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Abstract

CrossMark

In towed-steamer marine seismic acquisition, crossline data are fairly sparse which makes crossline
wavefield reconstruction very difficult. Therefore, reconstructing the sparse wavefield becomes a
fundamental and crucial step in seismic processing flow. Recently, compressed sensing has
provided new insights into the data recovery problem, which combines a sparsifying transform, a
sampling strategy, and a sparsity promoting algorithm. Shearlet transform is provided with a fairly
good sparse representation of seismic data, and is very robust in the application of seismic
wavefield reconstruction. Using multi-component measurement techniques, we propose a multi-
component crossline wavefield reconstruction method based on sparse shearlet constraint inversion.
By combining the pressure wavefield and its crossline gradient obtained through V, measurements,
the proposed method can effectively reduce the multiplicity caused by a limited number of samples.
Both synthetic and field data have demonstrated that the method proposed in this paper, compared
with the traditional wavefield reconstruction method, achieves better reconstruction resolution in

the case of extremely sparse samplings and effectively suppresses the aliasing effect.

Keywords: shearlet transform, multi-component, wavefield reconstruction, crossline

interpolation, sparsity constraint

(Some figures may appear in colour only in the online journal)

Introduction

With limited acquisition costs, towed-steamer marine seismic
acquisition has to cover wide exploration areas, and the
crossline data are usually irregular and sparse. Generally
speaking, the sampling space in the crossline direction is at
least four times that in the inline direction. It is difficult to
identify fine structures in the deep areas in the crossline
direction. Meanwhile, it is also extremely difficult to recon-
struct such a wavefield.

Regular seismic data reconstruction would assume that
seismic events are linear and seismic wavefronts in the time-
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space domain are superpositions of many plane waves, so that
the low-frequency information can be extrapolated to high
frequency. In order to make the events closer to linearity,
Chemingui (1999) and Canning and Gardner (2012) proposed
the interpolation method of dip-moveout correction and azi-
muth moveout correction, however, this method requires
extensive calculations. Currently, many data reconstruction
methods are based on the Nyquist—-Shannon sampling theo-
rem (Spitz 1991, Gulunay 1996, Liu and Sacchi 2004), which
requires the sampling rate be at least twice the Nyquist rate.
Otherwise, aliasing will affect the data reconstruction. How-
ever, in marine seismic data acquisition, crossline sampling is
usually rather sparse, and such reconstruction methods are not
applicable.
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The two-component streamer measuring the vertical
component of particle velocity besides the pressure component
has been widely discussed (Shell Oil Co. 1984, Mobil Oil
Corp. 1984, Schlumberger Technology Corp. 2004) in recent
years. The high-quality vertical component can decompose the
pressure component into upgoing and downgoing waves, which
provides a favorable tool for deghosting (Posthumus 1993), so
the frequency bandwidth of the acquired seismic data can be
promoted. Robertsson et al (2008) proposed that the crossline
particle-velocity vector besides the pressure component could be
included to facilitate the crossline wavefield reconstruction.
Vassallo et al (2010) proposed multi-channel interpolation by
matching pursuit, which represents the pressure data and the
crossline particle-velocity data simultaneously through sinusoi-
dal basis functions and is able to reconstruct the wavefield even
with a small number of samples. Compressed sensing (Candes
and Romberg 2005, Donoho 2006, Candes and Wakin 2008)
enables the high-quality data to be recovered under certain
conditions from a small set of linear measurements which
greatly reduces the acquisition cost and provides a powerful tool
for the sparse crossline wavefield reconstruction. Fourier trans-
form has long been the sparse representation basis function of
compressed sensing, but cannot accurately reflect the local fea-
tures of seismic data. Despite the remarkable success in appli-
cations, wavelets are not able to provide orientation information.
Fomel and Liu (2010) introduced seislet transform to char-
acterize and compress seismic data, which is a kind of digital
wavelet-like transform. Xue et al (2017) developed a model
regularization method based on seislet transform to improve the
robustness of full waveform inversion. In recent years, curvelet
transform acting as sparse representations of seismic data have
been widely applied (Herrmann et al 2008a, 2008b).

In this paper, an alternative approach named shearlet
transform outperforms curvelet transform using optimal
approximation for 2D data, and we demonstrate that shearlet
transform would be the optimal sparse representation for the
2D ‘curve-like’ seismic data, without the assumption of
events being linear. We describe the wavefield reconstruction
problem as an image inpainting problem using shearlets in the
I, sparsity regularization term. In order to settle the sparse
crossline wavefield reconstruction, we combined the sparsi-
fying transform and the multi-component marine seismic
measurements. We show that use of both the pressure
wavefield and its spatial partial derivative obtained through
the crossline particle-velocity measurements facilitates
wavefield reconstruction within the limited samplings. An
altering iterative method was applied to reconstruct the
pressure and its crossline gradient simultaneously.

Seismic data interpolation based on shearlet
transform

Compressed sensing theory is a new data acquisition theory
proposed based on the sparse or compressible signals. It
breaks the limits of the Nyquist—-Shannon sampling theorem,
enabling sufficient data reconstruction under certain condi-
tions where the sampling rate is below Nyquist, reducing the
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Figure 1. Compressed measurement diagram.

economic and time costs. Compressed sensing has been
widely used in radar, remote sensing, and image processing as
the three main ingredients successfully contribute to the
equation of a recovery problem that is a sparsifying transform,
a sampling strategy, and a sparsity promoting algorithm.

In a nutshell, compressed sensing measures x € R"
linear parts of a signal, as shown in figure 1:

Ve =Ax+ &, 1 <k<m, (D
or in the matrix:
y=Ax + ¢, 2)

where A is am X n measurement matrix, m is usually smaller
than n by one or several orders of magnitude, and £ is usually
the model’s error term. With the compressed sensing theory,
if the unknown signal x is sparse or nearly sparse, x can be
reconstructed through the limited measurement data y and the
measurement matrix A under some specific conditions. Gen-
erally, the above problem would be settled with the convex
optimization algorithm:

min ||£]) subjectto ||A% — ylp < e. 3)
XeR"

Here, ||-||; is the 2-norm, while ||-||; is the 1-norm, €2 is the
upper limit of noise energy, and the hat symbol A is reserved
for estimates found through optimization. There are many
methods for solving the above problem, such as orthogonal
matching pursuit and the iterative threshold method
(Daubechies et al 2004, Elad et al 2005), but the basis of the
above method is signal sparsity. However, signals in nature
are generally not sparse. We can transform the signals into
various domains (e.g. Fourier, wavelet, curvelet, etc) to obtain
a set of sparse coefficients. If most of the transformation
coefficients of the signals are sufficiently small, and only a
few have large values describing the signals, we believe the
signals are sparse as well. Figure 2 shows a 35 Hz sinusoidal
signal, which is obviously not sparse in the time domain but
becomes extremely sparse in the Fourier domain.

With special sparsifying transform, we can represent the
signal with a dictionary D (wavelet transform or curvelet
transform, etc). Now, our signal f & R" is represented as
f= Dx. Here, D € R"*4. In other words, the non-sparse
signal f is transformed into the sparse coefficients x in dic-
tionary D. In the following section, we introduce shearlet
transform as the sparsity dictionary.
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Figure 2. Sinusoidal signal and Fourier transform.

Introduction to shearlet transform

In the past several years, representation of bigger and higher-
dimensional data sets have become of increasing concern.
Wavelet transform has generated huge success in the image
analysis and processing field, but has failed to represent
high-dimensional anisotropic data, which has promoted the
exploration of the anisotropic wavelet by researchers. To solve
this problem, contourlets, brushlets, ridgetlets, and curvelets,
etc have been widely applied in recent years, and the curvelet
proposed by Candes and Donoho (2004) has achieved great
success. This is the first and so far the only construction
providing an essentially optimal approximation property for
2D piecewise smooth functions with discontinuities along C*
curves. In this paper, a new discrete multi-scale sparse repre-
sentation—shearlet transform (Labate and Kutyniok 2005,
Guo et al 2005, Kutyniok et al 2011, Kittipoom et al 2012)—
has been introduced. Shearlet transform is advantageous over
classical wavelet transform as it provides information about
the directionality within the image. Compared with curvelet
transform, shearlet transform is easier to construct and has a
simpler mathematical structure. Thus. the shearlet basis enables
a more reliable transition from continuous to discrete.

In the 2D condition, the parabolic scaling matrix A, and
shear matrix S; can be defined as follows:

a=(§ p)aeris=(§ 1) ser @

Aéz

@9=C.0
-
(@9=5.0 N

/ -
(a,5)= (* 0)

@9=6;.0

Figure 3. Frequency support of the horizontal shearlets (left) and
vertical shearlets (right) for different values of a and s.

where a is the scaling parameter and s is the shearing

parameter.
A shearlet system can be constructed by scaling, shear-

ing, and translation of the continuous shearlet basis functions:

Gus () : :a‘%ap(Ang;l(x —1), a>0,s €R,t€R?,
(5)

where ¢ is the translation parameter. Then, continuous shearlet
transform of an arbitrary function fis given by:

SH, f (@, 5, 1) = {fs ) (©)

1931

6102 Aey 0Z uo Jasn ssousiog Jo Awepeoy asauly) 1o Ateiqi] Aq 620502S/626L/S/S L Aoensqe-ajonie/ebl/woo dno-olwapeoe)/:sdny woll papeojumoq



J. Geophys. Eng. 15 (2018) 1929

C Liu et al

.

&

0 0.2 0.4

0.6 0.8 1.0 1.2

Time(s)
O 3 Qe 3l 3O e—&

1
0.5
O—
-0.5
-1 | I | |
0 0.2 0.4 0.6 0.8 1.0 1

Tifne(s)

2

Figure 4. Single-channel versus multi-channel reconstruction, The single-channel reconstruction has only the amplitude information at the
measuring position, and the sparse high-frequency sampling would cause serious aliasing. The multi-component reconstruction measures the
amplitude and the gradient at the same position, so that the high-frequency wavefield can be reconstructed precisely.

Shearlet basis functions at various scales can be used to
represent different frequency bands of data. Figure 3 shows
the frequency tiling of shearlets. Low-scale shearlets capture a
coarse representation of the input signals, while high-scale
shearlets capture a fine representation of the input signals.
Multi-directional shearlets represent curve-like data along
certain directions making shearlet transform suitable to deal
with anisotropic data.

Multi-channel interpolation using gradients

Seismic signals are point-recordings of curved seismic wave-
fronts. It is essential to select the direction-identifying aniso-
tropic wavelets, so that the shearlet transform can represent the
seismic signals effectively. So, a signal f could be represented as
f = S"lx, where S~! is the inverse shearlet transform. Because
the shearlet transform is redundant, the length of the shearlet
coefficient vector exceeds dozens of times the signal. Therefore,
in the sense of compressive sensing, the signal recovery pro-
blem turns into an estimate of a set shearlet coefficients x. We
introduce compressed sensing into the seismic data reconstruc-
tion, and add a mask matrix M as the measurement matrix in the
compressed sensing problem. When the elements in M are 0, the
data is rejected; when the elements are 1, the data is accepted.

When the shearlet transform is combined with the itera-
tive threshold method, the seismic data recovery problem can

be induced to the following /; norm optimization problem:
£ = arg min, subjectto [y — MS~ x|, <e. 7

The above constraint optimization problem could be
replaced by unconstrained optimization problems according
to Elad et al 2005:

!fx = arg min subject to ||y — MS~ x| + X ||x|
X

A

[/ =5k

The problem is transformed to reconstruct seismic data in
the shearlet domain, and obtain a group of shearlet coeffi-
cients x under the minimum / norm. These optimization
problems depends on the Lagrange multiplier A. The iterative
thresholding technique based on the Landweber descent
method (Vogel 2002) has been adopted. According to
Deaubechies et al (2004):

Xiv1= Ty + AT (y — Axy), ®

where A = MS~!, and the soft threshold function 7} (x): =
sgn(x) - max (0, |x| — |A]).

The cooling method developed from equation (9) is a
common strategy to solve large to extremely large scale
problems (Herrmann and Hennenfent 2008). With this
method, sparsity is first emphasized by setting a large A, then
the Lagrange multiplier A decreases to include more trans-
form coefficients into the solution interval. The above
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Figure 5. Example with simple synthetics: close-up of the whole data set in the 7~y domain. (a) Total pressure sampled at 25 m; (b) input
pressure sampled at 100 m; (c) pressure reconstructed by wavelet interpolator; (d) pressure reconstructed by curvelet interpolator; (e) pressure
reconstructed by shearlet interpolator; (f) pressure reconstructed by using shearlet sparse constraint also having as input the crossline

gradients at the samples positions.

solution method constitutes the basis of multi-component
seismic data reconstruction.

In the multi-component marine data acquisition, the
acceleration information (particle acceleration vector) is used
to supplement the pressure data, and the equation of motion
discloses the proportional relation between the pressure P and
the acceleration under the acoustic assumption:

AP = —pa, (10)
where p is the density of the medium. In the direction of the
inline and crossline, we have:

oP
— 11
P an

where V; and V, are the velocity in the direction of the inline
and crossline, respectively, and the dot above the scalar

a2y,

denotes the time gradient. A multi-component seismic
acquisition measuring the three components of the velocity
vector, therefore acquires the pressure field and its spatial
derivatives. Compared with single-component seismic
exploration, the multi-component seismic data acquires richer
seismic wavefield information, which may improve the
resolution of deep and fine scale structures such as faults.

In figure 4, the sinusoidal function is used for the
reconstruction of five streamers whose sampling interval is
75m in the crossline direction. As the sampling interval
is very sparse, many sinusoidal functions are able to fit the
data, and such a single-channel reconstruction would cause
the rather serious aliasing. By contrast, the multi-component
seismic data reconstruction can reduce multiplicity and get the
correct wavefield at the same sampling position in the case of
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Figure 6. Example with simple synthetics: close-up of the f~k spectrum corresponding to figures 5(a)—(f).

gradient constraint. This may not always true, but shows the
potential of multi-components in data reconstruction.

The pressure and crossline component of the particle-
velocity measurements can be used as the constraint conditions
for each other to provide the extra information for recon-
struction. With pressure and its partial derivative along the
crossline gradient obtained through the V, measurements, they
act as the input of the multi-component reconstruction. We
carry out crossline wavefield reconstruction from multi-
component seismic data by shearlet sparse constraint by:

" . S x
mni|(|P-M > S| +||V-M L
KpXy trace=1 P W)
opP .
—_ = _p‘/y},
Oy

(12)

where P is the pressure wavefield, VV is the gradient data of the
crossline velocity, M is the measurement matrix, and S~! is the
inverse shearlet transform. x, and x, represent a set of mini-
mizing shearlet coefficients to reconstruct the pressure wavefield
and the crossline particle-velocity wavefield, respectively. We
adopted the multi-scale and multi-direction shearlet transform to
represent the seismic data and produce the sparsest of the data. A
method altering between the pressure field and the gradient
wavefield were adopted to solve equation (12). First, the mea-
sured P and V, were used as the input of the proposed method.
We first recover a new P by threshold iteration based on the
shearlet transform. Then, according to equation (11), Vv can be
obtained by taking the derivative of P. K can be used as the
input to update a new V, by threshold iteration. Put the updated
V’V back into equation (11) and calculate P by integration. In this
circulative iteration way, the gradient field provides the pressure
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Figure 7. Overview of the synthetic data set: (a), (c) pressure and (b), (d) particle velocity, shown in the #-x and f~k domains, respectively.

wavefield reconstruction with the extra constraint conditions, (Continued.)
which can reconstruct the severely aliased data effectively. 2. Main iteration
Altering iteration algorithm for minimizing equation (12) Fori = 1 to Ndo .
Part A—Update P with V; fixed:

1. Initialization: —Calculate the residuals Presp = M (Pyy — P)
Parameters: Iterations N, thresholding factor A, A, and —Soft the shearlet coefficient of P component with the A,
tolerance ¢,,, €. threshold and obtain x, = T} (x, + S(P + resp)).
Initialize P = 0, Vy =0. —Update P component by inverse shearlet
Set § = l/N=-D, transform P = S~ x,
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Figure 8. (a) Reference pressure data sampled at 25 m; (b) decimated input data sampled at 100 m; (c) pressure reconstructed by using a
wavelet interpolator; (d) pressure reconstructed by using a curvelet interpolator; (e) pressure reconstructed by using a shearlet interpolator;
(f) pressure reconstructed by using a shearlet sparse constraint also having as an input the crossline gradients at the samples’ positions.

(Continued.)

Part B—Update V, with P fixed:
—Calculate the residuals resp = M (Vyy — V;)
—Soft the shearlet coefficient of V,, component with the A,
threshold and obtain
x, =T, (x, + S(Vy + resv)).
—Update Vy component by inverse shearlet
transform V, = S~ 'x,.
Part C—Update the threshold ), and A, according
oA =0-X Ay =0- A
3.IE||P — MS7'x, | < 6,&]|V; — MS™'x, |l < ¢, finish. Else
return to Step 2.
4. Output: The reconstructed P and Vy

Numerical examples

Experiment on linear events

In order to test the effectiveness of our algorithm, we first
synthesized ten linear events from different incidence direc-
tions. Figure 5(a) demonstrates the synthesized pressure
wavefield. Then, we adopted wavelet transform (the discrete
stationary wavelet transform used in this paper), curvelet
transform, and shearlet transform to reconstruct the single-
component seismic data, respectively, to verify the superiority
of shearlet transform over other sparsifying transform. Then,
we combined the shearlet transform and multi-component
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Figure 9. (a)—(d) errors in estimation of the pressure fields corresponding to figures 7(c)—(f); (e) the same with (d) but the amplitude gained
ten times.

Table 1. Evaluation parameters of the synthetic data. 1070

PSNR/dB  SNR/dB —— wavelet interpolator
curvelet interpolator

Wavelet interpolator 235.9457 4.5589 o S shearlet interpolator
Curvelet interpolator 242.5709  11.1841 S —— multi-components
Shearlet interpolator 2455156 14.1289 o 4r shearlet interpolator
Shearlet with multi-component ~ 267.3093  35.9225 =)
33
=
seismic data for the wavefield reconstruction to make com-  — 2

parisons with the regular single-component method.

Figure 5(b) shows the input pressure sampled at 100 m.
Figure 5(c) presents the seismic data reconstructed by a 0 I 1 I I I
wavelet interpolator. The lost data have not been recon- 10 20 30 40 50 60

. . . Iterations
structed effectively, meanwhile, the cross-section of events
are in bad order. Though the curvelet interpolator (figure 5(d)) Figure 10. Convergence of the four interpolation methods.
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Figure 11. (a) Total wavefield before interpolation with 150 x 25 m spatial grid; (b) total reconstructed wavefield with 25 x 25 m spatial
grid; (c), (d) close-ups of the crossline slices before and after reconstruction.

achieved better results than the wavelet interpolator, it shows
poor performance in the big declivitous angle section indi-
cated by the arrows. In the comparison of the three trans-
forms, the shearlet interpolator achieved the most satisfactory
results. When combining shearlet transform with the multi-
component method, all the events are reconstructed perfectly,
whose events are fairly smooth and clear.

Figure 6 display the f-k spectrum corresponding to
figure 5. It is possible to visualize the impact of a spatial alias
in the decimated data. The first order alias occurs for fre-
quencies just above 15 Hz, and the order of the alias grows
very significantly with frequency (figure 6(b)); figure 6(c)
shows the f-k transform of the wavelet interpolator, and only
frequencies up to 25 Hz are not aliased. Figure 6(d) shows the
curvelet interpolator, and the aliasing was suppressed well but
with spectrum leakage at high wavenumber (at the arrow-
head). We can see how well the shearlet interpolator
(figure 6(d)) performed and the energy distribution is more
uniform compared with the curvelet transform. By contrast,
the f-k spectrum reconstructed by the multi-component
shearlet interpolator (figure 6(f)) basically conformed to the
original f-k spectrum.

Experiment on curved events

To further illustrate the effectiveness of the proposed method
on curved seismic arrival wavefronts, we synthesized a set of
pressure data and the crossline gradient data sampled at 25 m
spacing shown in figures 7(a) and (b). We resampled the data at
75% of the initial samplings period. The wavelet interpolator,
curvelet interpolator, shearlet interpolator, and multi-comp-
onent shearlet interpolator methods were adopted for data
reconstruction. To compare the four methods, we introduced
two parameters for evaluation, which are defined as follows:

(1) Signal to noise ratio (SNR):

SNR=10 In _isole__
lIs1 — soll2

where s, is the original data and s; is the recon-
structed data.
(2) Peak signal to noise ratio (PSNR):

max (s)

> s — s02/M/N’

PSNR = 10 In
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Figure 12. (a) Total wavefield before interpolation with 150 x 25 m spatial grid and time slice at 0.2, 0.5, 0.8, and 1.1 s; (b) total
reconstructed wavefield by using a shearlet interpolator by multi-components with a 25 x 25 m spatial grid; (c), (d) the f-k,-k, transform of

(a) and (b).

where M is the number of data rows, and N is the
number of data columns.

Figures 8(a), (b) display the reference pressure data
sampled at 25m and the decimated input data sampled at
100 m. Figure 8(c) presents the result of wavelet interpolator
(SNR =4.5589 dB), both the continuity of events and the
reconstruction precision are abysmal. Figure 8(d) illustrates
the result of the curvelet interpolator (SNR = 11.1841 dB),
which is much better than that of wavelet interpolator, but
failed in restoring the section of the big curvature (0.4 s).
Figure 8(e) shows the result of the shearlet interpolator
(SNR = 14.1289 dB), which is improved among the three
transform reconstructions; it settles the problem of bad
reconstruction effect at the sections of the big curvature with
the curvelet interpolator. Figures 8(c)—(e) demonstrate that the
shearlet transform has the optimal representation of seismic
data among the three transforms. Figure 8(f) demonstrates the
result of the multi-component seismic data by shearlet sparse
constraint (SNR = 35.9225 dB); the reconstruction precision
has been improved with the gradient constraint and obtains a
nice continuity along the events. The evaluation parameters in
table 1 also demonstrate that the multi-component method is

remarkably better than that of the
reconstruction.

Figures 9(a)—(d) are the corresponding error profiles of
figures 8(c)—(f). By comparing the error profiles of the three
transforms, the error of wavelet interpolator (figure 9(a))
contains substantial energy; figure 9(b) depicts the recon-
struction error by the curvelet interpolator. Here, the residual
energy appears out of the missing signals area, which displays
its imprecise representation of seismic data. In figure 9(c), we
see minor residual energy at the error profile, and the residual
energy gathers along the events position, which indicates the
more precise representation of seismic data by shearlet
transform than that of the wavelet or curvelet transform. The
error profile energy is extremely weak by the proposed
method (figure 9(d)), and little residual energy can be seen
even by scaling a factor of ten in figure 9(e). The results
shown in figure 9 confirm the favorable effect using the
crossline gradient constraint.

Figure 10 shows the iterative convergence curves of the
four reconstruction methods used in the curve events test with
a total of 60 iterations. It is clear from the figure that the
wavelet transform has the lowest convergence rate and the

single-component
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Figure 13. Example of field data. (a), (b) Total pressure and the corresponding gradients, sampled at 150 m; (c) pressure reconstructed by
using a curvelet interpolator; (d) pressure reconstructed by using a shearlet interpolator; (e) pressure reconstructed by using a multi-channel
shearlet also having as an input the crossline gradients at the samples’ positions.

largest convergence error. The curvelet transform acquires a
better convergence rate than the shearlet transform does in the
first 35 iterations, but its convergence error becomes bigger
than that of the shearlet transform as the iterations increase.
The reason for this is that the shearlet transform usually
exhibits seven times the redundancy of the curvelet transform,
which leads to the shearlet possessing a higher solution pre-
cision and low convergence speed. As a result, with fewer
iterations and fewer coefficients included in the solution, the
curvelet transform achieved a better reconstruction result.
However, as the number of iterations increases and more
coefficients are included into the solution interval, the shearlet
transform achieved a better reconstruction result, while the
multi-component method achieved the fastest convergence

rate and lowest error benefiting from the additional comp-
onent constraint.

Realistic 3D data test

To test the proposed method on a highly aliased 3D data set,
we synthesized a 3D data set which consisted of 17 streamers
with a 150 m crossline spacing and 25 m inline spacing.
As we already well sampled in the inline direction, we just
carried out the crossline reconstruction and reconstructed
the 150 x 25m wavefield into the 25 x25m wavefield.
Figures 11(a) and (b) demonstrate the wavefields before and
after the reconstruction. Close-ups of the crossline slices are
shown in figures 11(c) and (d). Obviously, the reconstructed
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profile exhibits better continuity and clarity, especially in the
complex structure and curved events indicated by the arrows.

Figures 12(a) and (b) show four time slices at # = 0.2, 0.5,
0.8, and 1.1s before and after the reconstruction. In
figure 12(a), the crossline data are rather sparse, so the details
cannot be identified. Figure 12(b) shows the wavefield time
slice after reconstruction. The event has been well recovered
and the detailed information has been demonstrated clearly. The
sparse sampling wavefield f-k,-k, transform generates severely
spatial aliasing, and the order of alias grows significantly with
frequency. Figure 12(d) shows the recovery wavefield f-k-k,
transform, the very successful dealiasing impact achieved by the
proposed method compared to figure 12(c).

Field data test

To illustrate the effect of this method on the field data, we
selected the marine ocean bottom cable data for the test.
Figures 13(a) and (b) display the pressure data and the
corresponding V,, which contains 40 traces in the crossline
direction at 150 m spacing. The sparse wavefield makes it
difficult to track the events. Figures 13(c) and (d) show the
results of the single-component interpolator by curvelet and
shearlet, respectively. Obviously, the curvelet interpolator
kept more energy but the events exhibit normally with poor
continuity, while the shearlet interpolator kept less energy but
the events were smoother and finer. In figure 13(e) we can
observe that the most significant information present in the
pressure wavefield shows better continuity and resolution.
We can see that the multi-component shearlet inter-
polator seems to boost noise in the shallow and deep area. In
theory, the iterative threshold method could attenuate the
random noise, while we could find that the noise showed low-
amplitude and regular continuity from the circled area in
figures 13(a) and (e). These continuity signals could not be
removed like random noise, and could be involved in
reconstruction. So, the reconstructed data seems like noise.

Conclusions

Driven by the compressed sensing theory, we introduced the
shearlet transform into the seismic data reconstruction pro-
blem. Due to excellent sparsity and directivity of a shearlet,
it can represent the seismic data well without linear event
assumptions and normal moveout correction pretreatments.
On this basis, we developed multi-component seismic data
reconstruction, using both the crossline pressure and crossline
gradients as inputs. In this way, our scheme achieves satis-
factory anti-aliasing and fairly high-quality recovery preci-
sion. Numerical examples demonstrate that the proposed
method could effectively reconstruct the dealiased crossline
wavefield even with a small number of samples. Currently,
our method is aimed only at 2D crossline slice reconstruction.
In the future, we will introduce 3D shearlet transform into the
multi-component seismic data reconstruction, and a real 3D
multi-component seismic data reconstruction is our next
target.
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