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Abstract: In this paper, we present a heuristic method to simplify the liquid crystal adaptive 
optics system (LCAOS) into a single-input-single-output (SISO) system, then build the 
dynamic model of LCAOS based on subspace identification. Results show that the identified 
model could accurately describe the dynamical behavior of LCAOS (97% match), with 
extremely low complexity. The wonderful features of low complexity and high precision, 
make the identified model highly beneficial for model based controller design, system analysis 
and dynamical behavior simulation of liquid crystal adaptive optics systems. 
©2017 Optical Society of America 
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1. Introduction 
Ever since Babcock first introduced the concept of adaptive optics in 1953 [1], adaptive optics 
(AO) systems have been widely used in astronomical telescopes for the past few decades, for 
real time compensation of the image degradation due to the Earth’s atmosphere turbulence. Up 
to now, most telescopes with an aperture larger than 1 meter have adopted AO systems to 
improve the image quality. To compensate wavefront aberration caused by atmosphere 
turbulence, traditional AO systems use deformable mirror (DM) as the correction device. 
However limited by manufacturing technology, the actuator number of DM could hardly 
satisfy the requirement of extreme adaptive optics systems (especially in visible wavelengths), 
which is the future of certain areas, like direct detection of extra solar planet. 

With the advantages of low cost, high resolution, the ability of generating a desired 
wavefront with high-precision and no-hysteresis, liquid crystal wavefront corrector (LCWC) 
has become a very attractive substitute for deformable mirror (DM). Particularly, the high 
resolution feature makes LCWC very promising to be used in extreme AO systems. Indeed, 
LCWC also has some shortcomings, like low light energy efficiency and slow response speed, 
but they all have been subdued: the energy utilization efficiency could be improved to nearly 
100% in the waveband of 0.4-0.9 um with an optimal energy-splitting open-loop system design 
[2]. And the response time of LCWC has been reduced to sub-millisecond with liquid crystal 
molecule design [3] and novel overdriving technique [4]. Up to now, LCWC has already been 
used in many adaptive optics systems, like retinal imaging systems [5,6], laser communication 
systems [7], microscopy systems [8] and large aperture telescope systems [9,10]. Z. L. Cao has 
reported an imaging result of 1.7 times the diffraction limit on a 1.2-meter telescope after the 
correction of a LCWC based AO system [2]. 

With certain hardware conditions, the performance of an AO system is mainly determined 
by the controller of the system. In order to achieve optimal control, a system model is 
indispensable [11–13]. And it is even more crucial for an open-loop AO system, since without 
a system model we would be blind to the corrector’s response to the driving signals we applied 
to it. And open-loop correction technology is not only adopted in LCAOS to improve energy 
efficiency, but also needed by DM based AO systems for extremely large telescopes (ELTs) 
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[14] and multi-object adaptive optics (MOAO) [15]. Besides optimal controller design, during 
the process of appraising AO projects, a system model would be of great help for simulating 
the dynamical behavior of the system to make better decisions [16]. S. T. Wu’s has elegantly 
demonstrated the dynamic response characteristics of liquid crystal theoretically [17], however 
no study about modeling the whole liquid crystal adaptive optics system has been done up to 
date. As to DM based adaptive optics systems, there have been many studies on system 
modeling, both static (steady-state) [18,19] and dynamic [16,20]. 

The bottleneck of LCAOS modeling lies on the multi-input-multi-output (MIMO) nature of 
the system, which magnifies the complexity of the system modeling and reduces the precision 
of the acquired model. Hence we introduce a heuristic method to simplify LCAOS into a 
single-input-single-output (SISO) system, and build the dynamic model (SISO transfer 
function) of LCAOS based on subspace identification. In Section 2, we give a detailed 
illustration of the proposed method. Section 3 presents a real case of identifying the model of 
an actual LCAOS, and the conclusions are drawn in Section 4. 

2. Principle of LCAOS system modeling 
LCAOS mainly consists of a Shack-Hartmann wavefront sensor (WFS), a liquid crystal 
wavefront corrector (LCWC) and an imaging CCD, the principle of LCAOS is shown in Fig. 1 
(where IM, CC and RQ are mere computational processes). Where Фt represents the 
turbulence wavefront, s is the slopes measured by WFS, c1 is the Zernike coefficients 
calculated with interaction matrix (IM) [21], c2 is the output (Zernike coefficients) of the 
controller (CC), v is the driving voltages acquired by wavefront reconstruction and 
quantification (RQ) with kinoform technique [22,23], and Фc is the correcting wavefront 
generated by LCWC, the wavefront after correction (with residual error e) is imaged with 
CCD. This is a typical open-loop control architecture, since the residual error is not measured 
by WFS and fed back to the controller. 

 

Fig. 1. Control diagram of LCAOS. 

Normally in most real time DM-based AO systems, the influence functions of the DM 
actuators are used to expand wavefront. However, LCWC is driven by applying voltage to 
pixels, which are too small (several microns) and too many (tens of thousands) to measure the 
influence function of every individual pixel. Hence LCAOS adopts Zernike coefficients for 
wavefront reconstruction, so generally the controller (CC) of LCAOS is applied to Zernike 
coefficients, seeing in Fig. 1. Then speaking of system modeling, what we are interested in is 
the transfer function from Zernike coefficients to Zernike coefficients. However usually the 
number of Zernike modes required for wavefront reconstruction of LCAOS could be larger 
than 100, and cross-talking normally exists between different modes, which makes LCAOS a 
complex multi-input-multi-output (MIMO) system. To identify such a system model is too 
difficult and the precision of the identified model is hard to guarantee. So system 
simplification, which would dramatically reduce the complexity and improve the accuracy of 
system modeling, is vitally needed. 

Consider that besides applying controller (CC) to Zernike coefficients like in Fig. 1, the 
controller could also be applied to the driving voltages of LCWC, as shown in Fig. 2. Where c 
is the Zernike coefficients calculated with interaction matrix (IM), v1 is the driving voltages 
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acquired with wavefront reconstruction and quantification (RQ), v2 is the output (driving 
voltages) of the controller (CC). 

 

Fig. 2. Driving voltages based control diagram of LCAOS. 

Based on this kind of control architecture, what we want is the transfer function Go from 
driving voltages to driving voltages, as shown in Fig. 3. Go should include the dynamics of all 
the procedures of LCAOS: the dynamics of LCWC and WFS, and computational delays of IM 
and RQ. 

 * * *oG RQ IM WFS LCWC=   (1) 

 

Fig. 3. System modeling of LCAOS based on driving voltages. 

Generally, the total pixel number of LCWC is very huge. For instance, the pixel number of 
a LCWC we currently use is 65536 (256 × 256), then the driving voltages of LCWC is a vector 
with 65536 elements. So, outwardly LCAOS becomes even more sophisticated if we try to 
modeling LCAOS based on driving voltages. However, considering that what makes LCWC 
modulating wavefront is the movement of liquid crystal molecules, which doesn’t involve any 
mechanical motion, so we could reasonably assume that every pixel of LCWC has the same 
dynamics. With this assumption, and the fact that every pixel of WFS has the same dynamics, 
consider all the pixels of LCWC as an entirety, we could use a SISO 
(single-input-single-output) model (voltage to voltage) to describe LCAOS, this would bring 
significant convenience to model-based controller design and dynamical behavior simulation 
of the whole system. 

In order to identify this SISO system model, apply a sequence of random voltages to 
LCWC as the input of the system (u(k) = [ vi(k)], k = 1, 2, … 100000). Noted here, at each time, 
same voltage is applied to all the pixels in LCWC, and try to measure the corresponding output 
of the system (y(k) = [ vo(k)], k = 1, 2, … 100000) (with the assumption that every pixel of 
LCWC has the same dynamics, vo of all the pixels would also be the same). However the 
difficulty is: with same voltage applied to all pixels in LCWC at each time, LCWC would 
generate a piston wavefront, and by nature WFS is insensitive to piston. With a piston 
wavefront, the slopes s measured by WFS would be 0, then the Zernike coefficients c 
calculated with interaction matrix (IM) would also be 0, and finally the output voltage vo would 
be 0. 

So the bottleneck lies on how to acquire the system output vo when the same voltage vi is 
applied to all the pixels of LCWC. Based on polarization optical theory, LCWC could not only 
modulate phase but also light intensity (just need to put a polarizer and an analyzer in front of 
LCWC). As shown in Fig. 4, where the polarizer plays both the role of polarizer and analyzer, 
then the intensity I of the light reflected from LCWC is related to the phase Ф of the LCWC in 
the following relationship: 
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Fig. 4. LCWC modulates light intensity. 

And Ф is related to the applied voltage v of LCWC as follows [24]: 
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Where Фm is the maximal value of the phase retardance, n  and n⊥ are the reflective indices 
of LCWC for a light beam with polarization parallel and perpendicular to the initial orientation 
of the molecules, respectively. K11 and K33 represent the splay and bend elastic constants, 
respectively. And Uth is the threshold voltage above which a reorientation takes place in the 
liquid crystal. 

Combining Eqs. (2) and (3), we could derive the relationship between I and v: 

 ( )I f v=  (4) 

Practically, we can measure this relationship f(v) experimentally with optical layout shown 
in Fig. 5: apply different voltages to LCWC respectively (at each time, same voltage is applied 
to all the pixels of LCWC), then measure the reflected light intensity with WFS (integration of 
a certain area, like the red square frame in Fig. 5). Where MS is a narrow-band spectral filter, 
LCWC and WFS are well placed such that they are conjugated to each other. This process of 
measuring f(v) seems similar to the calibration procedure of LCWC [25]. However, the 
purposes are totally different. The calibration procedure in reference 25 is to calibrate the static 
gain between driving voltage (gray level) and induced phase change of LCWC. While our 
measurement of f(v) is to calibrate the relationship between driving voltage of LCWC and the 
light intensity change responded in WFS. This relationship is indispensable in the latter 
process of LCAOS system modeling, to be used to solve the problem of WFS’ incapacity of 
measuring LCWC’s response (piston) when the same voltage is applied to all the pixels of 
LCWC. Our purpose is to build the dynamic model of the whole system (which includes the 
response of LCWC and WFS, as well as the system delay), so WFS in Fig. 5 can’t be replaced 
with a camera like in reference 25. 
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Fig. 5. Optical layout for measuring relationship f(v) between driving voltage of LCWC and the 
light intensity responded in WFS. 

We have transferred the insensible piston into palpable light intensity for WFS when the 
same voltage vi is applied to all the pixels of LCWC, so the bottleneck of system modeling 
based on driving voltages has been sidestepped. As stated before, apply a sequence of random 
voltages to LCWC as the input of the system (u(k) = [ vi(k)], k = 1, 2, … 100000). At each time, 
same voltage is applied to all the pixels in LCWC. And accordingly measure the light intensity 
sequence (I(k) = [ i(k)], k = 1, 2, … 100000) responded in WFS (integration of the same area 
shown in Fig. 5), then we could calculate the output sequence (y(k) = [ vo(k)], k = 1, 2, … 
100000) with f(v), as shown in Fig. 6 (To guarantee the one-to-one mapping relationship of 
f(v), we only choose those voltages where f(v) is a monotonic function). In order to make sure 
the identified system model Go containing the computation delays of IM and RQ, we still carry 
out those two proceedings during the procedure. 

 

Fig. 6. System modeling of LCAOS based on driving voltages. 

Since the high linearity of LCWC [26], a linear dynamic model of LCAOS could be 
identified from input sequence u = [ vi(k)] and output sequence y = [ vo(k)] with predictor-based 
subspace identification (PBSIDopt) algorithm [27,28]. According to PBSIDopt, the linear 
dynamic model of LCAOS could be represented in discrete state space form as: 
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where x(k)∈n is the state variable of the state space model at time instant k. A∈n*n, B∈n*1 

and C∈1*n are the system matrices with n the order of the system. K∈n*1 is the Kalman gain, 

ɛ(k) is the one-step-ahead linear prediction error of y(k). 
The matrices A, B, C and K are identified in three steps [13]: (1) the Markov parameters are 

estimated from the block Hankel matrices by solving a least squares problem; (2) the states of 
the system are estimated from Markov parameters and the Hankel matrices; (3) A, B, C and K 
are identified based on the Markov parameters, the Hankel matrices and the states of the 
system by solving two least squares problems. With matrices A, B and C identified, the 
dynamic model of LCAOS could be constructed as (where z is the z-transform shift operator, 

I∈n*n is an identity matrix): 

 1( ) ( )oG z C zI A B−= −  (6) 

And the quality of system model Go could be evaluated with the variance accounted for 
(VAF) [29] of actual system output vo and system model output v’

o (v’
o = Go*vi): 
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A VAF of 100% means there is no difference between model output v’
o and actual system 

output vo, which indicates that system model Go could perfectly demonstrate the dynamics of 
LCAOS. 

3. Experimental results and discussion 
With the method described in section 2, we tried to identify a LCAOS with parameters as 
follows: the WFS has 225 (15 × 15) micro-lenses, 90 × 90 pixels and a 870 Hz frame rate; the 
LCWC has 256 × 256 pixels and a response time of 1.15ms; the wavefront reconstruction 
adopts 35 Zernike modes; and the computation delays of IM and RQ take 0.45 ms. The input 
voltage sequence vi used for system modeling and the measured corresponding output voltage 
sequence vo are shown in Fig. 7. 

 

Fig. 7. Input and output data sequence (part of 100000 sets of data). (Voltage is scaled with gray 
level: 0~40, corresponding to 0~5V) 
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The complexity of a system model is mainly determined by system order, the larger the 
system order, the more complexity. And the order of system model Go could be estimated from 
the Hankel singular values [28] and VAF plots. As shown in Fig. 8(a), the third singular value 
is at least 50 times smaller than the first two singular values, so a model with order of 2 would 
be sufficient to describe LCAOS. Figure 8(b) (solid line) also confirms this conclusion, since 
the VAF value has already reached 97.3% with an order of 2, and hardly increases with larger 
orders. We have also tried to identify the system model of the same LCAOS based on 
coefficients of Zernike modes. As could be seen in Fig. 8(b) (dotted line), no matter how much 
we increase the system order, VAF of the model could only reach to 66.6%. Therefore system 
modeling of LCAOS based on driving voltages would dramatically reduce the complexity and 
increase the accuracy of the identified model, the system simplification is worth the trouble. 

 

Fig. 8. (a) Hankel singular values; (b) VAF values for different system order n. 

The identified system model Go is shown in Eq. (8), with step response shown in Fig. 9(a), 
and Bode plot in Fig. 9(b). Equation (8) is the system transfer function of LCAOS, which 
describes the relationship between system output and system input, and it also represents the 
z-transform of system’s impulse response with all initial conditions assumed to be zero (where 
z is the shift operator). 
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Fig. 9. (a) Step response of the identified system model; (b) Bode plot of the identified system 
model. 

The actual system output vo and the system model output v’
o are compared in Fig. 10. As it 

can be seen, the identified model Go is able to predict the dynamic response of LCAOS with a 
very high precision (VAF = 97.3%). 

 

Fig. 10. Precision of the identified model (part of 10000 sets of data). (Voltage is scaled with 
gray level: 0~40, corresponding to 0~5V) 

In section 2, in order to simplify LCAOS into a SISO system, we made a strict assumption 
that the response characteristics of different areas of LCWC and WFS are identical. To verify 
this assumption, we applied a sequence of voltages to LCWC (at each time, same voltage was 
applied to every pixel of LCWC), then compared the output voltages of several different areas 
(as shown in Fig. 11, Area 1, 2, 3, 4 in WFS, corresponding to 4 different areas in LCWC). 
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Fig. 11. Four different areas to be identified. 

The VAFs of any two different areas’ outputs are 98.8%, 98.9%, 99.0%, 98.7%, 98.8% and 
99.6%, respectively. The largest variance takes place between area 2 and 3 with VAF = 98.7%, 
as shown in Fig. 12. This indicates that our assumption (the response characteristics between 
different areas of LCWC and WFS are identical) is solid, and our proposed system modeling 
method is well-grounded. 

 

Fig. 12. Difference between outputs of area 2 and area 3 under same input (part of 10000 sets of 
data). (Voltage is scaled with gray level: 0~40, corresponding to 0~5V) 

Even though we could obtain a high precision model of LCAOS with our proposed method, 
it would be time-consuming if system identification online is needed anytime we use LCAOS. 
So we hope LCAOS would be time-invariant, so that we could identify the system model 
beforehand. So as to evaluate the time-variance of the system, we compared the system outputs 
vo and vt

o under the same input voltage sequence vi between a time interval of 50 days. As 
shown in Fig. 13, the VAF of vo and vt

o is 99.6%. It suggests that the dynamics of LCAOS 
hardly change in nearly two months, LCAOS shows high time-invariance, which means we 
only need to do the system modeling once in at least several months. 
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Fig. 13. Time-variance of LCAOS (part of 10000 sets of data). (Voltage is scaled with gray 
level: 0~40, corresponding to 0~5V) 

As stated in section 1, such a high precision system model could be used for model based 
controller design. So we designed a simple first-order adaptive controller for the identified 
system, and simulated the performance of the controller. As could be seen in Fig. 14, compared 
to a traditional integral controller, a model based adaptive controller could reduce the RMS of 
residual error by 39%. Even though this is only simulation, the result already shows great 
potential in applying our proposed system modeling method to model based controller design. 

 

Fig. 14. Performance of model based controller design. 

4. Conclusion 
This paper presents a heuristic method to simplify liquid crystal adaptive optics system 
(LCAOS) into a single-input-single-output (SISO) system, and build the dynamic model (SISO 
transfer function) of LCAOS based on subspace identification. With system simplification, the 
system order could be reduce to 2, and the model precision could be improved from 66.6% to 
97.3% (VAF). And we have also proved that LCAOS is highly time-invariant, which is a good 
feature that ensures us to identify the system offline. The low-complexity and high precision 
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properties of the identified model make it highly beneficial for model based controller design 
and dynamical behavior simulation of liquid crystal adaptive optics systems. A simple 
stimulation suggests that a model based adaptive controller could reduce the RMS of LCAOS 
residual error by 39%. The proposed method could also be applied to build the dynamic models 
of any other liquid crystal devices (such as optoelectronic switch), so as to study the dynamic 
characteristics of those devices. 
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