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Analysis and design of symmetric
notch flexure hinges

Ning Xu1,2, Ming Dai1 and Xiaoqin Zhou3

Abstract
This article presents the analytic models of four types of flexure hinges (elliptic, circular, parabolic, and hyperbolic flexure
hinges). The analytic models are developed based on the theory of elasticity and infinitesimal method. The hinge index,
denoted by the ratio of rotational precision and rotational stiffness, is proposed in this article to estimate the mechanical
properties of diverse flexure hinges synthetically and quantitatively. The finite element analysis method and the experi-
ments are performed to verify the accuracy of the analytic model. The relationships between the geometric parameters
and the mechanical properties of the flexure hinges are analyzed using the analytic models established in this article. The
comparisons of the mechanical performances among the four types of flexure hinges are performed.
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Introduction

The flexure hinge is a special mechanical component
that produces the limited angular motion utilizing the
micro-elastic deformation of the material, which pos-
sesses the advantages of no friction, zero backlash, high
sensitivity, and so on.1–5 Because the flexure hinges
have many advantages in structure and engineering
application, they are widely used in aerospace, manu-
facturing, optics, bioengineering, and many other
fields.6–10 The flexure hinges can be classified into ellip-
tic, circular, parabolic, hyperbolic notch flexure hinges,
and so on according to the notch shapes as illustrated
in Figure 1.

Paros and Weisbord11 proposed flexure hinge design
issues as early as 1965. The authors deduced the equa-
tions (including precise and simplified equations) for
calculating the stiffness of flexure hinges, based on the
material mechanics theory and the idealized assump-
tions. Smith et al.12 studied the elliptic flexure hinges
and developed the compliance equations based on those
proposed by Paros and Weisbord. Then, the accuracy
of the equations was verified by finite element method

and experiment. Ryu and Gweon13 presented the error
modeling of flexure hinges during machining based on
computer-based method. Ryu et al.14 proposed a math-
ematical equation to optimize the design of a flexure
hinge stage. Lobontiu et al.15–17 carried out a systema-
tic and detailed study of various flexure hinges. They
introduced the closed-form solutions for the corner-
filleted flexure hinges and the conic-section flexure
hinges based on Castigliano’s second theorem. The
finite element analysis (FEA) was applied to confirm
the accuracy of the equations. Wu and Zhou18 deduced
the equations of general flexure hinges. The design
equations were the results of accurate derivation and
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were more concise in expression than those proposed
by Paros and Weisbord. Tseytlin19 presented effective
equations for notch flexure hinges based on inverse
conformal mapping method. The equation results were
proved to be much more accurate than other theoretical
equations. Yong et al.20 presented the comparison of
various stiffness equations of circular flexure hinges
with the finite element results, and proposed more accu-
rate empirical stiffness equations. Wang et al.21 made a
deep analysis and comparison of bow, straight beam,
the corner-filleted, and compound type flexure hinges,
and developed the relevant theoretical models of the
usual flexure hinges. Qiu et al.22 developed a multi-
objective optimization mathematical model of flexure
hinges with structural parameters as design variables
and the right circular flexure hinges were optimized
without considering the influence of the shear force.
Yin et al.23 established parameter optimization model
for shallow notch elliptic flexure hinges, but only con-
sidered the role of effective torch. Lu et al.24 established
the stiffness model for the deep-notch elliptic flexure
hinges and the deep-notch elliptic flexure hinges were
optimized based on the model.

The stiffness and rotational precision of flexure
hinges are the most crucial factors to be considered
during the flexure hinges design. In order to accurately
calculate the above parameters, this article develops
analytic model for the characteristics of four types of
flexure hinges (Figure 1), based on the theory of elasti-
city and infinitesimal method. The hinge index is pro-
posed and defined to compare the performances of
different flexure hinges quantitatively. To verify the
accuracy of the analytic models, the FEA method and
the experiments are performed for a large number of
different dimensions of the flexure hinges. The errors
between the results of the theoretical model

calculations and FEA are less than 5%, and the ones
between the theoretical and experimental are less than
6%. The mechanical properties of four kinds of flexure
hinges are analyzed and compared with geometric
parameters.

Analytic model of flexure hinges

The predecessors have done a lot of work on the estab-
lishment of analytic model of flexure hinges. But most
of the models were based on the Euler–Bernoulli beam
theory. The Euler–Bernoulli beam theory ignores the
effect of shear deformation, so the results are not accu-
rate. The theory of elasticity without plane assumption
is the most accurate beam theory at present.

In this work, the theory of elasticity is used to calcu-
late the stiffness and rotational precision of flexure
hinges. Because the notch shapes of various flexure
hinges are complicated, the notch is divided into numer-
ous rectangle section unit beams to simplify the calcula-
tion. First, the displacements of the unit beam are
solved; then, the sum of those displacements can be cal-
culated for the displacements of the flexure hinges effi-
ciently and precisely.

Displacements of rectangle cross-section unit beam

The rectangle section unit beam can be assimilated to a
fixed-end flextensional element. The geometric para-
meters and loads are illustrated in Figure 2. Next, we
can calculate the free-end axial displacement u, deflec-
tion v, and rotation angle a based on the theory of
elasticity.

Assuming the stress function is F=Axy+
By2 +Cy3 +Dxy3.

(a)

(c)

(b)

(d)
 

Figure 1. Four types of flexure hinges: (a) elliptic hinge, (b) circular hinge, (c) parabolic hinge, and (d) hyperbolic hinge.
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It meets the compatibility condition (∂4F=∂x4)+
2(∂4F=∂x2∂y2)+ (∂4F=∂y4)= 0.

Thus, the relevant stresses are

sx =
∂2F

∂y2
= 2B+ 6Cy+ 6Dxy

sy =
∂2F

∂x2
= 0

txy = � ∂2F

∂x∂y
= � (A+ 3Dy2)

8>>>>>>>><
>>>>>>>>:

ð1Þ

The following coefficients can be solved according to
boundary constraints

A=
3Fy

2bh
, B= � Fx

2bh
,

C = � 2Mz

bh3
, D= � 2Fy

bh3

So, the specific stress expressions are

sx = � Fx

bh
� 12Mz

bh3
y� 12Fy

bh3
xy

sy = 0

txy =
3Fy

2bh

4

h2
y2 � 1

� �

8>>>>><
>>>>>:

ð2Þ

The related physical equations are

ex =
1

E
(sx � msy)

ey =
1

E
(sy � msx)

gxy =
2(1+m)

E
txy

8>>>>><
>>>>>:

ð3Þ

The relevant geometric equations are

∂u

∂x
= ex

∂n

∂y
= ey

∂v

∂x
+

∂u

∂y
= gxy

8>>>>>>>><
>>>>>>>>:

ð4Þ

Combining equations (2)–(4) results in displacement
components

u= � 12Mz

Ebh3
xy� 6Fy

Ebh3
x2y� Fx

Ebh
x+

2(2+m)Fy

Ebh3
y3 +vy+ u0

v=
6mMz

Ebh3
y2 +

6mFy

Ebh3
xy2 +

mFx

Ebh
y+

2Fy

Ebh3
x3 +

6Mz

Ebh3
x2

� 3(1+m)Fy

Ebh
x� vx+ v0

8>>>>>>>><
>>>>>>>>:

ð5Þ

where the arbitrary constants (v, u0, and v0) are rigid
body displacements, which depend on the constraints.
The relevant constraints are

(u)x= l
y= 0

= 0, (v)x=Dl
y= 0

= 0,
∂v

∂x

� �
x=Dl
y= 0

= 0

Then, the coefficients can be calculated

u0 =
FxDl

Ebh
, v0 =

4FyDl3

Ebh3
+

6MzDl2

Ebh3
,

v=
6FyDl2

Ebh3
+

12MzDl

Ebh3
� 3(1+m)Fy

Ebh

The above coefficients are substituted into equation
(5), which yields the displacement components of the
cantilever

u= � 12Mz

Ebh3
xy� 6Fy

Ebh3
x2y� Fx

Ebh
x+

2(2+m)Fy

Ebh3
y3

+
6FyDl2

Ebh3
+

12MzDl

Ebh3
� 3(1+m)Fy

Ebh

� �
y+

FxDl

Ebh

v=
6mMz

Ebh3
y2 +

6mFy

Ebh3
xy2 +

mFx

Ebh
y+

2Fy

Ebh3
x3 +

6Mz

Ebh3
x2

� 6FyDl2

Ebh3
+

12MzDl

Ebh3

� �
x+

4FyDl3

Ebh3
+

6MzDl2

Ebh3

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð6Þ

Thus, the free-end axial displacement u, deflection v,
and rotation a of the rectangle section unit beam can
be obtained

Figure 2. Geometric parameters and loads of rectangle
section unit beam.
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(u)x= 0
y= 0

=
FxDl

Ebh

(v)x= 0
y= 0

=
6MzDl2

Ebh3
+

4FyDl3

Ebh3

(a)x= 0
y= 0

=
∂v

∂x

� �
x= 0
y= 0

= � 12MzDl

Ebh3
+

6FyDl2

Ebh3

� �

8>>>>>>>><
>>>>>>>>:

ð7Þ

Displacements of flexure hinges

The flexure hinges consist of two cutouts that are sym-
metric with respect to both the longitudinal axis and the
middle transverse one. The cross-section profile is curve
of second order, specifically an ellipse, circle, parabola,
and hyperbola. Now, we take the upper part of the
symmetry flexure hinges to solve. The geometric para-
meters and coordinate axis are illustrated in Figure 3.

The variable thickness t(x) can be expressed as:

(a) Elliptic flexure hinges

t(x)= 2y= 2 h� (h� t)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

l � 1

� �2
r" #

ð8Þ

(b) Circular flexure hinges

t(x)= 2y= 2(R+ t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � (x� l)2

q
) ð9Þ

where R= ½(h� t)2 + l2�=2(h� t) is the radius of the
circular notch.

(c) Parabolic flexure hinges

t(x)= 2y= 2 (h� t)
x

l � 1

� �2

+ t

� �
ð10Þ

(d) Hyperbolic flexure hinges

t(x)= 2y= 2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

t

� �2

� 1

" #
x

l � 1

� �2

+ 1

vuut ð11Þ

The notch section is divided into n rectangular sec-
tion unit beams as shown in Figure 4. The length of
every unit beam is Dl = 2l=n. Each element is consid-
ered as a separate rectangular section cantilever. Then,
the displacement and rotation angle of the free end of
each element are calculated. Finally, the displacements
and rotation angles of all elements are summed. When
the number of elements is sufficient, the total displace-
ment and rotation angle are equal to those of the flex-
ure hinge.

According to equation (7), the displacement and
rotation of the first element are as follows

u1 =
FxDl

Ebt(Dl)

v1 =
6½Mz +Fy(2l � Dl)�Dl2

Ebt3(Dl)
+

4FyDl3

Ebt3(Dl)

a1 =
12½Mz +Fy(2l � Dl)�Dl

Ebt3(Dl)
+

6FyDl2

Ebt3(Dl)

8>>>>>>>><
>>>>>>>>:

ð12Þ

Define

v01 = v1

a01 =a1

	
ð13Þ

For the nth element

un =
FxDl

Ebt(nDl)

vn =
6½Mz +Fy(2l � nDl)�Dl2

Ebt3(nDl)
+

4FyDl3

Ebt3(nDl)

an =
12½Mz +Fy(2l � nDl)�Dl

Ebt3(nDl)
+

6FyDl2

Ebt3(nDl)

8>>>>>>>><
>>>>>>>>:

ð14Þ

Figure 3. Parameters defining half of symmetric notch flexure
hinge. Figure 4. Unit division diagram of notch section.
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v0n =Dl � a0n�1 + vn

a0n =a0n�1 +an

	
ð15Þ

After above calculation, the displacement and rota-
tion angle of flexure hinges under external loads are

u= u1 + u2 + � � � + un

v= v01 + v02 + � � � + v0n
a=a0n

8<
: ð16Þ

Stiffness

In high-precision instruments and equipment, the trans-
lation stiffness (Kx, Ky) and bending stiffness (Ka) of
the flexure hinges are essential. Then, the stiffness is cal-
culated below.

Let Fy = 0 and Mz = 0, the axial displacement u is
calculated. Then, Kx =Fx=u.

Let Fx = 0 and Mz = 0, the deflection v is calculated.
Then, Ky =Fy=v.

Let Fx = 0 and Fy = 0, the rotation angle a is calcu-
lated. Then, Ka =Mz=a.

Precision of rotation

One of the basic requirements of a flexure hinge is that
its rotational center remains unchanged during motion,
but the center will be offset due to the elastic deforma-
tion of the material. Therefore, we should pay more
attention to the rotational precision of the flexure hinge
when designing a flexure hinge. Obviously, the greater
the translational stiffness of the flexure hinges, the
smaller the offset of the rotational center relative to the
original position, that is, the higher the precision of
rotation. So the translational stiffness is employed to
measure the rotational precision of flexure hinges indir-
ectly. Thus, the precision of rotation (P) is defined as
follows

P=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

x +K2
y

q
ð17Þ

Hinge index

Flexure hinges are mainly designed to transfer rota-
tional motion. The flexure hinges design with high per-
formance is supposed to have lower bending stiffness
and higher translational stiffness, as well as higher pre-
cision of rotation. So, in order to estimate the mechani-
cal properties of diverse flexure hinges synthetically and
quantitatively, this article proposes the dimensionless
hinge index (N) of flexure hinges as follows

N =
P

Ka

ð18Þ

The greater the index N, the better the comprehen-
sive performance of the flexure hinge.

Verification of the analytic model

The finite element method was employed to test analy-
tic model of flexure hinges. The FEA software NX-
NASTRAN was applied to calculate the stiffness of
four types of flexure hinges with several configurations
under static loading. The material constants were
r= 8300 kg=m3, E= 130GPa, and m= 0:35. The
finite element mesh, one of the flexure hinges, is shown
in Figure 5.

The results of FEA and analytic model are shown in
Table 1 for four types of flexure hinges.

Furthermore, the experimental method was carried
out to validate the analytical model. Due to good pro-
cessability, the circular flexure flexures of stainless steel
were used as the experimental specimens. The material
constants were r= 7800 kg=m3, E= 200GPa, and
m= 0:28. The sample was clamped on the workbench
through the fixture. The force applied to the specimen
could be controlled by the adjustment, the value of
which would be measured by the dynamometer. At the
same time, the dial gauge was used to measure the dis-
placement of the specimen accurately. The whole
experimental arrangement and the specimens used in
the experiment are shown in Figures 6 and 7,
respectively.

The results of analytic model and experiments are
shown in Table 2 for eight circular flexure hinges.

From the above two tables, we can see that the max-
imum error between the analytic model calculation
results and the finite element simulation ones is 4.8%,
and the maximum error between analytic and experi-
mental ones is 5.2%. Therefore, the analytic model of

Figure 5. Finite element mesh of a flexure hinge.
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flexure hinges established in this article possesses high
precision. The errors may come from the following fac-
tors: the meshing error, the manufacturing error, or the
material property error. This model is then used to
explore the relationships between the geometric para-
meters and mechanical properties of the flexure hinges.

Discussion

In the process of flexure hinges design, a clear under-
standing of the relationships between the geometric
parameters and mechanical properties of flexure hinges
will contribute to design a high-performance flexure
hinge accurately and rapidly. The performance compar-
isons will indicate the direction of the flexure hinges
design. When calculating the mechanical properties ofT
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Figure 6. Layout of experiment.

Figure 7. Specimens of circular flexure.
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flexure hinges, the material properties remain constant
as described in section ‘‘Verification of the analytic
model,’’ but the minimum thickness t, the height h, the
length l, and the depth b vary within a range for practi-
cal flexure hinges. Utilizing the established analytic
model, the relative relationships of the mechanical char-
acteristic parameters (Kx, Ky, Ka, P, and N) and the
geometric parameters (t, h, l, and b) are calculated and
organized into the following figures.

The comparisons of mechanical properties of the
four types of flexure hinges with geometric parameter t
are shown in Figure 8, where the minimum thickness t

varies from 0.1 to 1.0mm and the other geometric para-
meters remain unchanged. It can be seen from the fig-
ure that the stiffness (Kx, Ky, and Ka) and rotational
precision (P) increase with the increasing minimum
thickness t. The hinge index (N) decrease as t increases
because Ka increases at rate much greater than that at
which P increase with t increase as shown in Figure 8.

The comparisons of mechanical properties of four
types of flexure hinges with h are shown in Figure 9,
where the height h varies from 1.0 to 10.0mm and the
other geometric parameters remain unchanged. The fig-
ures show that the stiffness and rotational precision

Figure 8. Comparisons of flexure hinges with minimum thickness t: (a) translational stiffness Kx, (b) translational stiffness Ky, (c)
bending stiffness Ka, (d) rotational precision P, and (e) hinge index N.
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increase, while the hinge index decreases with the increas-
ing height h. The hinge index decreases for the same rea-
son just as the effect of t on it. The circular flexure hinge
performs like the parabolic one, but becomes more and
more close to the elliptic one as h increases.

The comparisons of mechanical properties for four
types of flexure hinges with l are shown in Figure 10,
where the height l varies from 5.0 to 14.0mm and the
other geometric parameters remain unchanged. From
the figures, we can see that the stiffness and rotational
precision decrease with the increasing length. The hinge
index remains almost constant as l grows. The circular

flexure hinge performs like the elliptic one, but becomes
more and more close to the parabolic one as l increases.
This is exactly the opposite of h.

The comparisons of mechanical properties of four
types of flexure hinges with b are shown in Figure 11,
where the depth b varies from 1.0 to 5.5mm and the
other geometric parameters remain unchanged. The fig-
ures show that the stiffness and rotational precision
increase with the increasing depth. And b has no effect
on the hinge index.

From Figures 8–11, we can see that when all the
geometric parameters are the same the order of

Figure 9. Comparisons of flexure hinges with the height h: (a) translational stiffness Kx, (b) translational stiffness Ky, (c) bending
stiffness Ka, (d) rotational precision P, and (e) hinge index N.
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compliance is elliptic, circular, parabolic, and hyper-
bolic flexure hinges; the order of rotational precision
from high to low is hyperbolic, parabolic, circular, and
elliptic flexure hinges; the order of hinge index from
high to low is elliptic, circular, parabolic, and hyper-
bolic flexure hinge.

Conclusion

Based on the theory of elasticity, the analytic models
for the elliptic, circular, parabolic, and hyperbolic flex-
ure hinges have been established using the infinitesimal
method. The expressions of the stiffness and rotational

precision were provided, and the hinge index was pro-
posed to evaluate the performance of flexure hinges.
The research efforts were carried out to explore the
relationships between geometric parameters and
mechanical properties of flexure hinges.

The results showed that, for the four types of flexure
hinges, the stiffness and rotational precision increase as
geometric parameters t, h, and b increase, but decrease
as l increases; the hinge index decreases as t and h
increase, but remain constant as l and b change. For
the same geometric parameters, the hyperbolic flexure
hinges perform the highest rotational precision but the
worst compliance, while the elliptic hinges perform

Figure 10. Comparisons of flexure hinges with the length l: (a) translational stiffness Kx, (b) translational stiffness Ky, (c) bending
stiffness Ka, (d) rotational precision P, and (e) hinge index N.
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exactly the opposite. In the view of hinge index, the
performance of the elliptic flexure hinges is better than
that of the hyperbolic ones. The analytic model estab-
lished by this article can provide theoretical guidance
for the design of flexure hinges, which contribute to
design flexure hinges with excellent performance.
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