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Abstract

Nowadays, security of the computer systems has become a major concern of security experts. In spite of
many antivirus and malware detection systems, the number of malware incidents are increasing day by
day. Many static and dynamic techniques have been proposed to detect the malware and classify them into
malware families accurately. The dynamic malware detection has potential benefits over the static ones to
detect malware effectively. Because, it is difficult to mask behavior of malware while executing than its
underlying code in static malware detection. Recently, machine learning techniques have been the main
focus of the security experts to detect malware and predict their families dynamically. But, to the best of
our knowledge, there exists no comprehensive work that compares and evaluates a sufficient number of
machine learning techniques for classifying malware and benign samples. In this work, we conducted a set
of experiments to evaluate machine learning techniques for detecting malware and their classification into
respective families dynamically. A set of real malware samples and benign programs have been received
from VirusTotal, and executed in a controlled & isolated environment to record malware behavior for
evaluation of machine learning techniques in terms of commonly used performance metrics. From the
execution reports saved in the form of JSON reports, we extract a promising set of features representing
behavior of a malware sample. The identified set of features is further employed to classify malware
and benign samples. The Major motivation of this work is that different techniques have been designed
to optimize different criteria. So, they behave differently, even in similar conditions. In addition to
classification of malware and benign samples dynamically, we reveal guidelines for researchers to apply
machine learning techniques for detecting malware dynamically, and directions for further research in the
field.
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1. Introduction

The enormous growth of online services and re-
sources has increased the number of Internet users
through a variety of devices ranging from comput-
ers to embedded systems. This Internet connec-
tivity has provided many services to the end users,
like easy and quick communication. Nowadays, end
users can enjoy online services anywhere-anytime
through an Internet connected device like mobile
phones, tablets, etc. This increasing number of In-
ternet users also activated the malicious program-
mers to develop malicious applications/programs
generally called malware. In the recent years, a huge
amount of malware has been noticed as depicted in
Figure 1.

Many antivirus, intrusion detection systems and
other malware detection systems have been devel-
oped for the prevention of damage caused by these
malicious programs. Still, there exist some issues
that need immediate attention. Because of chang-
ing nature of malware and flaws in existing soft-
ware. Various techniques from different disciplines
have been proposed for effective malware detec-
tion. The techniques can be categorized broadly into
two categories, namely the static, signature based
techniques and dynamic, behavior based techniques.
Static techniques analyze malware based upon its
structure, control flow, etc. without executing it15.
These techniques involve establishment of a signa-
ture database. The major limitation is that these
techniques fail to detect a novel malware until its
signature is updated4,18,10. Whereas, dynamic tech-
niques analyze the malware samples during its exe-
cution. These techniques analyze behavior of mal-
ware samples from their execution reports. In re-
cent years, malicious programmers are developing
more complex and advanced malware using obfus-
cation and encryption techniques. Static techniques
fail to detect malware accurately. Whereas, dynamic
techniques have benefited over static techniques, be-
cause it is more difficult to mask the behavior of
malware during its execution. Taking into consider-
ation the benefits of dynamic techniques, the focus
of current research has shifted to dynamic23,15 and
automated techniques for malware detection6,1,7.

In the recent years, many researchers employed

machine learning (ML) techniques to tackle con-
stantly changing behavior of malware detection dy-
namically. The ML techniques take a labeled dataset
as a training dataset and develop a model represent-
ing the behavior of malware and benign samples.
The trained model is found to capable of classify-
ing test samples. The ML techniques can learn from
huge amount of labeled training data to enhance
their predictive accuracy.

The ML techniques have been divided into dif-
ferent categories depending upon their working
namely: 1) Rule based; 2) Tree based; 3) Func-
tion based; 4) Instance based; 5) Probability based;
and 6) Ensemble learning based techniques 28. Re-
cently, many researchers employed ML techniques
from different categories to dynamically detect mal-
ware.

In this work, we evaluate performance of repre-
sentative machine learning techniques from different
categories like decision tree based, probability based
using a real malware dataset in terms of a variety of
performance metrics. Evaluation of ML techniques
on a number of metrics is important, because differ-
ent ML techniques have been designed to optimize
a different set of criteria. So, they behave differently
in a similar environment. For instance, Mukkanmala
et al. 200316 proved Support Vector Machine (SVM)
designed to minimize the structural risk presents a
better generalization ability than NN developed to
minimize empirical risk for intrusion detection in
terms of accuracy, test time and scalability. So, it
may be possible that one technique may show op-
timal performance on one set of metrics. Whereas,
suboptimal performance on another set of metrics.

In this work, we identify the best performing
techniques for dynamic malware detection based
upon a promising set of features extracted from exe-
cution reports of malware and benign samples. Ma-
jor contributions of this work are:

• Extraction of dynamic behavior of real malware
samples from VirusTotal by executing them in a
virtually controlled environment of Cuckoo Sand-
box.

• Selection of features representing dynamic behav-
ior of malware to generate a real malware dataset.

• Evaluation of ML techniques category wise such
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Fig. 1. Trend in malware growth

as decision tree based, probability based tech-
niques, etc. to identify the promising techniques
using a real malware dataset.

• Empirical comparative analysis of the promising
ML techniques to identify the best performing
technique for effective malware detection, so as
to use it as a candidate technique for developing
dynamic malware detection systems.

So, we evaluate the performance of supervised ML
techniques and compared them for malware detec-
tion using a real data set from VirusTotal. To the
best of our knowledge, this experimental work is the
most comprehensive evaluation of ML techniques in
terms of number of techniques, variety of metrics
and promising set of malware features.

Article overview: Section 2 presents the work re-
lated to dynamic malware detection and their com-
parative evaluation. The methodology adopted in
the proposed work consisting data generation phase,
data extraction phase, classification phase and per-
formance analysis phase of the proposed work is
presented in Section 3. Section 4 presents detailed
results of experiments and their discussion. Finally,
the paper concludes the proposed work and provides
directions for future research in the field in Section
5.

2. Related work

Conventional malware techniques have been pro-
posed for analysis of malware static features derived
from its structure without executing them. Here,
they follow a reverse engineering approach to detect
the malware. Many researchers used API call se-
quences to analyze behavior of portable executable
(PE) code10,8. Most of these techniques fail due to
use of obfuscation techniques for development of
malware. Some of conventional techniques are sig-
nature based techniques, which requires a continu-
ous updating of signatures of malware. Updating the
database is a time consuming and a challenging task.
These techniques can be easily evaded by malware
in polymorphic form15.

The remedy to limitations of static analysis tech-
niques is offered by dynamic analysis techniques for
malware detection. Dynamic techniques involve the
steps of executing a malware sample, monitoring its
behavior, creating and analyzing a profile represent-
ing its dynamic behavior4. For an unknown sam-
ple, its profile is compared to a known profile for
finding its similarity and predict family of malware
sample. Dynamic techniques involve generation of a
profile of malware samples either by analyzing con-
trol flows or API calls 10. Both of these profile gen-
eration approaches involve finding the similarity of
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test samples with an existing profile.

In the recent years, ML techniques have been
the focus of the researchers to classify malware and
benign samples. The significant researches in this
field are as described in following text. Samra et
al. 200721 proposed the notion of using effective
signals to improve android security, and introduced
risk signals combining information about the per-
missions requested by a mobile application, function
category of application as well as what permissions
other apps request. They reported detection accu-
racy of 68.50% for normal applications and 93.38%
of malicious programs.

In their static analysis, Huang et al. 2013 9 eval-
uated four ML technique, namely AdaBoost, NB,
DT48, and SVM for detecting anomalies for mal-
ware detection. The reported results indicate that
the Naive Bayes technique can detect malware up
to 81% of detection accuracy. Whereas, Vyas et al.
201726 performed a static analysis of detecting PE
on the basis of a small set of features and four su-
pervised machine learning techniques. The authors
proved that random forest technique performed bet-
ter in terms of detection accuracy of 98.6% with a
false positive rate of 1.8%. Similarly, Shabtai et
al. 201222 evaluated six ML techniques, namely
DTJ48, NB, BN, k-Means, histogram, and logis-
tic regression to identify the best technique, de-
tecting the malware based upon anomalies. They
used feature selection techniques like Chi-square,
Fisher score and information gain to select the most
promising features. The reported results indicate the
achievement of 99.9% detection accuracy, using in-
formation gain method for feature selection and de-
cision tree (i.e. J48) technique as a classifier based
on a self written malware dataset.

Dini et al. 20125 suggested a multi-level
anomaly detector system based upon the k-nearest
neighbors (KNN) technique. They reported to
achieve 93% accuracy for ten malware. However,
the proposed system fails to detect malware that con-
tains no system call with root permission. For in-
stance, SMS malware that is invisible in the kernel.
On similar lines, SVM ML technique based system
has been proposed by Zhao et al. 201230 for detect-
ing unknown malware in mobile devices like Gem-

ini, DroidDream and Plankton. They attempted to
detect privacy information leakage and hidden pay-
ment services.

Rieck et al. 200819 used analysis reports cre-
ated by CWSandBox to create behavioral profiles
and train SVM technique to build classifiers for de-
tection of malware families. Narudin et al. 201617

evaluated ML techniques for mobile malware detec-
tion based upon public as well as private malware
dataset. But, they considered a limited number of
ML techniques in their work.

Recently, Ye et al. 201729 proposed a hetero-
geneous deep learning framework composed of an
AutoEncoder stacked up with multi layer restricted
Boltzmann machines (RBMs) and a layer of associa-
tive memory to detect newly unknown malware us-
ing Windows API calls extracted from PE profiles.
The proposed framework consists of two phases:
pre-training and fine-tuning. The pre-training phase
involves utilization of both labeled and unlabeled
file samples to pre-train multiple layers for feature
learning. Further, it is followed by construction of
an accurate classification model which can differen-
tiate malware from benign files by supervised pa-
rameter fine-tuning. The authors performed a com-
prehensive experimental study on a real and large
file collection from Comodo Cloud Security Center
to compare various malware detection approaches.
The experimental results demonstrated that the pro-
posed method can further improve the overall per-
formance in malware detection compared with tra-
ditional shallow learning methods. However, the
improved performance is achieved at the cost of in-
creased complexity in the system. Moreover, the au-
thors focused on only API based features for training
the proposed method.

The aforementioned text demonstrates the use of
applying ML techniques for effective malware de-
tection. But, the prior evaluation related work is
limited to a certain amount of malware samples, or a
few numbers of ML techniques or focus on a spe-
cific set of features like API calls based features.
Different researchers evaluated different ML tech-
niques in their studies based upon different malware
datasets. So, the reported results cannot be criti-
cally analyzed to identify promising technique for
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effective malware detection. This work evaluates
ML techniques from different categories belonging
to decision trees, probability categories using a com-
mon platform of same and similar preprocessed real
malware dataset.

The major motivation behind the proposed work
is to evaluate a sufficient number of ML techniques
to identify the techniques that achieve better results
in terms of detection rate, and false positive rate us-
ing a real malware dataset.

3. Methodology

This section presents the overall methodology fol-
lowed in this work as depicted in Figure 2. It in-
cludes dynamic malware detection using ML tech-
nique consisting of data generation phase, data
extraction phase, classification phase, and perfor-
mance metric computation phase. The data gen-
eration phase executes the benign and malware PE
in a controlled environment of Cuckoo sandbox and
produces its execution report in the form of a JSON
file. The data extraction phase extracts features from
JSON files that represents the dynamic behavior of
samples and labels each sample as benign or mal-
ware. It generates a real malware dataset that is fur-
ther used as training and test dataset by the classifi-
cation phase. The performance metric computation
phase computes malware detection results in terms
of variety of metrics.

The detailed description of these phases is de-
scribed in following subsections.

3.1. Data generation phase

Many systems have been proposed for observing the
dynamic behavior of PEs, such as CWSandbox27,
Anubis2, Cuckoo sandbox20 etc. These environ-
ments allow the execution of malware and benign
binaries within an isolated environment, analyze and
record their behavior. Unfortunately, CWSandbox
and MIST24 are not open source. Whereas, Cuckoo
sandbox20 is an open source sandbox environment.
So, it is selected for the proposed work. Here, we set
up a virtual environment of the Cuckoo Sandbox to
execute malware and benign binaries received from
VirusTotal25. As an output of the Cuckoo Sandbox

setup, we collected the JSON reports for the dy-
namic behavior of executing binaries. For the pro-
posed work, we used a Linux based PC with Core
i3-2330M 2.20 GHz CPU and 2 GB RAM and em-
ployed WEKA implemented ML techniques.

3.2. Data extraction phase

The Cuckoo sandbox is configured to execute PEs
and produce the output in the form of JSON re-
port. These reports contain behavior of programs ex-
ecuted in a controlled environment of Cuckoo sand-
box. For extracting features representing dynamic
behavior of executing programs from JSON reports,
a Python language based automated system has been
developed. The main steps for data extraction phase
are as below:

1. Read sections of JSON file

2. Extract features including

• Basic features such as duration of execution
of PEs

• Network features based upon protocol
headers

• CPU and memory usage features
• Statistics of APIs based upon their cate-

gories
• Statistics of file system activities in terms of

number of files written, deleted, read, com-
mands executed, services started, services
created

• Count of APIs in each category like net-
work APIs, Registry APIs etc.

• Number of sub processes generated

3. Labeling of malware samples

The most critical task in malware analysis using su-
pervised ML techniques is the labeling of samples
as malicious and benign. In Cuckoo sandbox, JSON
reports contain malware detection results of a num-
ber of ant viruses. However, detection results of
different ant viruses are not consistent with each
other. Most of the researchers used the labeling de-
tected by Kaspersky antivirus 10. So, in the proposed
work, we used the labeling of malware samples as
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Fig. 2. Schematic flow of the proposed work.
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reported by Kaspersky antivirus during their execu-
tion in Cuckoo environment.

For dynamic analysis of malware, we extracted
a large number of raw features from JSON reports
produced in Cuckoo environment representing the
dynamic behavior of malware. All the raw features
of the data are not important to understand it. How-
ever, the higher dimensions of the data suffer from
a problem called curse of dimensionality3. In ad-
dition, high dimensional data require more compu-
tational overhead and leads to delay in detection of
malware, which is not desirable. In order to tackle
this difficulty of analyzing high dimensional data,
we identified a filter based feature selection tech-
nique proposed by Kumar & Kumar 201213 keep-
ing the benefits of using mutual information and en-
tropy concepts to compute the relevance of features
in the feature selection process into consideration.
As mutual information is an information metric used
to measure the relevance of features taking into ac-
count higher order statistical structures existing in
the data. After applying the identified mutual in-
formation based feature selection ITFS technique13,
we selected promising features, among raw features
extracted from JSON files as depicted in Table 1.
Here, feature titled API name and its frequency give
the name of API call and the number of times it is
called during execution of a sample.

Further, this phase transforms the features from
JSON files into a CSV format for analysis of mal-
ware in the classification phase by ML technique
and applies the identified feature selection technique
to select promising features. Each record in the CSV
file of selected features is a sequence of 41 features
labeled with malware family as detected by Kasper-
sky.

In this work, we selected 41 features and 01 fea-
tures as a family name of malware. The description
of selected features is as depicted in Table 2. Finally,
records are shuffled using a pre-processor offered
by WEKA to ensure data randomization while split-
ting of malware dataset into training and test dataset
for experimental validity. The randomization of the
dataset is done using an unsupervised instance filter
implemented in WEKA.

Table 1. Raw features extracted from JSON reports

Category Feature Data type
Info Duration Integer
Network UDP requests Integer

IRC requests Integer
http requests Integer
smtp requests Integer
tcp requests Integer
hosts contacted Integer
DNS requests Integer
domains contacted Integer
ICMP requests Integer

Usage CPU usage Integer
mem usage Integer

Dropped Dropped Integer
API categories Noti API Integer

Certi API Integer
Crypto API Integer
exception API Integer
file API Integer
iexplore API Integer
misc API Integer
netapi API Integer
network API Integer
ole API Integer
process API Integer
registry API Integer
resource API Integer
services API Integer
Syn API Integer
system API Integer
ui API Integer
other API Integer

API summaries files accessed Integer
files written Integer
files deleted Integer
Mutexes Integer
executed cmds Integer
started services Integer
files read Integer
resolved APIs Integer
created services Integer

Processes processes generated Integer
API name and its
frequency

API (321) Integer

Malware Family Family Categorical
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Table 2. Selected Features
Category Feature Data type
Info Duration Integer
Network UDP requests Integer

IRC requests Integer
http requests Integer
smtp requests Integer
tcp requests Integer

hosts contacted Integer
DNS requests Integer

domains contacted Integer
ICMP requests Integer

Usage CPU usage Integer
mem usage Integer

Dropped Dropped Integer
Processes processes generated Integer
API categories Noti API Integer

Certi API Integer
Crypto API Integer

exception API Integer
file API Integer

iexplore API Integer
misc API Integer

netapi API Integer
network API Integer

ole API Integer
process API Integer
registry API Integer
resource API Integer
services API Integer

Syn API Integer
system API Integer

ui API Integer
other API Integer

API summaries files accessed Integer
files written Integer
files deleted Integer

Mutexes Integer
executed cmds Integer
started services Integer

files read Integer
resolved APIs Integer

created services Integer
Malware Family Family Categorical

3.3. Classification phase

A large number of supervised ML techniques have
been designed for classifying malware dataset into
a set of malware categories. For instance, Artificial
Neural Networks are designed to mimic the human
brain. They have the capability to learn any non-
linear relationship between input and desired output
even in the presence of noisy training data. Inter-
ested readers may explore review of ML techniques
mentioned in the studies11,14,28. The ML techniques
from different categories implemented in ML tool
WEKA are used to produce trained models for mal-
ware dataset having bifurcation of 70% as training
and 30% test dataset. In the present work, we have
been using default parameters of different ML tech-
niques implemented in WEKA. However, fine tun-
ing of the parameters may lead in further improve-
ment of classification results of ML techniques. The
trained model of ML technique is further used to
predict malware family of unknown samples. The
output of this phase is a report consisting of confu-
sion matrix and other details. The generated report
is used by the security experts for further compute
other performance metrics and derive policy deci-
sions.

3.4. Performance metric computation phase

The performance metric computation phase calcu-
lates the identified performance metrics from the
confusion matrix after testing phase. The confu-
sion matrix provides the values of False Positives
(FP), True Negatives (TN), False Negatives (FN),
and True Positives (TP). It derives the weighted av-
erage of identified performance metrics like TPR
(also known as Recall), FPR, RMSE, Detection Ac-
curacy, Precision, F-measure, AUC-ROC from the
values of TN, FN, TP, and TN for comparative eval-
uation of the ML techniques. We used a weighted
average of different metrics for deriving the metrics
like AUC-ROC by following one vs rest approach.

4. Experiments and results

This section presents details of malware dataset and
comparative performance evaluation of various ML
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techniques in terms of identified metrics.

4.1. Evaluation metrics

Here, we are focused to compute confusion matrix
and derive different performance metrics namely:
Accuracy, True Positive Rate (TPR), False Positive
Rate (FPR), Precision, F-measure, AUC-ROC in ad-
dition to training time, root mean square error, and
kappa statistics to evaluate the performance of the
ML techniques 12. The metrics can be derived from
values of FP, FN, TN, and TP as depicted in Table 3.

Table 3. Performance metrics

Performance metric Expression

Accuracy (TP+TN)/(TP+TN+FP+FN)
False Positive rate(FPR) FP/(FP+TN)
True Positive rate(TPR) TP/(TP+FN)
Precision TP/(TP+FP)
F-measure 2*TP/(2*TP+FP+FN)

Here, TPR (also known as Recall) gives the
weighted average value of predicted malware clas-
sified correctly, whereas FPR indicates the weighted
average value of benign data incorrectly predicted
as malware. Precision gives the rate of relevant re-
sults rather than irrelevant results. Whereas, Recall
provides the sensitivity for the most relevant results.
F-Measure is the weighted average value that esti-
mates the entire system performance by representing
precision and recall into a single number. Similarly,
AUC-ROC is also a weighted average of each class
by following one vs rest approach. These results are
provided by WEKA. For details of computation of
results, interested readers may refer to WEKA man-
ual 28.

4.2. Evaluation malware dataset

In this work, we used the malware and benign sam-
ples from VirusTotal25. The VirusTotal is a web
site that offers the analysis of suspicious files and
URLs to detect types of malware including viruses,
worms, and trojans. VirusTotal aggregates many an-
tivirus products and online scan engines to check
for viruses that the user’s own antivirus may have
missed, or to verify against any false positives. Files

up to 256 MB can be uploaded or sent via email
to the website. Antivirus software vendors can re-
ceive copies of files that were flagged by other scans,
but passed by their own engine, to improve their
software and, by extension, VirusTotal’s own ca-
pability. Users can also scan suspect URLs and
search through the VirusTotal dataset. VirusTotal
uses Cuckoo sandbox for dynamic analysis of mal-
ware. We extracted 13,236 malware and benign
samples randomly from the malware dataset of the
VirusTotal25. The malware and benign are executed
for extracting features as described in Section 3.1
and 3.2. In resulting dataset, a large number of mal-
ware families were found. For evaluation purpose
of ML techniques, we categorized malware samples
into different families, as per their basic functions.
The similar categorization is also reported by Ki et
al. 201510. For uniform and comprehensive analy-
sis of the proposed work, malware dataset is divided
randomly into training and test dataset. The train-
ing dataset contains 70% of samples and test dataset
contains 30% samples. The category wise number
of samples in the training data set and test data set
are as described in Table 4.

4.3. Results

We employed the supervised ML techniques from
different categories to select the most promising ML
technique using a real malware dataset with the help
of ML tool WEKA28. The details of performance
metrics and malware dataset are as described in
Section 4.1 and Section 4.2 respectively. It is ob-
served that different techniques took different train-
ing time for obtaining a trained model as depicted
in Figure 3. We computed the confusion matrix
for the test results based upon malware test dataset.
From confusion matrix, rests of identified metrics
and weighted averages are derived as summarized
in Table 5. WEKA 28 provides values of computed
as well as derived metrics. From the reporting re-
sults, it can be clearly noticed that the instance based
technique called IBk have shown better performance
than the other techniques in terms of identified per-
formance metrics. Each class of malware data set is
analyzed based upon best identified ML technique
IBk as shown in Table 6.
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Fig. 3. Training time for ML techniques.

Table 4. Categories and number of samples in dataset

Sr No Class name Number of samples

Training dataset
1 Benign 3433
2 Trojan 4447
3 Virus 265
4 Worm 326
5 Packed 430
6 Backdoor 233
7 Hoax 41
8 DangerousObject 28
9 Adware 62

Total 9265

Test dataset
1 Benign 1451
2 Trojan 1889
3 Virus 115
4 Worm 140
5 Packed 206
6 Backdoor 109
7 Hoax 20
8 DangerousObject 13
9 Adware 28

Total 3971

The result comparison of ML techniques is
graphically represented in terms of performance
metrics as shown in Figs. 4 to 10.

4.4. Discussion

This section explains the reporting results of the pro-
posed work. Better results to detect a particular mal-
ware type indicate its probable use in malware detec-
tion systems to pre-filter newly registered malware
instances. It should be noticed that future work will
be devoted to optimize the technique such that a pre-
filtering system can be developed to identify novel
malware samples and sort out legacy malware that
have minor changes. Figure 3 indicates that differ-
ent techniques take different training time to build
the prediction model. Because, different techniques
are designed to optimize the criteria involving dif-
ferent levels of computational overhead.

It can be concluded from the Table 6 that in most
of the malware classes, the IBk technique has re-
ported 100% performance in terms of TPR, preci-
sion, F-Measure and Area Under Curve ROC with
FPR equal to 0%. However, in case of a Packed class
of malware, it reported the results close to 100%
with 0%. Low detection results for some of mal-
ware classes may be due to an imbalance in sam-
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Table 5. Performance evaluation of ML techniques

Category ML technique RMSE Kappa Accuracy TPR FPR Precision F-Measure AUC-ROC

Rule based JRIP 0.148 0.818 0.888 0.888 0.086 0.891 0.884 0.926
Decision Tree 0.197 0.778 0.861 0.862 0.087 0.869 0.859 0.955

Tree based J48 0.076 0.95 0.968 0.969 0.016 0.968 0.968 0.995
NB Tree 0.09 0.946 0.966 0.966 0.023 0.966 0.966 0.944
Random Tree 0.004 0.999 0.999 0.992 0.014 0.932 0.991 0.99

Function based MLP-NN 0.191 0.615 0.769 0.769 0.162 0.755 0.752 0.902
RBF Network 0.229 0.432 0.664 0.664 0.253 0.669 0.639 0.806
SMO 0.288 0.414 0.662 0.663 0.258 0.617 0.618 0.73

Instance based IB1 0.151 0.835 0.897 0.897 0.055 0.896 0.897 0.921
IBk 0.005 0.999 0.999 1 0 1 1 1
Kstar 0.032 0.992 0.994 0.995 0.003 0.995 0.995 1

Probability based Naive Bayes 0. 372 0.218 0.318 0.319 0.04 0.75 0.375 0.679
Bayes Net 0.247 0.562 0.68 0.68 0.043 0.85 0.738 0.937

Ensemble learning Boosted-J48 0.005 0.999 0.997 1 0 1 1 1
Bagged-J48 0.068 0.968 0.98 0.98 0.015 0.98 0.98 0.998
Random Subspace 0.065 0.968 0.979 0.98 0.015 0.98 0.98 0.997
Random Forest 0.0346 0.997 0.998 0.998 0.001 0.998 0.998 1

Fig. 4. Performance comparison of ML techniques in terms
of accuracy.
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Fig. 5. Performance comparison of ML techniques in terms
of TPR.

Fig. 6. Performance comparison of ML techniques in terms
of FPR.
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Fig. 7. Performance comparison of ML techniques in terms
of Precision.

Fig. 8. Performance comparison of ML techniques in terms
of kappa statistics.
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Fig. 9. Performance comparison of ML techniques in terms
of F-Measure.

Fig. 10. Performance comparison of ML techniques in
terms of AUC-ROC.
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Table 6. Performance of IBk ML technique for each class

Class TP Rate FP Rate Precision Recall F-Measure ROC Area

Benign 1 0 0.999 1 1 1
Trojan 1 0 1 1 1 1
Virus 1 0 1 1 1 1
Worms 1 0 1 1 1 1
Packed 0.995 0 1 0.995 0.998 1
Backdoor 1 0 1 1 1 1
Hoax 1 0 1 1 1 1
DangerousObject 1 0 1 1 1 1
Adware 1 0 1 1 1 1

Weighted Avg. 1 0 1 1 1 1

pling of malware dataset or lack of sufficient amount
of training data. The imbalance in samples of mal-
ware dataset generally leads to biasing of the IBk
technique.

It can also be concluded from the reporting re-
sults that ensemble based techniques have shown
better performance for malware detection. It is in
line with theoretical as well, practically proved facts
about ensemble techniques that they generally out-
perform the individual techniques. Here, the IBk
technique has also shown comparable performance
with the ensemble of J48 technique using boosting.
It can be considered as a candidate ML technique for
building an effective malware detection system.

Tree structure based J48 ML techniques reported
the second highest results in terms of TPR of 96.9%
and FPR of 0.016%. The reported ROC area of
99.5% indicates its better performance for malware
detection. The reporting results are satisfactory for
malware detection, so can be considered as a candi-
date ML technique for building an effective malware
detection system.

Furthermore, these techniques can also be con-
sidered to formulate base classifiers for designing
ensembles for effective malware detection in real
systems.

5. Conclusions and future work

In this work, an evaluation of supervised ML tech-
niques is done empirically for detecting malware us-

ing a real malware dataset in terms of a variety of
evaluation metrics. The major motivation behind us-
ing a variety of evaluation metrics is that different
techniques are developed to optimize different set
of criteria. To evaluate ML techniques comprehen-
sively, a promising set of features has been extracted
from malware and benign executable samples using
a Cuckoo Sandbox and a Python based automated
system to form a real malware dataset.

In this work, we identify the best techniques for
effective malware detection based upon a real mal-
ware dataset in terms of identified performance met-
rics. The proposed work contributed for extract-
ing the dynamic behavior of real malware samples
from VirusTotal by executing them in a virtual and
controlled environment, transforming the dynamic
behavior into a matrix having a promising feature
set to design a malware dataset, and identifying the
promising techniques for each malware family. The
reporting results indicate that Instance based IBk
and Tree Based J48 ML techniques has shown the
results of TPR close to 100% and FPR close to 0%.
So, these techniques can be considered as a candi-
date technique for building an effective malware de-
tection system for novel and known malware sam-
ples dynamically. Moreover, the reported perfor-
mance of these techniques is also comparable to that
of their ensemble techniques using a boosting algo-
rithm. This comparable performance validates the
set of novel features extracted from the execution re-
ports for effective malware detection. The proposed
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features resulted a fast and effective malware detec-
tion by processing a small number of features.

To the best of our knowledge, this experimen-
tal work is a comprehensive evaluation of ML tech-
niques in terms of number of techniques and number
of metrics for detecting malware. Empirical com-
parative analysis of the promising ML techniques
is done to identify the overall best performing tech-
niques for effective malware detection, so as to use
them as candidate techniques for detecting novel and
known malware samples in the future dynamic mal-
ware detection systems. Our future research work
will focus on more experiments using real malware
datasets and design ensemble techniques based on
identified promising techniques as base classifiers
for effective malware detection.
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