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Abstract: The problem of H∞ estimation for a class of networked non-linear systems is investigated. A practical scenario with
multiple switching communication channels coexisting in the network is considered. System signals are exchanged over the
multiple communication channels and each channel is subject to the two main transmission imperfections, network-induced
time-varying delays and packet dropouts. The channel switching is assumed to be governed by a continuous-time Markov
process, and a Markov jump non-linear system model is exploited to represent the overall networked system. Linear estimators
are designed such that the underlying estimation error system is stochastically stable and the disturbance rejection attenuation
satisfies an H∞ performance bound. As a case study, a state estimation problem for an intelligent active suspension system is
addressed to verify the theoretical findings.

1 Introduction
Over the past two decades, great efforts have been devoted to
extensive studies on networked control systems (NCSs) in which
the basic units (e.g. controllers, actuators, sensors and estimators)
which realise a control (or estimation) loop are spatially distributed
across diverse communication networks [1–3]. NCS applications
emerge in various fields such as automobile systems [4], robotics
[5], real-time communication systems [6], power networks [7],
traffic and transportation systems [8, 9], and process control
systems [10, 11]. On the other hand, network-induced
imperfections such as packet dropouts and time delays which are
unavoidable due to the networked communications can lead to
system performance degradation or even system instability [12,
13]. Great efforts on overcoming such imperfections have been
made in multiple disciplines, such as computer science,
communication technology and control engineering. However, it is
worth mentioning that most of the existing NCS studies (e.g. [14–
16]) did not take into account the communication over multiple
communication channels, which can potentially improve the
communication performance and reliability.

Non-linear systems, which consist of a linear part and sector-
bounded non-linearities, arise frequently in practical applications
[17, 18]. Many control and estimation issues have been well
researched including fundamental stability analysis [19, 20],
handling of time delays [21]. Though the obtained results greatly
enriched the non-linear control theories, the present advancements
are still limited within the framework of point-to-point control or
networked system with one single communication channel. Such
systems when operated over a network with multiple
communication channels have not been considered.

In this paper, we treat an H∞ estimation problem for a class of
networked systems with sector-bounded non-linearities. We
consider the case of multiple switching communication channels.
We assume that the channel switching is governed by a Markov
process, which is a natural choice to describe random switching

phenomena [22, 23]. The overall networked system is modelled as
a Markov jump non-linear system (MJNS). A class of Lyapunov–
Krasovskii functionals are exploited to obtain H∞ estimators that
account for time-varying delays and network-induced intermittent
packet dropouts. While emphasis has been attached to the
development of advanced control approaches for suspension
systems and many results were reported (e.g. [24–26]), little
attention has been given to the state estimation of automobiles with
a few exceptions [27–29], where observers were designed for state
re-construction or fault detection of certain states of ground
vehicles. The above observation motivates us to apply the proposed
method to suspension systems for the re-construction of the system
states based on limited measurements. An example of an intelligent
active suspension system is considered to demonstrate the
effectiveness of the proposed estimator design approach.

This paper is organised as follows: in Section 2, the H∞
estimation problem is formulated for a class of non-linear NCSs
with multiple switching communication channels and some
background results are reviewed. Section 3 is devoted to the
stability and H∞ performance analysis with a Lyapunov–
Krasovskii-functional-based approach. Explicit expressions for the
H∞ estimator parameters are derived in Section 4. In Section 5, an
example of an intelligent active suspension system is presented as a
case study. Finally, the paper is concluded in Section 6.

Notation: The notation used throughout this paper is fairly
standard. The superscripts ‘T’ and ‘ −1’ stand for matrix
transposition and inverse, respectively. ℝn denotes the n-
dimensional Euclidean space. L2[0, ∞) is the space of square-
integrable functions on [0, ∞), and for w(t) ∈ L2[0, ∞),
∥ w ∥2

2 = ∫ 0
∞w(t)Tw(t) dt; in symmetric block matrices or long

matrix expressions, we use ∗ as an ellipsis to represent symmetric
terms and diag{ ⋅ ⋅ ⋅ } stands for a block-diagonal matrix. Sym(A)
is a shorthand notation for A + AT. Matrices, if their dimensions are
not explicitly stated, are assumed to be compatible to perform
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suitable algebraic operations. For a symmetric matrix,
P > 0 (P ≥ 0) means that P is positive-(semi-positive-)definite. I
and 0 represent, respectively, the identity matrix and zero matrix.

2 Problem formulation and preliminaries
Consider the following class of continuous-time dynamic systems

ẋ(t) = Ax(t) + Bww(t) + Gg(x(t)),
y0(t) = Cx(t) + Dw(t),
z(t) = Lx(t),

(1)

where x(t) ∈ ℝn is the state vector, y0(t) ∈ ℝr is the measured
output, z(t) ∈ ℝm is the controlled output, w(t) ∈ ℝq is the process
disturbance belonging to L2[0, ∞) and g( ⋅ ): ℝn → ℝn is a non-
linear vector-valued function assumed to satisfy the following
sector-bounded conditions

[g(a) − g(b) − R1(a − b)]T[g(a) − g(b) − R2(a − b)] ≤ 0,
g(0) = 0, ∀a, b ∈ ℝn,

(2)

where R1, R2 ∈ ℝn × n and R1 − R2 is a positive definite matrix.
In this paper, system (1) is operated over a network with

multiple communication channels (MCCs) (Fig. 1). Note that the
measurement y0(t) is sent via the MCC network for which N
communication channels are available, but only one of the
channels is chosen and used at a time for signal transmission. 

Let ct denote the channel switching signal taking values in a
finite set 𝒞 = {1, 2, …, N}. We assume the overall channel
switching is governed by a continuous-time Markov process
{ct ∈ 𝒞, t ≥ 0} with a given infinitesimal generator

Λ = [λi j], i, j ∈ 𝒞, (3)

where λi j ≥ 0, ∀ j ≠ i, λii = − ∑ j ≠ i λi j. Then the transition
probability of channel i to channel j is described as

Pr (ct + Δ = j |ct = i) =
λi jΔ + o(Δ), j ≠ i,
1 + λiiΔ + o(Δ), j = i, (4)

where o(Δ) denotes second- or higher-order terms of Δ, i.e.
limΔ → 0 o(Δ)/Δ = 0. The available channels have different
characteristics in terms of time delays and packet dropout rates.

The following assumption is made about the communication
channel delays.

 
Assumption 1: The communication delay of channel i, i ∈ 𝒞,

denoted as τi(t), is time varying and satisfies τi ≤ τi(t) ≤ τi, where
τi and τi are positive constants and represent the known lower and
upper bound on the communication delay of channel i,
respectively. Also, we assume that τ̇i ≤ d < ∞, ∀i ∈ 𝒞, where d is

a bound known a priori. For notational simplicity, we use τi to
represent τi(t) when there is no confusion.

Let y(t) denote the received measurement signal at time t via
communication channel i ∈ 𝒞. Thus

y(t) = Θiy0(t − τi(t)), (5)

where Θi := diag{θi1, θi2, …, θir} is a matrix with mutually
independent random variables θi j, i ∈ 𝒞 and  j = 1, 2, …, r,
representing the packet arrival rate of sensor j via channel i. In the
sequel, we denote Θ̄i = 𝔼 Θi = diag{μi1, μi2, …, μir} .

 
Remark 1: We note that the packet dropouts are often treated by

using Bernoulli process. Our assumption in (5) includes Bernoulli
process-based treatment as a special case.

Also, it is assumed that there are certain overlaps in terms of
time delays and packet dropouts over all the MCCs, i.e.

⋂i ∈ 𝒞 τi, τi ≠ ∅,
Pr (Θi < Θ j) ≠ 0, ∀i, j ∈ 𝒞 .

(6)

By (6), we mean that generally there is no universally best or worst
channel that can always be selected or abandoned.

Combining the assumptions from the above, (1) and (5), the
overall networked system can be formulated as an MJNS as
follows:

ẋ(t) = Ax(t) + Bww(t) + Gg(x(t)),
y(t) = Θct

Cx(t − τct
(t)) + Θct

Dw(t),
z(t) = Lx(t) .

(7)

For each of the N channels, i ∈ 𝒞, we aim at designing a linear
time-invariant estimator of the following form

x^̇(t) = KA(i)x^(t) + KB(i)y(t),
ẑ(t) = KC(i)x^(t),

(8)

where KA(i), KB(i) and KC(i), i ∈ 𝒞, are estimator parameters to be
determined.

Then, combining (7) and (8), and letting η(t) = xT(t) x^T(t) T

denote an extended state, the following augmented MJNS is
obtained:

η̇(t) = Ā(ct)η(t) + Ād(ct)η(t − τct
(t))

+B̄(ct)w(t) + Ḡg(x(t)),
e(t) ≜ z(t) − ẑ(t) = C̄(ct)η(t),

(9)

where

Fig. 1  Networked estimation with multiple switching communication channels
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Ā(ct) =
A 0n × n

0n × n KA(ct)
, Ād(ct) =

0n × n 0n × n

KB(ct)Θct
C 0n × n

,

B̄w(ct) =
Bw

KB(ct)Θct
D , Ḡ =

G
0n × n

,

C̄(ct) = [L − KC(ct)] .

Now we introduce the following definition which is essential
for the subsequent analysis and filtering design.

 
Definition 1 [30]: System (9) with w(t) ≡ 0 is said to be

stochastically stable (SS) if there exists a constant T(c0, ϕ( ⋅ )) > 0,
such that

𝔼 ∥ η(t) ∥2 | (c0, ϕ( ⋅ )) ≤ T(c0, ϕ( ⋅ ))), (10)

where ϕ(s) ∈ L2[ − τ̄, 0] is the initial condition of system (9) with
τ̄ = maxi ∈ 𝒞 τ̄i.

Then the H∞ estimation problem addressed in this paper can be
formulated as follows: given the system (7) and a prescribed level
of noise attenuation γ > 0, determine linear estimators in the form
(8) such that the underlying estimation error system is
stochastically stable and under zero initial conditions, we have

𝔼 ∥ e(t) ∥2
2 ≤ γ2 ∥ w ∥2

2 . (11)

3 Performance analysis
The following theorem is a sufficient condition on the stability of
the estimation error system (9).
 
Theorem 1: Let KA(i), KB(i), KC(i), i ∈ 𝒞, be given estimator
parameters. Then the estimation error system in (9), with w(t) ≡ 0,
is stochastically stable if there exist a positive scalar ϱ1 and positive
definite matrices P(1), P(2), …, P(N), and Q such that

Ξi − ϱ1I0
TR^

1I0 𝒫(i)
∗ 𝒬

< 0 (12)

for all i = 1, 2, …, N, where

Ξi = ĀT(i)P(i) + P(i)Ā(i) + ∑
j = 1

N
λi jP( j) + κQ,

𝒫(i) = P(i)A^
d(i) P(i)Ḡ − ϱ1I0

TR^
2 ,

R^
1 = (R1

TR2 + R2
TR1)/2, R^

2 = − (R1
T + R2

T)/2,

A^
d(i) =

0n × n 0n × n

KB(ct)Θ̄ct
C 0n × n

,

𝒬 = diag{ − (1 − d)Q, − ϱ1In},
κ = 1 + λ̄(τ̄ − τ), λ̄ = max

i ∈ 𝒞
{ | λii | },

I0 = [In 0n × n], τ = min
i ∈ 𝒞 {τi}, τ̄ = min

i ∈ 𝒞 {τ̄i} .
 
Proof: To prove the result, we construct a Lyapunov–Krasovskii
functional (LKF) as follows:

V(η(t), ct) = ∑
i = 1

3
V i(η(t), ct), (13)

with

V1(η(t), ct) = ηT(t)P(ct)η(t),

V2(η(t), ct) = ∫
t − τct

t
ηT(s)Qη(s) ds,

V3(η(t), ct) = ∫
−τ̄

−τ∫
t + s

t
ηT(ξ)λ̄Qη(ξ) dξ ds,

where λ̄ is defined in the statement of Theorem 1.
Let ℒ be the weak infinitesimal generator of a random process
{η(t), ct} and define

ℒV(η(t), ct) = limΔ → 0
1
Δ 𝔼[V(η(t + Δ), ct + Δ)] − V(η(t), ct) ,

then we have

ℒV1(η(t), ct) = η̇T(t)P(ct)η(t) + ηT(t)ℒP(ct)η(t) + ηTP(ct)η̇(t)
= [Ā(ct)η(t) + Ād(ct)η(t − τct

) + B̄(ct)w(t)

+Ḡg(x(t))]TP(ct)η(t) + ηT(t)P(ct)[Ā(ct)η(t)
+ Ād(ct)η(t − τct

) + B̄(ct)w(t) + Ḡg(x(t))]

+ηT(t)ℒP(ct)η(t) .

(14)

Also,

ℒP(ct) = limΔ → 0
𝔼 P(ct + Δ) |ct − P(ct)

Δ

= limΔ → 0
1
Δ ∑

j ≠ ct

Pr (ct + Δ = j |ct)P( j)

+ Pr (ct + Δ = ct |ct)P(ct) − P(ct)

Combining with the transition probabilities defined in (4) yields

ℒP(ct) = ∑
j = 1

N
λct j

P( j) .

Consequently,

ηT(t)ℒP(ct)η(t) = ηT(t) ∑
j = 1

N
λct j

P( j)η(t) . (15)

We next compute the infinitesimal generator of V2(η(t), ct). Note
that 𝔼[V2(η(t + Δ), ct + Δ) | (η(t), ct)] can be decomposed as

𝔼[V2(η(t + Δ), ct + Δ) | (η(t), ct)]

= 𝔼 I{ct + Δ ≠ ct}∫t

t + Δ
ηT(s)Qη(s) ds | (η(t), ct)

+𝔼 I{ct + Δ ≠ ct}∫t + Δ − τct + Δ

t
ηT(s)Qη(s) ds | (η(t), ct)

+𝔼 I{ct + Δ = ct}∫t + Δ − τct

t + Δ
ηT(s)Qη(s) ds | (η(t), ct)

:= V21 + V22 + V23,

(16)

where I{ ⋅ } is the indicator function. It follows that
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V21 = ∑
j ≠ ct

Pr (ct + Δ = j |ct)∫
t

t + Δ
ηT(s)Qη(s) ds

= ∑
j ≠ ct

(λct j
Δ + o(Δ))∫

t

t + Δ
ηT(s)Qη(s) ds

= o(Δ),

V22 = ∑
j ≠ ct

Pr (ct + Δ = j |ct)∫
t + Δ − τ j

t
ηT(s)Qη(s) ds

= ∑
j ≠ ct

(λct j
Δ + o(Δ))∫

t + Δ − τ j

t
ηT(s)Qη(s) ds,

V23 = Pr (ct + Δ = ct)∫
t + Δ − τct

t + Δ
ηT(s)Qη(s) ds

= (1 + λctct
Δ + o(Δ))∫

t + Δ − τct

t + Δ
ηT(s)Qη(s) ds .

Thus, we have

ℒV2(η(t), ct)

= limΔ → 0
1
Δ 𝔼 V2(η(t + Δ), ct + Δ) | (η(t), ct) − V2(η(t), ct)

= limΔ → 0
1
Δ V21 + V22 + V23 − V2(η(t), ct)

= ∑
j ≠ ct

λct j∫t − τ j

t
ηT(s)Qη(s)ds + λctct∫t − τct

t
ηT(s)Qη(s)ds

+ limΔ → 0
1
Δ ∫

t + Δ − τct

t + Δ
ηT(s)Qη(s)ds − ∫

t − τct

t
ηT(s)Qη(s)ds .

(17)

Noting that the last term of (17) is the derivative of
∫ t − τct

t ηT(s)Qη(s) ds, it follows that

ℒV2(η(t), ct) = ∑
j ∈ 𝒞

λct j∫t − τ j

t
ηT(s)Qη(s) ds

+ηT(t)Qη(t) − (1 − τ̇ct
)ηT(t − τct

)Qη(t − τct
) .

(18)

Direct computations yield

ℒV3(η(t), ct) = λ̄(τ̄ − τ)ηT(t)Qη(t) − λ̄∫
t − τ̄

t − τ
ηT(s)Qη(s) ds . (19)

Also in (18),

∑
j = 1

N
λct j∫t − τ j

t
ηT(s)Qη(s) ds

= ∑
j ≠ ct

λct j∫t − τ j

t
ηT(s)Qη(s) ds + λctct∫t − τct

t
ηT(s)Qη(s) ds

≤ ∑
j ≠ ct

λct j∫t − τ̄

t
ηT(s)Qη(s) ds + λctct∫t − τ

t
ηT(s)Qη(s) ds

(20)

Noting that ∑ j ≠ ct
λct j

= − λctct
, it follows that

∑
j = 1

N
λct j∫t − τ j

t
ηT(s)Qη(s) ds

≤ − λctct∫t − τ̄

t − τ
ηT(s)Qη(s) ds ≤ λ̄∫

t − τ̄

t − τ
ηT(s)Qη(s) ds .

(21)

Combining (14), (15), (18), (19) and (21), we have

ℒV(η(t), ct)
= ℒV1(η(t), ct) + ℒV2(η(t), ct) + ℒV3(η(t), ct)

≤ ηT(t) ĀT(ct)P(ct) + P(ct)Ā(ct) + ∑
j = 1

N
λct j

P( j) η(t)

+2ηT(t)P(ct)Ād(ct)η(t − τct
) + 2ηTP(ct)B̄(ct)w(t)

+2ηT(t)P(ct)Ḡg(x(t)) + ηT(t)Qη(t)
−(1 − d)ηT(t − τct

)Qη(t − τct
) + λ̄(τ̄ − τ)ηT(t)Qη(t) .

(22)

For the purpose of stability analysis, we let w(t) ≡ 0. Then without
loss of generality, we assume ct = i, denoted as it. Following (22),
we have

ℒV(η(t), it) ≤ ζi
T(t)Ψiζi(t), (23)

where ζi(t) = [ηT(t) ηT(t − τi) gT(x(t))]T and

Ψi =
Ξi P(i)Ād(i) P(i)Ḡ
∗ −(1 − d)Q 02n × n

∗ ∗ 0n × n

,

with Ξi defined in the statement of Theorem 1.
Then we have

𝔼 ℒV(η(t), it) ≤ ζi
T(t)Ψ̄iζi(t), (24)

Ψ̄i =
Ξi P(i)A^

d(i) P(i)Ḡ
∗ −(1 − d)Q 02n × n

∗ ∗ 0n × n

,

with A^
d(i) defined in the statement of Theorem 1.

We next consider the sector-bounded non-linearity in (9).
Following (2) and letting a = x(t) = I0η(t) and b = 0, we have

[g(x(t)) − 0 − R1x(t)]T[g(x(t)) − 0 − R2x(t)]

= η(t)
g(x(t))

T I0
TR^

1I0 I0
TR^

2

R^
2I0 I

η(t)
g(x(t)) ≤ 0

(25)

From (24) and (25), it follows that

𝔼 ℒV(η(t), it) ≤ ζi
T(t)Πiζi(t), (26)

where

Πi =
Ξi − ϱ1I0

TR^
1I0 P(i)A^

d(i) P(i)Ḡ − ϱ1I0
TR^

2

∗ −(1 − d)Q 02n × n

∗ ∗ −ϱ1In

, (27)

with ϱ1 being a positive constant. It is clear that the conditions in
Theorem 1 can guarantee Πi < 0, which leads to
𝔼 ℒV(η(t), it) < 0.
Following from (26), we have

𝔼 ℒV(η(t), it) ≤ − min
i ∈ 𝒞 λmin( − Πi) ηT(t)η(t), (28)

where λmin( ⋅ ) represents the minimum eigenvalue operator. Then
applying Dynkin's formula yields

414 IET Control Theory Appl., 2017, Vol. 11 Iss. 3, pp. 411-419
© The Institution of Engineering and Technology 2016



𝔼 V(η(t), it) − 𝔼 V(η(0), 0)

= 𝔼 ∫
0

t
ℒV(η(s), is) ds | (c0, ϕ( ⋅ ))

≤ − min
i ∈ 𝒞 λmin( − Πi) 𝔼 ∫

0

t
ηT(s)η(s) ds | (c0, ϕ( ⋅ )) ,

(29)

which implies that

min
i ∈ 𝒞 λmin( − Πi) 𝔼 ∫

0

t
ηT(s)η(s) ds | (c0, ϕ( ⋅ ))

≤ 𝔼 V(η(0), c0) − 𝔼 V(η(t), it)
≤ 𝔼 V(η(0), c0) .

(30)

Then from (30), it follows that

𝔼 ∫
0

t
ηT(s)η(s) ds | (c0, ϕ( ⋅ )) ≤ 𝔼 V(η(0), c0)

mini ∈ 𝒞 λmin( − Πi)
. (31)

Based on the stability definition in (10), the error system in (9) is
stochastically stable.   □

We next give sufficient conditions for the existence of the
estimators such that the estimation error system satisfies the H∞
performance bound.

 
Theorem 2: Let KA(i), KB(i), KC(i), i ∈ 𝒞, be given estimator

parameters. Let γ be a prescribed positive scalar. Then the
estimation error system in (9), with w(t) ≡ 0, is stochastically
stable and the H∞ performance in (11) is satisfied if there exist
positive definite matrices P(1), P(2), …, P(N), Q and positive
constant ϱ1 such that

Πi Φ2(i)
∗ Φ3(i)

< 0 (32)

for all i = 1, 2, …, N, where

Φ2(i) =
P(i)B^

w C̄T(i)
03n × q 03n × m

B^
w(i) =

Bw

KB(i)Θ̄iD
, Φ3(i) = diag{ − γ2Iq, − Im},

and Πi, R
^

1, R
^

2, I0 and A^
d(i) are defined the same as in Theorem 1.

 
Proof: Using Schur complement, it is clear that (32) implies

(12). According to Theorem 1, the estimation system in (9) is
stochastically stable.

Now let us define the following H∞ performance cost function

JT = 𝔼 ∫
0

T
(eT(t)e(t) − γ2wT(t)w(t)) dt , ∀T > 0. (33)

Then

JT = 𝔼 ∫
0

T
(eT(t)e(t) − γ2wT(t)w(t)) + ℒV(η(t), it) dt

−𝔼 ∫
0

T
ℒV(η(t), it) dt

= 𝔼 ∫
0

T
(eT(t)e(t) − γ2wT(t)w(t)) + ℒV(η(t), it) dt

−𝔼 V(η(t), it) + 𝔼 V(η(0), i0)

(34)

Under zero initial conditions and using (25), we have

JT ≤ 𝔼 ∫
0

T
(eT(t)e(t) − γ2wT(t)w(t)) + ℒV(η(t), it) dt

≤ ξi
T(t)Γ(i)ξi(t),

(35)

where

ξi(t) = [ηT(t), ηT(t − τi(t)), gT(x(t)), wT(t)]T

Γ(i) =
Πi + C̄T(i)

03n × m
[C̄(i) 0m × 3n]

P(i)B^
w

03n × q

∗ −γ2Iq

.

with Πi being defined in (27). Applying Schur complement, it is
straightforward to show that (32) implies JT < 0, ∀T, which can be
used to show that

𝔼 ∥ e(t) ∥2
2 ≤ γ2 ∥ w(t) ∥2

2 . (36)

This completes the proof of Theorem 2.   □
 
Remark 2: When the number of channels N = 1, the setup

reduces to the conventional case that only one single channel is
used, cf. [1, 31–33]. Results in Theorem 2 are thus more general
than those in the existing literature.

4 Estimator design
In this section, we solve the H∞ estimation problem for system (1),
that is, find estimator gains KA(i), KB(i) and KC(i) in forms of (8)
such that the error system in (9) is stochastically stable with a
guaranteed H∞ bound. The following theorem gives sufficient
conditions on the existence of such an estimator.
 
Theorem 3: Consider the non-linear system (1) and the coexistence
of switching MCCs. Let γ be a given constant representing desired
attenuation level. There exists a desired H∞ estimator in forms of
(8) such that the error system in (9) is stochastically stable and has
an H∞ performance index γ, if there exist positive-definite matrices

P(i) =
P1(i) P2(i)

∗ P2(i)
, Q =

Q1 Q2

∗ Q3
,

a positive scalar ϱ1, and matrices K̄A(i), K̄B(i), KC(i),
i = 1, 2, …, N, such that

Ω1(i) Ω2(i) Ω3(i)
∗ −(1 − d)Q 02n × (n + q + m)

∗ ∗ Ω4(i)
< 0 (37)

for all i = 1, 2, …, N, where
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Ω1(i) =
Ω11(i) Ω12(i)

∗ Ω22(i)
, Ω2(i) =

K̄B(i)Θ̄iC 0n × n

K̄B(i)Θ̄iC 0n × n
,

Ω3(i) =
Ω15(i) Ω16(i) LT

P2(i)G Ω26(i) −KC
T(i)

,

Ω4(i) = diag{ − ϱ1In, − γ2Iq, − Im},

Ω11(i) = Sym(P1(i)A) + ∑
j = 1

N
λi jP1( j) + κQ1 − ϱ1R

^
1,

Ω12(i) = K̄A(i) + ATP2(i) + ∑
j = 1

N
λi jP2( j) + κQ2,

Ω15(i) = P1(i)G − ϱ1R
^

2,
Ω16(i) = P1(i)Bw + K̄B(i)Θ̄iD,
Ω22(i) = Sym(K̄A(i)) + κQ3,

Ω26(i) = P2(i)Bw + K̄B(i)Θ̄iD .

Furthermore, if (P(i), Q, K̄A(i), K̄B(i), KC(i), ϱ1), i ∈ 𝒞 is a
feasible solution of (37), then the estimator parameters in (8) are
given as

KA(i) = P2
−1(i)K̄A(i), KB(i) = P2

−1(i)K̄B(i) . (38)
 
Proof: According to Theorem 2, the error system in (9) is
stochastically stable and 𝔼 ∥ e(t) ∥2 < γ𝔼 ∥ w(t) ∥2  for all
w(t) ∈ L2[0, ∞), if there exist positive matrices
P(1), P(2), …, P(N), Q, and a positive scalar ϱ1 such that (12)
holds. For the estimator synthesis procedure,we first partition the
Lyapunov matrices P(i) as

P(i) =
P1(i) P2(i)

∗ P3(i)
. (39)

Then performing a congruence transformation to P(i) by
diag{I, P2(i)P3

−1(i)} yields

P1(i) P2(i)P3
−1(i)P2

T(i)
∗ P2(i)P3

−1(i)P2
T(i)

.

As a result, we can, without loss of generality, directly specify the
matrices as

P(i) =
P1(i) P2(i)

∗ P2(i)
. (40)

(40) into (32) and introducing

K̄A(i) = P2(i)KA(i), K̄B(i) = P2(i)KB(i),

then we are ready to show that (37) is equivalent to (32). We note
that P(i) > 0 requires P2(i) > 0. Then the estimator gains can be
constructed by (38). This completes the proof.   □
 
Remark 3: In Theorem 3, the designed estimators are mode
dependent, i.e. the estimator gains switch as channels switch.

5 Case study
In this section, we consider a network-based state estimation
problem for an agent-based active suspension system as illustrated
in Fig. 2. The estimated states are used in the suspension control
module in the remote agent, where the road profile information is
stored a priori. Road information from the agent is used for
suspension control, enabling the functionality to plan and optimally
respond to the road information. In addition, control optimisation is
performed in the remote server which has much higher
computation capability compared with onboard computation units.
More details on this configuration of the investigated suspension
control system can be referred to [34, 35], in which cloud-aided
suspension control problems have been studied. 

In Fig. 2, the remote vehicle software agent receives vehicle
sensor measurements. The signals are sent to the remote agent via
N available wireless channels c1, …, cN. When the vehicle moves, it
is supposed that only one channel is selected based on a
(sub)optimal scheduler and the overall channel switching is
assumed to be governed by a continuous-time Markov process.

Here a quarter-car active suspension model, with 2 degrees of
freedom (DOF) as shown in Fig. 3, is used. The Ms and Mus
represent the car body (sprung) mass and the tire and axles
(unsprung mass), respectively. The spring, shock absorber and an
actuator constitute the suspension system, connecting sprung
(body) and unsprung (wheel assembly) masses. The tire is
modelled as a spring with stiffness kus and its damping ratio is
assumed to be negligible in the suspension formulation. From Fig.
3, we have the following equations of motion:

ẋ1 = x2 − w,
Musẋ2 = − kusx1 + ksx3 + S(cs(x4 − x2)) + u,

ẋ3 = x4 − x2,
Msẋ4 = − ksx3 − S(cs(x4 − x2)) − u,

(41)

where x1 is the tire deflection from equilibrium, x2 is the unsprung
mass velocity, x3 is the suspension deflection from equilibrium, x4
is the sprung mass velocity, w represents the road disturbance, cs is
the constant damping coefficient, u is the controlled actuator force
and ks is suspension stiffness. 

It is worth mentioning that, in practice, suspension dampers are
subject to saturations and are typically sector bounded in nature
[36]. This phenomenon is captured in the non-linear term
S(cs(x4 − x2)) and we assume S(α(t)) = α(t) + 0.1α(t)sin(α(t)).

By defining x = [x1 x2 x3 x4]T, the suspension system
model in (41) can be written as

ẋ = Ax + Bu + B0ω + Gg(x), (42)

where

A =

0 1 0 0

−
kus
Mus

−
cs

Mus

ks
Mus

cs
Mus

0 −1 0 1

0
cs
Ms

−
ks
Ms

−
cs
Ms

, B =

0
1

Mus

0

− 1
Ms

, (43)

Fig. 2  Active suspension control system with a remote agent
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G = 0 0.1csC0
T 0 −0.1csC0

T T, B0 = [ − 1 0 0 0]T,

C0 = [0 − 1 0 1], g(x) = sin(csC0x)x .

It can be shown that g(x) is sector bounded with R1 = I4 and
R2 = − I4, where R1 and R2 are matrix bounds defined in (2).

For vehicles equipped with active suspension, in general, the
measurements of suspension deflection ( x3) and body velocity ( x4)
are available, while vertical wheel velocity ( x2) and tire deflection
( x1) are not measured. Let y0 denote the onboard measurements
and z denote the objective signal to be estimated, we have

ẋ = Ax + Bu + B0ω + Gg(x),
y0 = [x3 x4]T = Cx + D0v,
z = x,

(44)

where C = [02 × 2 I2] and v is the zero-mean unit-density white
noise.

The estimators on the agent will use the received measurement
y for state estimation. The received measurements will be delayed
and possibly lost during the transmission via the wireless
communication channels. Thus, we have

y(t) = Θct
Cx(t − τct

(t)) + D0v(t), (45)

where τct
(t) and Θct

 are, respectively, the time-varying delay and
packet dropout matrix defined in Section 2.

Defining a disturbance vector as ξ = [wT vT]T and letting
u ≡ 0 for estimator design purposes, we have the following system

ẋ(t) = Ax(t) + Bwξ(t) + Gg(x(t)),
y(t) = Θct

Cx(t − τi) + Θct
Dξ(t),

z(t) = x(t),
(46)

with Bw = [B0 0], D = [0 D0], which is now in the form of
(7).

 
Remark 4: Automobiles with wireless connections are

increasingly popular in the industry, see for example [37, 38]. The
mobility of the automobiles demands high reliability of the
communication channels and the MCC framework is quite
practical and advantageous for this architecture.

For simulation purposes, the system parameters used are listed
in Table 1 and we specify

R1 = I4, R2 = − I4, D0 = [0.1 0.2]T,

where R1 and R2 are matrix bounds defined in (2).
We consider three available channels with the following

switching and delay characteristics:

Λ =
−3 2 1
2 −5 3
3 4 −7

, d = 0.5, τ̄1 = 0.15, τ1 = 0.6,

τ̄2 = 0.2, τ2 = 0.55, τ̄3 = 0.25, τ3 = 0.4,

where time delay of each channel i, i = 1, 2, 3 is set to be uniformly
distributed over [τi, τ̄i]. The packet arrival rate matrix of each
channel is specified as

Θ̄1 = diag{0.9, 0.92}, Θ̄2 = diag{0.91, 0.89},

Θ̄3 = diag{0.89, 0.93} .

The road disturbance over a 10-s horizon is modelled as follows:

w(t) =
0.15 ⋅ sinπ(t − 1) 1s ≤ t ≤ 3s,
0.05 ⋅ sinπ /2t 4s ≤ t ≤ 8s,
0 otherwise .

(47)

We assume that the disturbance to the suspension is with a similar
frequency of the spring in a passenger car suspension. Moreover, in
[39], the disturbance to the suspension is modelled as known
uneven road information. Taking into account both the frequency
range of passenger car suspensions, and the frequency and the
magnitude of the modelled disturbance in terms of uneven road
conditions in [39], we assume that the disturbance to the
suspension system studied in this work is in the form of (47).

Using Theorem 3 and the Matlab LMI toolbox, simulation
results are generated. The parameters of the designed estimators for
the three communication channels are calculated as

Fig. 3  Active suspension dynamics
 

Table 1 Suspension system parameters
ms mus ks kus cs

290 kg 60 kg 16, 800 N/m 19, 000 N/m 200 N ⋅ s/m
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KA(1) =

0.2375 −0.1948 −1.2690 0.0940
−0.8577 0.7220 4.6922 −0.3318
0.1599 −0.1353 −0.8783 0.0622

−0.2241 0.1868 1.2069 −0.0933

× 104

KB(1) =

0.5412 −0.4838
−1.9838 1.6876
0.3716 −0.3169

−0.5559 0.4917

× 104

KA(2) =

0.2360 −0.1922 −1.2444 0.0891
−0 . 8523 0.7102 4.6549 −0.3146

0.1604 −0.1333 −0.8712 0.0589
−0.2226 0.1833 1.1981 −0.0886

× 104

KB(2) =

0.5307 −0.4623
−1.9443 1.6112
0.3643 −0.3026

−0.5456 0.4704

× 104

KA(3) =

0.2151 −0.0809 −0.6805 0.0533
−0 . 7775 0.3055 2.5344 −0.1896

0.1449 −0.0574 −0.4747 0.0355
−0.2024 0.0732 0.6174 −0.0553

× 104

KB(3) =

2.5878 −1.8385
−9.4865 6.4207
1.7805 −1.2126

−2.7322 2.1207

× 103

The channel switching signal and the communication delays are
shown in Fig.4, while the state estimates obtained based on the
developed state estimators are presented in Figs. 5–8. In Figs. 5–8,
we use red solid lines to represent the actual states of the
suspension system and use blue-dashed lines to depict the
trajectories of the obtained state estimates. It can be seen that the
designed estimators are able to collaboratively give sufficiently
accurate state estimates in the presence of road disturbances within
the channel-switching framework. The results also imply that time-
varying communication delays and intermittent packet dropouts
can be well handled.

By examining the trajectories of the state estimates and the
actual system states in Figs. 5–8, we can see that the estimation
performance for the states x3 and x4 is better than that of the rest
two states x1 and x2. This is mainly because that the states x3 and x4
are measured even though the measurements are subject to
measurement noise. Therefore, direct information with respect to
these two states is provided to the estimators for the state estimate
evaluation.

Fig. 4.
Fig. 4  Channel switching and communication delays

 

Fig. 5.
Fig. 5  Tire deflection x1 estimation

 

Fig. 6.
Fig. 6  Unsprung mass velocity x2 estimation

 

Fig. 7.
Fig. 7  Suspension deflection x3 estimation

 

Fig. 8.
Fig. 8  Sprung mass velocity x4 estimation
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6 Conclusions
The problem of network-based H∞ estimation for a class of non-
linear systems with MCCs subject to Markovian switching has
been treated. Time-varying communication delays, random packet
dropouts and sector-bounded non-linearities have been considered
in a unified framework. The Lyapunov–Krasovskii approach and
LMI techniques were exploited to establish the existence of the
estimator and further derive the estimator parameters. A case study
of state estimation for an intelligent active suspension system has
been investigated and simulation results have been reported to
demonstrate the effectiveness of the proposed approach.
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