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Abstract: To overcome the phase shift error in phase shifting interferometry, a three-step
random phase retrieval approach based on difference map normalization and diamond
diagonal vector normalization (DN&DDVN) is proposed. It does not need pre-filtering for the
interferograms and can obtain relatively accurate phase distribution with a simple process and
less computational time. This simulation and experiment verify the correctness and feasibility
of DN&DDVN.
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1. Introduction

Interferometry is the industry standard metrology method for optical measurement [1]. The
phase shifting interferometer (PSI) was introduced by Brunning [2] to achieve accurate
metrology in 1974, PSI and its variations have been widely used in optical measurement
[1,3,4]. For the standard phase shifting algorithm (PSA), the phase shift between each
interferogram should be a special constant (e.g. ©/2), the measurement accuracy depends on
the accuracy of the phase shift [4—6]. However, the practical phase shift often deviates from
the pre-set value because of the error caused by the miscalibration of piezo-transducer (PZT),
vibrational error, air turbulence in the working environment, instability of the laser frequency,
and so on [7-9].

In order to overcome the phase shift error, two types of random PSAs have been
proposed. The first type is the iterative method which can obtain the phase distribution and
unknown phase shift from a series of phase shifted interferograms. These iterative methods
typically consume a lot of computational time. In 2004, an advanced iterative algorithm
(AIA) based on a least-squares iterative procedure was introduced to extract phase
distribution from randomly phase shifted interferograms [10]. It copes with the limitation of
the existing iterative algorithms by separating a frame-to-frame iteration from a pixel-to-pixel
iteration, and provides stable convergence and accurate phase extraction even when the phase
shifts are completely random. In 2008, Xu et al. [11] presented an advance iterative algorithm
to extract phase distribution from randomly and spatially non-uniform phase shifted
interferograms, this algorithm divides the interferograms into small blocks and retrieves local
phase shifts accurately by iterations. In 2013, an iterative PSA based on the least-squares
principle was developed to overcome the random piston and tilt wavefront errors generated
from the phase shifter [12].

The second type is non-iterative random PSA. The accuracy may be not as high as the
iteration methods, but it spends less time to extract the tested phase distribution. In [13],
Farrell and Player utilized Lissajous figures and ellipse fitting to calculate the phase
difference between two interferograms, but it needs pre-filtering and the correction result is
not accurate if the intensity distribution is non-uniform. In [14], Liu et al. proposed a PSA
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which can simultaneously extract the tested phase and phase shift from only two
interferograms using Lissajous figure and ellipse fitting technology, however, the two
interferograms used in this algorithm also need to be filtered by the Hilbert-Huang pre-
filtering, and the non-uniform intensity distribution also affects the accuracy. From 2003 to
2014, Cai et al. [15-23] proposed a series of statistical algorithms which can extract the phase
shifts and tested phase, however, most of these algorithms need to know the intensities of
object and reference [24-30]. proposed a series of PSAs based on principal component
analysis (PCA), which can fast and easily extract the phase distribution from randomly phase
shifted interferograms. The PCA is an efficient technique for phase extraction by converting a
set of possibly correlated variables into a set of values of uncorrelated variables, but it cannot
determine the global sign of the measured phase, and it needs more than three interferograms
because it need to subtract relatively accurate mean [31]. presented a two-step demodulation
based on the Gram-Schmidt orthonormalization method (GS2), where phase shift is random
and can be any value inside the range [0, 27t] except =, it requires subtracting the DC term by
filtering before performing GS2 [32]. proposed an advanced GS method called GS3, the
major advantage of this method is that it performs well when the phase shift is close to & as
most two-step algorithms become invalid in this situation. For the above non-iterative
methods, most of them need pre-filtering or subtracting the mean of all the interferograms to
subtract the background intensity, they need more time and may introduce extra error. To
save time and increase the accuracy, the research of non-iterative methods without pre-
filtering is essential.

Recently, we proposed a random two-step PSA based on Lissajous ellipse fitting and least
squares technologies [33], this algorithm uses only two interferograms to extract the relatively
accurate tested phase distribution and unknown phase shift without pre-filtering, and it can be
used in the non-uniform background intensity and modulation amplitude. However, the
Lissajous ellipse fitting and least squares technologies are time consuming.

To achieve the high measurement accuracy with less time, the PSA is critical as well. For
non-iterative random PSAs with less than 3 phase shifted interferograms, it is difficult to
obtain the high accurate phase distribution with less time because of the pre-filtering or the
DC term subtraction.

In this paper, we will discuss the effective and accurate three-step phase retrieval
approach with unknown phase shift. Section 2 presents the principle and process of the
proposed PSA based on difference map normalization and diamond diagonal vector
normalization (DN&DDVN). In Section 3 the simulation of DN&DDVN is discussed, and the
comparison with GS2, PCA and AIA is performed. Section 4 evaluates the novel algorithm
with the experimental data. The conclusion is finally drawn in Section 5.

2. Principles
In PSI, three phase shifted interferograms with total pixels of K can be described as:

I, =a, +b, cos(g, +6,)

I1,, = a, +b, cos(p, +6,) (1)

I, =a, +b cos(p +6,)
where k = 1,2,...,K denotes the pixel position, 7, , /,, and I;, are the intensity of three
interferograms, a, and b, respectively represent the background intensity and modulation
amplitude, ¢ _is the tested phase, and 6, 6, and 6, are the phase shifts. Because there is

only a piton 6, between ¢, and ¢, +6, , which doesn’t affect the phase distribution, for
simplicity, we define 6, =0 in the following discussion.
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In order to filter the background intensity, we implement the subtraction between the three
phase shifted interferograms. Thus, two difference maps between the first, second, and third
interferograms can be defined as:

D, =1,-1, =2b, s1n(6; jsm((pk ij 2b, sm(ijces(d) _EJ 2b, sm(ijces(d) )

@)
D, =1,-1, =2b, sm[i]sm[(p 2) 2b, s1n[62’ jcos((l) +A—2j 2b, sm(ijcos(d) +A)
3
o e.-6, _, V4
where @, :g0k+?2, A= 32 2,0, :(Dk—E.

Since the phase shifts between the different interferograms are different, &, # 6, and

2b, sm(e2 J;t 2b, sm(i J the amplitude of D), is different from D,, . Hence, to eliminate

the effect of the different amplitudes, the normalization is introduced to cope with two
difference maps.

Generally, the normalization of the vector u# can be expressed as:

' =uf o) = o] @

where u" represents the normalized vector, ||| and (.-) respectively represent the 2-norm and
the inner product.

Normalizing the two difference vectors D,, and D,, , we can obtain:

D, = D, _ bgcos(®) )
P o)
D = D, b.cos(®;+A) ©

"D”" \/sz cos’ (@) +A)

If we have more than one fringe in the interferograms, we can use the approximation:

\/Zb cos’ \/Zb cos’ (] +A) (7)

k=1

Then the above normalized difference vectors can be rewritten as:
D", =c¢, cos(D,) ®)

D’,, =¢,cos(D, +A) ©
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where ¢, = L = L

k=1

We can see that the proposed method is invalid if A=0, however 6, cannot be equal to
6, since the phase shift must exist between different phase shifted interferogarms, hence the
above normalization is unrestricted except for more than one fringe is needed in the
interferogram.

From Egs. (8) and (9), we can see that the normalized difference vectors D*,, and D",,
are just as two phase shifted interference signals without the background intensity. Hence, we
can use the two-step PSA to extract the phase distribution easily.

In the following, we use a two-step algorithm based on the diamond diagonal vector
normalization (DDVN). D", and D’,, are two corresponding vectors with the same length
but different directions, they constitute the adjacent sides of a diamond, in which the

diagonals are perpendicular and can be geometrically defined as the sum and difference of
them respectively. Hence, two orthogonal DDV are presented by:

A ® ® . ’ A . A

D, =D, —-D, =2, sm(d)k +5js1n5 (10)
~ . ;A A
D, =D, +D, =2c cos(d)k +EJCOSE an

Figure 1 shows the geometrical relationship between two normalized difference vectors D", ,
. . . A A
D7, , and the corresponding diagonal vectors. In general, 2c, sin—# 2c, cos— except

A=7/2 or3z/2, hence the amplitude of DW is also different from D, . It is necessary to
perform the normalization again.

D*

1%

Fig. 1. Geometrical relationship between two normalized vectors D*l P D*2 « and the

corresponding diagonal vectors.

Normalizing two orthogonal DDV, we can get:

¢ sin(cl);c + i)
D

= (12)
E L (A
Zc . Sin (I>k+5

k=1
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, A
c, cos| @, +—
o 07+2)

an = 13)
. — A
\/Zczk cos’ (dJk +)
P 2
when there is more than one fringe,

< 2 2 ’ A < 2 2 ’ A
Zc (sin” | @ +— | = Zc L cos”| @, +— (14)
k=1 2 k=1 2

Equations (12) and (13) can be simplified as:

D, =d, sin(ob; +%] (15)

. , A

D, =d, cos(d)k +5j (16)
where d, = i = i . Finally, according to Egs. (15)

& 2 ) ’ A & 2 2 ’ A
ZCksm D, +— ZCkcos D, +—
2 pam 2

k=1
and (16), we can get:

1]

an

I3

N | >

»
@) =arctan| = |-
sum

The tested phase can be determined by:

D,
O] =@y, +%=arctan( f’fj (18)

sum

We know that there is only a piston between ¢, and @7, which doesn’t affect the phase
distribution, hence we can use ®; to express the tested phase distribution.

From Eq. (2) to Eq. (9), we can see that the background intensity and modulation
amplitude inconsistency have been nearly eliminated through normalizing the difference
maps. Two-step PSA based on the DDVN can be performed to rapidly obtain the tested
phase. Importantly, the phase with high accuracy can be achieved with random phase shift.

3. Simulation

To validate the effectiveness and robustness of the proposed method, we perform simulations
with non-uniform background intensity and modulation amplitude. Simple circular fringes,
different numbers of phase shifted fringe patterns, different phase shifts, different levels of
noises and complex fringes will be studied in the simulations.

In the first simulation, we assume that:

a=13exp|-0.02(x"+ ") |,b =1.2exp[ —0.02(x* +)7) | )
@=57(x*+y").6, =Orad,0, =1rad 0, = 3rad
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where —1<x<1,-1<y<1. To verify the validity of the approximations from Egs. (7) and
(14), we perform the calculation using the simulated data from Eq. (19). Through the

K
calculation, for Eq. (7), szk cos’ (®@;) which is 338.5817 iS approximately equal to
=1

& , L £ . , A
\/szk cos’ (@, +A) which is 336.9096, and for Eq. (14), \/Zczk s1n2(<1>k +E] and

k=1 k=1

K
\/Zczk cos’ ((D; +%) are respectively 0.9807 and 1.0025, they are also approximately
k=1

equal, hence, the approximations from Eqgs. (7) and (14) can be recognized effective.
According to Eq. (19), three phase shifted interferograms with size 401*401 are generated, in
addition we add 20dB Gauss noise generated by the function awgn in Matlab to the
interferograms, as shown in Figs. 2(a)-2(c). The simulated background intensity, modulation
amplitude, and theoretical phase distribution (PV = 31.416 rad, RMS = 6.656 rad) are shown
in Figs. 2(d)-2(f).

=1 00 2 2
£
§,200 ; :
> 300
400 / HO X
400 200 400
p|xe| X(pixel)
(a) (b)
= 14 30rad
%100 %\100 %\100 —
1.28 1.18 ra
izoo izoo izoo
> 300 126 > 300 iqe 300 10rad
400 400 ' 400 Orad
400
plxel plxel plxel
(d) (e) §9]

Fig. 2. Simulated interferograms, background intensity, modulation amplitude and phase
distribution. (a), (b) and (c) the three phase shifted interferograms, (d), (¢) and (f) the simulated
background intensity, modulation amplitude, and theoretical phase distribution.

In order to verify the performance of the proposed method, we compare it with GS3, PCA
and AIA. For AIA, the initial phase shifts are respectively set as 0, 0.5 and 1 rad. Figures
3(a)-3(d) show the phase distributions using DN&DDVN, GS3, PCA and AIA, the
differences are not obvious, but can be identified from the phase error distributions as shown
in Figs. 3(e)-3(h). Table 1 shows the RMS phase errors and computational time of the
different methods. The RMS phase error from GS3 is nearly 2 times the other three methods.
For DN&DDVN, PCA, and AIA, the accuracy of AIA is highest, but the computational time
is also longest due to the iterations, in addition its accuracy and computational time depend on
the initial values and iterative times. For PCA, the RMS phase error of PCA is a little larger
than DN&DDVN, and the computational time is also a little longer than DN&DDVN due to
the PCA process, in addition it needs extra process to determine the global sign of the
measured phase, further increasing the computational complexity and time. Only for
DN&DDVN, it can balance the accuracy and computational time, it can be seen that, it has
least computational time and relative high accuracy.
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Fig. 3. Simulated results. (a), (b), (c), and (d) the extracted phase distributions using
DN&DDVN (RMS = 6.658 rad), GS3 (RMS = 6.667 rad), PCA (RMS = 6.657 rad), and AIA
(RMS = 6.658 rad), (e), (), (g), and (h) the phase error distributions after using DN&DDVN,
GS3, PCA, and AIA.

Table 1. RMS phase errors and computational time of the different methods

Method DN&DDVN GS3 PCA AIA
RMS phase error (rad) 0.1039 0.2308 0.1044 0.1032
Time (s) 2.20 2.21 2.31 19.13

In the second simulation, provided that the tested phase distribution ¢ = ** S 2),
which k represents the number of the phase shifted fringe patterns in one interferogram. In
Section 2, in order to obtain the accurate phase distribution, we assume that there is more than
one fringe in the interferogram, in the following, we vary the number of the phase shifted
fringe patterns while fixing the SNR to 20dB to obtain the range of the fringe numbers using
DN&DDVN. As can be seen from Table 2, when the fringe number is less than 0.7, the RMS
phase error is relative larger, and the ratio of RMS phase to RMS phase error is less than 10
(In general, the ratio of RMS phase to RMS phase error is more than 10 in the accurate
measurement). For the range of fringe numbers between 0.8 and 1.2, the RMS phase error is
unstable. When the range of fringe numbers is between 1.3 and 2.0, the ratio is increasing
with the increase of fringe number, and the RMS phase error is decreasing with the increase
of fringe number, that is to say, the approximation error from Eq. (7) and Eq. (14) is
decreasing with the increase of fringe number. When the number of patterns is more than 2,
the RMS phase errors are similar, in this case, the approximation error is nearly stable, hence,
we can conclude that the number of patterns is best to be more than 2 if high accuracy is
requested.

Table 2. RMS phase and RMS phase errors with different numbers of the phase shifted
fringe patterns using DN&DDVN

Patterns 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
RMS Phase (rad) 0.6656  0.7987  0.9319 1.0650 1.1981 1.3312 1.4643 1.5975
RMS phase error (rad) 0.1916  0.1436  0.1192  0.1102  0.1086  0.1101 0.1132  0.1147
Patterns 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
RMS Phase (rad) 1.7306 1.8637 1.9968  2.1300  2.2631 23962  2.5293 2.6625
RMS phase error (rad) 0.1156  0.1133 0.1103  0.1077 0.1058  0.1052  0.1051 0.1055
Patterns 3.0 4.0 5.0 15 25 35 45
RMS Phase (rad) 3.9937 5.3249  6.6561 19.9684 33.2807 46.5929 59.9052
RMS phase error (rad) 0.1046  0.1043 0.1042  0.1042 0.1039  0.1038  0.1039

In the third simulation, the phase shifts of the first and second frames are respectively set
as 0 and 0.7 rad while the phase shift of the third frame is changed from 1.7 rad to 3.84 rad
(the range of relative phase shift between the second and third interferograms is from 1 rad to
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3.14 rad). As shown in Table 3, the relationship between the RMS phase error and phase shift
is presented. Obviously, it can be seen that, while the phase shift is lower than 2 rad, the RMS
phase error is significantly larger than that when the phase shift is larger than 2 rad since

small practical phase shift (6, —6,) / 2 will introduce large phase error. Moreover, the RMS
phase error decreases with the increase of the phase shift value, the nearer the practical phase
shift (6, —6,) /2 approximates to m/2,the smaller the RMS phase error is. As described in

[34], in the case that the phase shift is larger than 2.5 rad, almost all two-step PSAs do not
work well, but DN&DDVN could solve this problem. In addition, the relative phase shift
cannot be set as 7 in most two-step PSAs, the simulation shows that DN&DDVN can remove
this restriction.

Table 3. RMS phase errors with different phase shifts using DN&DDVN method

Phase shift (rad) 1.700 1.844 1.988 2.132 2.276 2.420
RMS phase error (rad) 0.4995 02132 0.1928  0.1781 0.1657  0.1574
Phase shift (rad) 2.564 2.708 2.852 2.996 3.140 3.840
RMS phase error (rad) 0.1489 0.1435 0.1387 0.1350 0.1325 0.1320

In the forth simulation, we design five phase shifted fringe patterns with different levels of
noises. Table 4 shows the extracted RMS phase errors of different methods as the SNR of
noise increases from 20 dB to 70dB. As can be seen from Table 4, for all the methods the
larger the noise, the larger the RMS phase error. Moreover, the phase error of GS3 is larger
than other methods even when the noise is relatively small or no noise since the inherent error
of GS3 is relatively large. We plot the RMS phase errors for the different levels of noises
except GS3 as shown in Fig. 4, the phase errors are relatively small when the SNR of noise is
more than 50dB. From Table 4, we can see that, when there is no noise in the interferograms,
the phase error still exists for all the methods due to the non-uniform background intensity or
inherent errors of them. At last, we simulate the situation with uniform background intensity
and no noise, only the RMS phase error of AIA is close to 0, that is to say, the AIA doesn’t
have the inherent error, the DN&DDVN, GS3 and PCA all have the inherent errors since they
all have the approximation, however, for DN&DDVN and PCA, the phase error can be
ignored when the noise is relative small. If the high measurement accuracy is required, we
can use DN&DDVN or PCA firstly, then using the extracted phase distribution as the initial
value of AIA to calculate the final phase distribution, the inherent errors can be eliminated
finally, however the computational time will be extended.

Table 4. RMS phase errors and processing time with different levels of noises using
different methods

SNR 20dB 30dB  40dB  50dB  60dB  70dB No Uniform
noise background
DN&DDVN  0.1042  0.0336  0.0131  0.0087  0.0081  0.0081  0.0081 0.0078
GS3 02310 02106 02085 02083  0.2083 02083  0.2083 0.2083
PCA 0.1045  0.0498  0.0175  0.0094  0.0082  0.0081  0.0081 0.0078
AIA 0.1038  0.0327  0.0104  0.0035  0.0015  0.0012  0.0011 9.7259¢-4
Phase error
0.12
—_ [ =DN&DDVN
20.09 +PCA
j
~ <=AlA
o5 0.06
=

£0.03

0
20 30 40 50 60 70
SNR of noise (dB)

Fig. 4. RMS phase errors of different methods with different levels of noises.
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In the last simulation, we simulate the complex fringes and compare the proposed method
with GS3, PCA and AIA as the first simulation in order to verify the robustness of
DN&DDVN. The given phase distribution is set as the complex wavefront:

¢:5ﬂ'(x2 +y +x° +y3)+10peaks(401)—<5ﬂ'(x2 +y +x° +y3)+10peaks(401)> (20)

where we use the function peaks in Matlab, and () is the average operator. Other conditions

are same as the previous simulations. One of the complex interferograms is shown in Fig. 5
(a), it can be seen that the fringes are the asymmetrical complex fringes. The extracted phase
distribution (Fig. 5(b)) using DN&DDVN (RMS = 22.307 rad) is almost the same as the
reference phase distribution (RMS = 22.307 rad) as shown in Fig. 5(c). RMS phase error is
0.1037 rad, same order of the magnitude as the circular fringes discussed above, and the
phase error distribution is shown in Fig. 5(d). Moreover, the compared results are shown in
Table 5, we can get the same conclusion as the above simple fringes from Table 5, hence, we
can get the conclusion that, the proposed method is valid for both the simple and complex
fringes.

80rad 60rad 12.6rad
60rad —d
2 ;2-100 . ggrag =100 . 3823 §100 12 2ad
-1 ra v B~
i >3_.20° . Orad 200 e )%200 : 11.8rad
-ZUra
0 - - i0rag ~ 300 - i 3 11 4rad
400 60rad 400 : %
200 400 200 400 200 400 200 400
X(pixel) X(pixel) X(pixel) X(pixel)
(a) (b) (9 (d)

Fig. 5. Simulated results of complex fringes using DN&DDVN. (a) One of the simulated
complex interferograms, (b), (c) and (d) the reference phase distribution, extracted phase
distribution, and phase error distribution.

Table 5. RMS phase errors and computational time of the different methods for complex

fringes
Method DN&DDVN GS3 PCA AIA
RMS phase error (rad) 0.1037 0.3284 0.1042 0.1034
Time (s) 2.29 2.36 2.45 19.54

Based on the above different simulations, the advantages of the proposed DN&DDVN can
be summarized as: 1) It can balance the accuracy and computational time; 2) it can obtain the
tested phase distribution by only the DN&DDVN process without the pre-filtering and global
sign determination as PCA; 3) the phase shift can be random, and the proposed method
removes the restriction that the relative phase shift cannot be set as w in most two-step PSAs;
4) the measurement accuracy and speed of DN&DDVN are irrelevant to the numbers of the
fringe patterns; and 5) whether the simple or complex fringes, the proposed method is valid.

4. Demonstration with experimental data

Optical experiments have also been carried out to investigate the performance of our method.
Three phase shifted interferograms with circular fringes are collected to perform the phase
retrieval by the proposed DN&DDVN, GS3 and PCA. The extracted phase using AIA with
correctly initial phase shifts and 10 iterations is set as the reference phase, in this situation, the
accuracy of AIA is relatively high. The size of the interferograms is 301*301, and the phase
shifts are 0, n/2 and ©. One of the interferograms is shown in Fig. 6(a), the extracted phase
distributions using DN&DDVN, GS3 and PCA are plotted in Figs. 6(b)-6(d), Fig. 6(¢) shows
the reference phase distribution. The differences between the reference phase and the phase
obtained by DN&DDVN, GS3 and PCA are shown in Fig. 7, and the RMS values are
respectively 0.0145 rad, 0.3035 rad and 0.0141rad, further indicating that the accuracy of
phase retrieval with DN&DDVN and PCA is indeed higher than that with GS3. In addition,
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the computational time of different methods are shown in Table 6, we can see that,
DN&DDVN has the least computational time, and AIA has the longest computational time.

7 \ 5 Orad Orad
— = g =0 -5rad
© 100 15 o1 Srad o1
g_ & >C_§_ -10rad g -10rad
5200 1 5200 A5rad 5200 -15rad
05 -
- & /: -20rad 20rad
100 200 300 100 200 300 100 200 300
X(pixel) X(pixel) X(pixel)
(a) (b) ()
Orad Orad
3100 ok 3100 Srad
E_ -10rad >5<_ 10rad
5200 iSkad 5200 -15rad
-20rad
300 300 -20rad
100 200 300 100 200 300
X(pixel) X(pixel)
(d) (e)

Fig. 6. Experimental results of the circular fringes. (a) One of the phase shifted interferograms,
(b), (c), and (d) the extracted phase distributions obtained by DN&DDVN (RMS = 5.0283
rad), GS3 (RMS = 5.0525 rad) and PCA (RMS = 5.0284 rad), (e) the reference phase
distribution obtained by AIA (RMS = 5.0283 rad).

-0.39rad
-0.4rad :1 -5.1rad -1.56rad
-0.41red b 5 2rad -1 57rad
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-0.43rad ” -5.4rad
-0.44rad 300 -5.5rad 0 -1 50rad
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X(pixel) X(pixel) X(pixel)
(a) (b) (©)

Fig. 7. The differences between the reference and extracted phase distributions for circular
fringes: (a)DN&DDVN, (b) GS3, and (c) PCA.

Table 6. Computational time of the different methods for circular fringes

Method DN&DDVN  GS3 PCA  AIA
Time (s) 1.78 1.83  1.85 1091
To verify the robustness of DN&DDVN, the phase shifted interferograms with complex
fringes are also collected, and the comparison for different methods are performed as the
circular fringes. The size of the interferograms is 201*201, and the phase shifts are also 0, /2
and n. Figure 8 show one of the phase shifted interferograms, and the extracted phase
distributions using different methods, the extracted phase distribution using AIA is also set as
the reference phase distribution. Figure 9 show the differences between the reference phase
and extracted phase by DN&DDVN, GS3 and PCA, the RMS values are respectively 0.0252
rad, 0.2883 rad and 0.0252 rad, we can see that the accuracy of phase retrieval with
DN&DDVN and PCA is also higher than that with GS3 for complex fringes. For the
computational time, which are shown in Table 7, we get the conclusion the same as the
circular fringes. Through the above experiments, we verify that, for both the simple and
complex fringes, the proposed DN&DDVN without pre-filtering can obtain relatively
accurate result with less computational time by only three interferograms.
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Fig. 8. Experimental results of the complex fringes. (a) One of the phase shifted
interferograms, (b), (c), and (d) the extracted phase distributions obtained by DN&DDVN
(RMS = 8.8850 rad), GS3 (RMS = 8.8925 rad) and PCA (RMS = 8.8850 rad), (e) the reference
phase distribution obtained by AIA (RMS = 8.8851 rad).
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Fig. 9. The differences between the reference and extracted phase distributions for complex
fringes: (a)DN&DDVN, (b) GS3, and (c) PCA.

Table 7. Computational time of the different methods for complex fringes

Method  DN&DDVN GS3 PCA _AIA
Time (s) 1.06 1.09 1.5 6.6

5. Conclusion

In this paper, we present a random three-step phase retrieval approach based on DN&DDVN,
the difference maps are obtained by three phase shifted interferomgrams firstly, and then
normalization is performed for the difference maps. Next the sum and difference of the
normalized difference maps, which can be seen as the diagonal vectors of the diamond, are
computed and the normalization is performed again to obtain the tested phase distribution.
We have compared this proposed method with GS3, PCA and AIA by the simulated data and
experimental data. The proposed method can achieve high accuracy without pre-filtering and
global sign determination, and it can directly obtain the tested phase with less computational
time. In addition, it removes the restriction that the relative phase shift cannot be set as m in
most two-step PSAs. Last but not least, it is robust for both the simple and complex fringes
with the non-uniform background intensity and modulation amplitude.
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