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Abstract
In recent years, deep learning especially deep convolutional neural networks (DCNN) has
made great progress. Many researchers take advantage of different DCNN models to do
object detection in remote sensing. Different DCNN models have different advantages and
disadvantages. But in the field of remote sensing, many scholars usually do comparison
between DCNN models and traditional machine learning. In this paper, we compare dif-
ferent state-of-the-art DCNN models mainly over two publicly available remote sensing
datasets—airplane dataset and car dataset. Such comparison can provide guidance for related
researchers. Besides,we provide suggestions for fine-tuning different DCNNmodels. More-
over, forDCNNmodels including fully connected layers, we provide amethod to save storage
space.
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1 Introduction

As we all know, the process of hierarchical and multi-stage computing features is more
abundant. Convolutional neural networks (CNN), a biologically inspired hierarchical and
shift-invariant model for pattern recognition, is a successful model at just such a process.
In recent years, deep learning [1–3], particularly deep convolutional neural networks [3, 4]
(DCNN) has made great progress. The first CNN model is LeNet which proposed by Lecun
in 1986 [5], but then fell out of fashion with the advent of support vector machines (SVMs).
However, in recent years, due to the development of large public image repositories, DCNN
models have gotten great success in large-scale visual recognition. In 2012, AlexNet won
first place in the Imagenet competition. Compared with LeNet, dropout [6] and ReLu [7]
was adopt in AlexNet. In 2014, GooleNet [8] became the first in the Imagenet competition.
In GoogleNet, 1*1 convolution layers are used to reduce dimension. It adopts more con-
volutions, deeper layers than AlexNet. In 2015 and 2016, ResNet [9] won first place in the
Imagenet competition, its special feature is the design of the “bottleneck” form of the block.
Some other famous DCNN models such as VGG-Nets [10], they have all achieved good
results than traditional machine learning.

Recently, deep convolutional neural networks have demonstrated excellent performance
on various visual tasks. At the same time, in the field of remote sensing,many researchers take
advantage of different DCNN models to do object detection. When labeled training data
is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-
tuning, yields a significant performance boost. So, many researchers do detection by fine-
tuning DCNN models. Chen do vehicle detection in satellite remote sensing images by
fine-tuning hybrid deep convolutional neural networks (HDCNN) [11], Zhang do forest
Fire Detection by fine-tuning AlexNet [12]. Luiz G do Forest Species Recognition by fine-
tuning LeNet [13]. Marco do land use classification by fine-tuning CaffeNet [14]. But in the
field of remote sensing, many scholars usually do comparison between DCNN models and
traditional machine learning. In fact, comparison between DCNNmodels has more practical
significance. In this paper, we compare different state-of-the-art DCNN models mainly over
two publicly available remote sensing datasets—airplane dataset and car dataset. Besides,
we take advantages of Faster RCNN (one kind of region-based convolutional network) as the
frame.

The main contributions of this paper are as follows: (1) different DCNN models are
introduced into intelligent object detection in remote sensing field; (2)we investigate different
DCNNmodels for intelligent object detection in remote sensing field and provides a detailed
comparison; (3) we provide suggestions for fine-tuning different DCNN models; (4) for
DCNN models including fully connected layers, we provide a method to save storage space.

The rest of the paper is organized as follows: In the next section, we describe basic
principle of convolutional neural networks and Faster RCNN. In Sect. 3, describe how to
fine-tune DCNN models. Analysis and comparison of experimental results are shown in
Sect. 4. Finally, some discussions conclude this paper.
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2 Related work

2.1 The Principle of Convolutional Neural Network

Convolutional neural networks including convolution layers and feature pooling layers and
fully connected layers [15]. Each component has its own special value and significance.

Convolution Layers At a convolution layer, the previous layer’s feature maps Xl−1
i are

convolved with learnable kernels kli j and add a trainable bias parameter bj, then put through
the activation function f () to form the output feature map. The process can be expressed as:

Xl
j � f

⎛
⎝ ∑

i∈Mj

Xl−1
i ∗ kli j + blj

⎞
⎠ (1)

where Mj represents a selection of input maps. Usually, we choose ReLu which called the
rectifier activation function as the activation function, for it works better than logistic sigmoid
and hyperbolic tangent.

Feature Pooling Layer This layer treats each feature map separately. Usually, we call this
layer as subsampling layer which produces down-sampled versions of the input maps. That
means the number of input maps and output maps is the same, but the output maps will be
smaller. The results are robust to small variations in the location of features in the previous
layer. The process can be expressed as:

Xl
j � down

(
Xl−1

j

)
(2)

where down(·) denotes a down-sampling operation. By down-sampling operation we reduce
the size of the input by summarizing neurons from a small spatial neighborhood [16].

Fully Connected Layers After several convolutional and subsampling layers, the high-
level reasoning in the Neural Networks is done via fully connected layers. Neurons in a fully
connected layer have full connections to all activations in the previous layer. Their activations
can hence be computed with a matrix multiplication followed by a bias offset.

Training is performed by using back-propagation method [5] to minimize the aberration
between the ideal output and the actual output of convolutional neural network. Usually, for
detecting, a convolutional neural network is followed by a classification module.

2.2 The Principle of Faster RCNN

Faster RCNN is a particularly successful method for general object detection. It consists of
two components: Region Proposal Network (RPN) and Fast RCNN. RPN is a fully convolu-
tional neural network for generating candidate regions (proposals). These proposals would
be fed into Fast RCNN. Fast RCNN uses the proposals to do further detection. RPN stage
and Fast stage are trained independently, but they share convolutional layers which is helpful
to improve accuracy.

2.2.1 Fast RCNN

The whole image first processed by a DCNN model and a conv feature map would be
produced. Then, for each object proposals, ROI-pooling layer extracts a fixed-length feature
vector from the feature map. Last, each fixed-length feature vector is fed into a sequence of
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Fig. 2 The flow chart of Faster RCNN

fully connected layers which branch into two sibling output layers: classification layer (Cls)
and bbox-regression layer (Bbox). The flow chart of Fast RCNN can be seen in Fig. 1.

Fast RCNN achieves near real time rates, but region proposal remain as the test-time
computational bottleneck. Because region proposals usually proposed by selective search
algorithm. Selective search algorithm is an order of magnitude slower, about 2 s per image
in a CPU implementation. So RPN was proposed in Faster RCNN for computing proposals.

2.2.2 RPN

RPN is a fully convolutional neural network for generating candidate regions. In RPN stage,
the convolution layers of a pre-trained DCNN model are followed by a 3*3 convolutional
layer. Then, two 1*1 convolutional layers are added to this 3*3 convolutional layer for
classification and regression. This 3*3 convolutional layer corresponds to mapping a large
spatial window and receptive field in the input image to a low-dimensional feature vector at
a center stride. The most important work in RPN is anchors are introduced, at each sliding
location, anchors are proposed. For multi-scale predictions, multi-scale anchors are needed.
For training RPNs, an anchor that has an IoU overlap higher than 0.7 with any ground-truth
box is assigned as a positive label. At the same time, we assign a negative label to a non-
positive anchor if its IoU ratio is lower than 0.3 for all ground-truth boxes. RPN stage and
Fast RCNN stage can be trained independently, but they share convolutional layers, the flow
chart of Faster RCNN can be seen in Fig. 2.

Faster RCNN provides us a good way to use our own small database. Because we can
fine-tune the whole networks directly according to our database.
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3 Comparison of Different DCNNModels in Fast RCNN

3.1 Fine-Tuning Output Parameter for a Particular Dataset

When labeled data is scarce, there are two options for us to choose. One way is to use unsu-
pervised pre-training, followed by supervised fine-tuning. The other one is that supervised
pre-training model on a large auxiliary dataset, followed by domain-specific fine-tuning on
the dataset [17]. The later one is adopted by many researchers, we also adopt the later one.
First of all, the original Faster RCNN model is designed for 21 class of the object. Here,
we just detect airplanes or cars. That means we just have two categories. So we should set
up categories as two: one is our target, the other one is the background. Every target has a
tuple (x, y, w, h), for a ground-truth bounding-box regression, we should set up categories
as 4* (K +1), where, K is the number of category.

3.2 Fine-Tuning Different DCNNModels in Faster RCNN

Different DCNN models are somewhat different when fine-tuning. For some DCNN models
including fully connected layers such as ZF-Net [18], CaffeNet,AleNet and so on, ROI-
pooling layer should be placed before fully connected layers. For DCNN models without
fully connected networks such as NIN [19], GoogleNet and ResNet, ROI-pooling layer
placed before last convolutional layers. For example: for ResNet, all layers of conv5_x and
up are adopted for each region, playing the roles of fc layers. Besides, for SqueezeNet [20]
we should add regularization to conv1 and conv2 for ensuring network convergence. It is
worth noting that, for ResNet50 and ResNet101, memory consumption is very big. So the
BN layers should be fixed during fine-tuning. We fix the BN layers mainly for reducing
memory consumption in Faster R-CNN training. For further reduce memory consumption
during training, we should set a smaller batch-size in Fast RCNN stage and choose smaller
proposals.

3.3 Convolutional Neural Networks Used in Sub-network

For DCNN models including fully connected layers, the two following layers after ROI-
pooling layer are fully connected layers, and the two fully connected layers require a large
number of parameters. ROI-pooling layer extracts a fixed-length feature vector from the
feature map. So, the output of ROI-pooling layer is fixed. We can see all layers after ROI-
pooling as a sub-network. This sub-network consists of fully connected layers. However, the
process of hierarchical and multi-stage computing features is more abundant. Thus, we adopt
two convolutional networks instead of these two fully connected layers. By our methods, the
required memory of the final model would be reduced a lot. The details of our method are
illustrated in Fig. 3.

To ensure the hierarchical structure, the receptive fields of new conv1 and new conv2
are set as 3 and 1 respectively. The number of channels is set as 512 for feature calculation
effectively.
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Fig. 3 The flow chart of our approach

4 Experiment and Discussion

All experiments in this section are performed on the airplane dataset and car dataset. These
datasets are proposed by the university of Chinese academic of science. All the experiments
are performed on the GTX-Tianx (Intel(R) Core(TM) i7-6850K CPU @ 3.6 GHz) with
Caffe [21], matlab2014b and some other software such as Opencv3.0. In this paper, we
choose different DCNN models as the baseline. We need to compare their performance.
Faster RCNN was run for 40 k SGD [22] iteration. The learning rate is set as 0.001 with a
momentum [23] as 0.0005.DCNNmodels includingZF,CaffeNet,Alexnet,GoogleNet,NIN,
HDCNN, SqueezeNet, VGG16, VGG_M_1024, VGG19, ResNet18, ResNet50, ResNet101.

4.1 Qualitative Analysis

During this section,wefirst approvefine-tuning pre-trainingmodel on a large auxiliary dataset
is feasible. We randomly select three kinds DCNN models for object detection. Test results
for aircraft and automobiles are shown below. The aircraft dataset includes 1000 optical
remote sensing images, with about 7000 targets. Each image is about 1200*600 pixels, the
aircraft occupies a pixel size ranging from 40*40 to 120*120. Some test results of randomly
selected DCNN models are shown in Fig. 4.

From these images, it can be noted that by fine-tuning DCNN models, we are able to
obtain very effective results. The car dataset includes 500 optical remote sensing images,
with about 7000 targets. Each image’s sizes is about 1200*600 pixels, the aircraft occupies
a pixel size ranging from 20*20 to 60*60. Some test results of randomly selected DCNN
models are shown in Fig. 5. Compared with plane, the contrast to the background is less
pronounced which increases the difficulty of detection.

We can find that many cars are not detected, that’s because for smaller targets, the results
of most DCNNmodels are not very ideal. This is determined by the characteristics of the data
set. The size of the aircraft is bigger and the contrast to the background is more pronounced.
So, the detection of planes is easier than cars.
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Fig. 4 Some results of randomly selected DCNN models for airplane dataset

4.2 Quantitative Analysis

In Sect. 4.1, we can see directly from pictures that by our approach, we can detect object by
fine-tuning DCNN models. But our analysis in 4.1 lacks quantitative evidence. So we would
provide quantitative analysis. In this paper,we adapt the two commonly used objective criteria
which are average precision (AP) and recall rates to evaluate the performance.

average-precision � True posi tive

True posi tive + True negative
(3)

average-precision � True posi tive

True posi tive + True negative
(4)

Test time is another important indicator for the real-time requirements in engineering.
We also adopt it as an index. Moreover, the required storage space is also very important
in practical application, we also adopt it as an index. The specific comparison is shown in
Table 1.
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Fig. 5 Some results of randomly selected DCNN models for car dataset

We find that for larger objects, most DCNN models can achieve very good results, for
smaller targets, the results of most DCNN models are not very ideal. In terms of model size,
models including fully connected networks often require more storage space such as VGG16
and VGG19. Besides, for the accuracy of the test, very deep DCNN models such VGG16
and Resnet50 usually get better results than non-very deep DCNN models such Alexnet and
ZF-Net. Sometimes, overfitting will happen in very deep DCNNmodels such as VGG19. To
ensure that it will not be overfitting, the deeper the network, the more data it needs. From the
experimental results, we can see that the results of different network structures are different.
It is not simply that the deeper the network, the better the results. For a given small data
set, simply increasing the depth may not necessarily improve precision. The structure of the
network also has a greater impact on precision. For example, VGG16 has only 16 layers, and
its detection effect is similar to Resnet50. The P–R curve of different DCNN models can be
seen in Fig. 6.

The iteration time used in training is an important index, we adopt the four-stages Faster
RCNN. The average iteration time for each stage is as Table 2 (For airplane dataset).
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Table 1 Specific comparison of different DCNN models

Base-network AP(car/plane) Recall(car/plane) Test-time Memory

ZF-Net 64.71/84.12 65.23/86.12 0.070 233.2 M

CaffeNet 55.98/77.54 57.73/81.98 0.056 227.6 M

Alexnet 59.68/78.63 59.77/81.04 0.056 227.6 M

GoogleNet 66.35/87.50 68.65/89.58 0.076 24 M

NIN 68.27.85.28 69.33/87.57 0.062 26.3 M

HDCNN 60.77/84.12 60.92/85.96 0.067 227.6 M

SqueezeNet 64.07/85.49 65.65/87.21 0.055 2.9 M

VGG16 75.21/88.71 78.43/88.74 0.104 512 M

VGG_M_1024 63.05/81.69 64.71/85.57 0.064 344.9 M

VGG19 71.86/88.70 73.16/90.81 0.117 558.4 M

ResNet18 67.24/87.63 71.36/90.12 0.091 42.7 M

ResNet50 75.92/89.74 78.17/93.02 0.416 94.4 M

ResNet101 76.13/89.78 79.23/93.08 0.527 170.6 M

Fig. 6 The P–R curve of different DCNN models for airplane datasets (left) and car datasets (right)

Through Table 2, we can know that very deep DCNN models need more time to train
a good result, but for Resnet101, training time in Fast RCNN stage is not particularly long
compared with ResNet18 and ResNet50. That is because we just choose 300 proposals to do
further detection which is suggest in original paper.

4.3 Analysis Convolutional Neural Networks Used in Sub-network

The purpose of using CNNs in sub-network is not to improve AP and Recall but to save
memory. As we analysis in Sects. 4.1 and 4.2, DCNN models including fully connectted
layers need much more storage. By using our method, the memory needed reduced a lot
which increases its portability. The detailed comparation can be seen in Table 3. (Mem-
ory1 and Memory2 respectively represent fully connected layers used in sub-network and
convolutional neural networks used in sub-network.)
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Table 2 Average iteration time for each stage of different DCNN models

Base-Network RPN stage1 Fast stage1 RPN stage2 Fast stage2

ZF 0.089 s 0.191 s 0.071 s 0.140 s

CaffeNet 0.064 s 0.130 s 0.058 s 0.118 s

Alexnet 0.064 s 0.130 s 0.056 s 0.117 s

GoogleNet 0.094 s 0.182 s 0.072 s 0.131 s

NIN 0.068 s 0.146 s 0.058 s 0.124 s

HDCNN 0.074 s 0.151 s 0.061 s 0.124 s

SqueezeNet 0.083 s 0.183 s 0.072 s 0.131 s

VGG16 0.256 s 0.568 s 0.161 s 0.329 s

VGG_M_1024 0.074 s 0.161 s 0.065 s 0.133 s

VGG19 0.304 s 0.665 s 0.170 s 0.361 s

ResNet18 0.081 0.226 0.078 0.198

ResNet50 0.172 0.421 0.169 0.385

ResNet101 0.202 0.206 0.194 0.131

Table 3 Detailed comparison
about convolutional neural
networks used in sub-network

Base-network Memory1 Memory2

ZF 233.2 M 29.1 M

CaffeNet 227.6 M 23.5 M

Alexnet 227.6 M 23.5 M

HDCNN 227.6 M 23.5 M

VGG16 512 M 77.8 M

VGG_M_1024 344.9 M 45 M

VGG19 558.4 M 124.2 M

5 Conclusions

DCNNs has been applied to object detection in the field of remote sensing.But in the field
of remote sensing, many scholars usually do comparison between DCNNs and traditional
machine learning. In this paper, we compare different state-of-the-art DCNN models mainly
over two publicly available remote sensing datasets. We compare them in many aspects such
as accuracy, recall, the required storage space and so on. Besides, we provide some suggestion
about how to fine-tune different deep models. Moreover, we provide a method to save storage
space for DCNN models including fully connected layers.
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