphor for white LED. Mater. Sci. Eng., B 2006, 130, 189.

(22) Chen, Y.; Li, Y.; Wang, J.; Wu, M.; Wang, C. Color-tunable phosphor of Eu2+ and Mn2+ codoped Ca2Sr(PO4)2 for UV lightemitting diodes. J. Phys. Chem. C 2014, 118 (23), 12494-12499.

(23) Lin, C. C.; Chen, W. T.; Chu, C. I.; Huang, K. W.; Yeh, C. W.; Cheng, B. M.; Liu, R. S. UV/VUV switch-driven color-reversal effect for Tb-activated phosphors. Light: Sci. Appl. 2016, 5 (4), e16066.

(24) Xia, Z.; Liu, R. S. Tunable blue-green color emission and energy transfer of Ca₂Al₃O₆F: Ce³⁺, Tb³⁺ phosphors for near-UV white LEDs. J. Phys. Chem. C 2012, 116 (29), 15604-15609.

(25) Fu, X.; Lü, W.; Jiao, M.; You, H. Broadband Yellowish-Green Emitting $Ba_4Gd_3Na_3(PO_4)_6F_2$: Eu²⁺ Phosphor: Structure Refinement, Energy Transfer, and Thermal Stability. Inorg. Chem. 2016, 55 (12), 6107-6113.

(26) Zhou, W.; Pan, F.; Zhou, L.; Hou, D.; Huang, Y.; Tao, Y.; Liang, H. Site Occupancies, Luminescence, and Thermometric Properties of LiY₉(SiO₄)₆O₂:Ce³⁺ Phosphors. Inorg. Chem. 2016, 55 (20), 10415-10424.

(27) Dai, P. P.; Li, C.; Zhang, X. T.; Xu, J.; Chen, X.; Wang, X. L.; Jia, Y.; Wang, X. J.; Liu, Y. C. A single Eu²⁺-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes. Light: Sci. Appl. 2016, 5 (2), e16024.

(28) Kang, F.; Yang, X.; Peng, M.; et al. Red photoluminescence from Bi³⁺ and the influence of the oxygen-vacancy perturbation in ScVO₄: a combined experimental and theoretical study. J. Phys. Chem. C 2014, 118 (14), 7515-7522.

(29) Kang, F.; Zhang, H.; Wondraczek, L.; Yang, X.; Lei, D. Y.; Peng, M.; Zhang, Y. Band-gap modulation in single Bi3+-doped yttriumscandium-niobium vanadates for color tuning over the whole visible spectrum. Chem. Mater. 2016, 28 (8), 2692-2703.

(30) Zhao, J.; Guo, C.; Li, T.; Su, X.; Zhang, N.; Chen, J. Synthesis, electronic structure and photoluminescence properties of Ba2BiV3O11: Eu³⁺ red phosphor. Dyes Pigm. 2016, 132, 159-166.

(31) Guo, C.; Yu, J.; Ding, X.; Li, M.; Ren, Z.; Bai, J. A dual-Emission phosphor LiCaBO₃:Ce³⁺,Mn²⁺ with energy transfer for near-UV LEDs. J. Electrochem. Soc. 2011, 158 (2), J42-J46.

(32) Mi, R.; Zhao, C.; Xia, Z. Synthesis, structure, and tunable luminescence properties of novel Ba₃NaLa (PO₄)₃F: Eu²⁺, Mn²⁺ phosphors. J. Am. Ceram. Soc. 2014, 97, 1802-1808.

(33) Guo, C.; Ding, X.; Xu, Y. Luminescent Properties of Eu³⁺-Doped BaLn₂ZnO₅ (Ln= La, Gd, and Y) Phosphors by the Sol-Gel Method. J. Am. Ceram. Soc. 2010, 93 (6), 1708-1713.

(34) Kang, F.; Zhang, Y.; Peng, M. Controlling the energy transfer via multi luminescent centers to achieve white light/tunable emissions in a single-phased X2-type Y2SiO5:Eu3+, Bi3+ phosphor for ultraviolet converted LEDs. Inorg. Chem. 2015, 54 (4), 1462-1473.

(35) Pust, P.; Schmidt, P. J.; Schnick, W. A revolution in lighting. Nat. Mater. 2015, 14, 454-458.

(36) George, N. C.; Denault, K. A.; Seshadri, R. Phosphors for solidstate white lighting. Annu. Rev. Mater. Res. 2013, 43, 481-501.

(37) Zhu, Y.; Liang, Y.; Zhang, M.; Tong, M.; Li, G.; Wang, S. Structure, luminescence properties and energy transfer behavior of color-adjustable Sr₃Gd₂(Si₃O₉)₂:Ce³⁺,Tb³⁺/Mn²⁺ phosphors. RSC Adv. 2015, 5 (119), 98350-98360.

(38) Li, K.; Liang, S.; Lian, H.; Shang, M.; Xing, B.; Lin, J. Ce³⁺ and Tb³⁺-doped lutetium-containing silicate phosphors: synthesis, structure refinement and photoluminescence properties. J. Mater. Chem. C 2016, 4 (16), 3443-3453.

(39) Li, G.; Wang, Y.; Zeng, W.; Chen, W.; Han, S.; Guo, H.; Li, Y. Photo-/cathodoluminescence and energy transfer properties of novel Ce^{3+} singly doped and Ce^{3+}/Tb^{3+} codoped NaBaScSi₂O₇ phosphors. J. Mater. Chem. C 2016, 4 (15), 3304-3312.

(40) Yang, W.; Park, S. Predominant green emission of Ce³⁺-Tb³⁺ activated Y₇O₆F₉ phosphors. RSC Adv. 2016, 6, 12652.

(41) Jin, Y.; Wang, Q. P.; Zhou, H. P.; Zhang, L. L.; Zhang, J. H. Luminescence properties and high thermal stability of tunable bluegreen-emitting phosphor Gd_{4.67}Si₃O₁₃:Ce³⁺,Tb³⁺. Ceram. Int. 2016, 42, 3309-3316.

(42) Zhang, X.; Huang, Y.; Gong, M. Dual-emitting Ce³⁺, Tb³⁺ codoped LaOBr phosphor: Luminescence, energy transfer and ratiometric temperature sensing. Chem. Eng. J. 2017, 307, 291-299.

(43) Hermus, M.; Phan, P. C.; Brgoch, J. Ab Initio Structure Determination and Photoluminescent Properties of an Efficient, Thermally Stable Blue Phosphor, Ba₂Y₅B₅O₁₇:Ce³⁺. Chem. Mater. 2016, 28, 1121-1127.

(44) Werner, P. E.; Eriksson, L.; Westdahl, M. TREOR, A semiexhaustive trial-and-error powder indexing program for all symmetries. J. Appl. Crystallogr. 1985, 18, 367-370.

(45) Toby, B. H. EXPGUI, a graphical user interface for GSAS. Journal of applied crystallography. J. Appl. Crystallogr. 2001, 34, 210-213.

(46) Denault, K. A.; Cheng, Z.; Brgoch, J.; DenBaars, S. P.; Seshadri, R. Structure -Composition Relationships and Optical Properties in Cerium-Substituted (Sr,Ba)₃(Y,La) (BO₃)₃ Borate Phosphors. J. Mater. Chem. C 2013, 1, 7339-7339.

(47) Blasse, G. Luminescent Materials; Springer: Berlin, Germany, 1994; p 45.

(48) Dexter, D. L. A theory of sensitized luminescence in solids. J. Chem. Phys. 1953, 21, 836-850.

(49) Paulose, P. I.; Jose, G.; Thomas, V.; Unnikrishnan, N. V.; Warrier, M. K. R. Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass. J. Phys. Chem. Solids 2003, 64, 841.

(50) Zhang, J. H.; Hao, Z. D.; Li, J.; Zhang, X.; Luo, Y.; Pan, G. Observation of efficient population of the red-emitting state from the green state by non-multiphonon relaxation in the Er³⁺-Yb³⁺ system. Light: Sci. Appl. 2015, 4, e239.

Article