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Abstract: In this paper, we propose a new method to improve the position measurement accuracy 

for Laguerre-Gaussian beams on a quadrant detector (QD). First, the error effects of the detector 

diameter and the gap size are taken into account, and the position error compensation factor is 

introduced into the conventional formula. Then, in order to reduce the number of parameters, the 

concept of effective radius is proposed. Thus, a new analytical expression is obtained with a best fit 

using the least square method. It is verified by simulation that this approach can reduce the 

maximum error by 97.4% when the beam radius is 0.95 mm; meanwhile, the root mean square errors 

under different radii are all less than 0.004 mm. The results of simulation show that the new method 

could effectively improve the accuracy of the QD measurement for different radii. Therefore, the new 

method would have a good prospect in the engineering practice of beam position measurements. 

Keywords: position measurement method; quadrant detector; Laguerre-Gaussian beams; least 

square method; effective radius; detection 

 

1. Introduction 

The Laguerre-Gaussian (L-G) beams possessing orbital angular momentum (OAM) are 

becoming a hot topic in academia [1–4]. Recent theoretical developments have revealed that using 

the L-G beams can greatly improve the information capacity of wireless optical communication 

systems [5]. The position measurement technology of the L-G beams plays an important role in an 

OAM wireless optical communication system using multiplexing of OAM beams since the 

misalignment of the beam may lead to power leakage, thus reducing the probability of the receiver 

to detect the OAM state correctly. Furthermore, the position measurement technology of the L-G 

beams has also been widely applied in many areas such as optical tweezing [6–9] and 

micromanipulation [10]. 

Compared with position sensitive detector (PSD) and charge-coupled devices (CCD), the 

quadrant detector (QD) is suitable for position measurement of the L-G beams, owing to its high 

resolution and fast response [11]. However, the problem with such an implementation is that there is a 

non-linear relationship between the detector output signal and the centroid position of the beams [12]. 

It is mainly due to the intensity distribution of the beams and the inhomogeneity of the detector 

shape. As a result, there is a lower accuracy when the beam center is far from the QD origin since the 

beam center is outside the linear working interval [13]. N. Hermosa et al. proved that when the 

angular quantum index is high, the QD response to the L-G beams can be approximated by its 

response to hard-ringed beams [14]. Valeria Garbin et al. showed the potential for position detection 

of dielectric particles using L-G beams with a QD configuration [15]. With the purpose of enhancing 

linearity, Song Cui et al. constructed a new solution equation achieving better measurement accuracy 
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[16,17]. However, these approaches introduce a lot of parameters and, therefore, they are time-

consuming. Infinite integral method (IIM) is a solution which has a good ability to suppress 

nonlinearity. Nevertheless, IIM is suffering from its low accuracy [18,19]. Such a low accuracy cannot 

be ignored especially to an OAM wireless optical communication system using multiplexing of OAM 

beams, since the low inherent crosstalk and power-coupling loss generally rely on accurate on-axis 

measurement of the multiple OAM beams [20,21]. In brief, there is an urgent need for a method with 

high precision and less parameters. 

In this study, we deeply analyze the relationship between the detector output signal and the 

centroid position of the L-G beams in different modes. The error compensation factor is introduced 

to compensate for the influence of detector diameter and gap size based on the IIM. Then the effective 

beam radius is obtained by the least square fitting method, and thus a new position measurement 

method is proposed. The accuracy of the new method is evaluated by simulation. The results show 

that the proposed method can effectively improve the position measurement accuracy of the L-G 

beams in a wide measurement range. 

The rest of the paper is organized as follows: We start our paper by presenting the intensity 

distribution of the L-G beams and position measurement principle of the QD in Section 2.1. In Section 

2.2, IIM is described, whereafter, the limitations of IIM dealing with L-G beams are briefly discussed. 

Then, the improved new estimation method is proposed. We also demonstrate the feasibility of the 

improved new estimation method under different radii by simulation in Section 3. Finally, 

conclusions are drawn in Section 4. 

2. Materials and Methods 

2.1. Theoretical Analyses of L-G Beams and Quadrant Detector 

2.1.1. Intensity Distribution of L-G Beams 

Unlike a general beam whose wavefront is a plane or sphere, the power intensity distribution 

for L-G beams is: 
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where r  is the distance from the beam center,   is the beam radius, 
( )
l

pL x
 is the Laguerre 

generalized polynomial, p  is the radial index, and l  is the azimuthal index. 

As shown in Figure 1a, when 0p l  , the L-G beams degenerate into a Gauss beam whose 

power concentrates on the center: 
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When 
0p 

 or 0l  , the L-G beams have annular energy distributions. Only the case of 

0p 
 is considered in this paper. As shown in Figure 1b–d, with the increase of l , the annular spot 

gradually expands outward. The power intensity distributions of the L-G beams change as follows: 
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(5) 

As can be seen from Figure 1, there is an obvious difference between the Gauss beam and the L-

G beams. Unlike a Gauss beam whose power concentrates on the center, the L-G beams have an 

annular energy distribution which is much more complicated for position measurement. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1. Power intensity distribution of the L-G beams ( 1K  , 0.65mm  ), (a) p = 0, l = 0, (b) p 

= 0, l = 1, (c) p = 0, l = 2, (d) p = 0, l = 3. 

2.1.2. Position Measurement Principle of the QD 

The QD can be seen as a device consisting of four identical photodiodes separated by small gaps 

without photoelectric effect [22], as shown in Figure 2. If there is an incident beam, each quadrant 

will induce the corresponding photocurrent 
( , , , )iI i A B C D

. We assume that the power intensity 

distribution of the incident beam is 
( , )D x y

, and that the centroid position of the beam is 0 0( , )x y
, 

then: 
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Figure 2. Beams incident on a QD. 

The conventional formulas to estimate the beam position are: 
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XE  and YE  represent the extent of deviation from the origin of the QD in the x and y 

directions, respectively. However, XE  and YE  are not equal to the centroid position of the beam. 

In order to accurately locate the position of the beam in real time, we set the upper limit of the integral 

to the boundary of the QD. Since the shape of the QD and the beam profiles are symmetric, it is 

expected to achieve the same position measurement results in both the x and y directions. 

Consequently, only the position measurement results in the x direction are discussed here. The 

relationship between the estimation and the centroid position can be obtained: 
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(9) 

where 
2 2A R x  , / 2B d , 

2 2 / 4C R d  , R  is the radius of the QD and d  is the gap 

width. Centroid position can be obtained from Equation (9): 

1
0 ( , , , )Xx f E R d ，

 
(10) 

However, Equation (10) is a transcendental equation that cannot be solved analytically, which 

will bring great difficulty to practical applications. 

2.2. Improved New Estimation Method 

2.2.1. Infinite Integral Method 

A solution is developed in Reference [23], namely the infinite integral method, in which the 

detector radius is assumed to be large enough, the influence of the gap size is neglected, and the 

upper limit of the integral is set to infinite. The IIM is used to calculate the estimation as shown in 

Equation (11): 
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Equations (2)–(5) are taken into Equation(11) respectively. Let 
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When   is 0.65 mm, the non-linear relationship of 0x  , 0,0XE（ ）
, 

0,1XE（ ）
, 

0,2XE（ ）
, and

0,3XE（ ）
 is shown in Figure 3: 

 

Figure 3. Relationship of 0x  , 
0,0XE（ ）

, 
0,1XE（ ）

, 
0,2XE（ ）

, and 
0,3XE（ ）

. 

Let 
( ) ( )P t erf t
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We can get the estimation: 
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Which ignores the influence of the detector’s diameter and the gap size. Equation (17) is the 

expression of IIM. In this paper, we restrict ourselves to 
1
0

l
pLG 
  beam, and the situations of L-G 

beams with other modes are similar to this. 

Similar to the Gauss beam, we assume 

2

( ) ( )
tte

Q t erf t




 
, then: 

02
( ) ( ).X

x
E Q t Q
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(18) 

Thus, the estimation of 
1
0

l
pLG 
  beam can be obtained: 

1

0

( )
.

2
XQ E

x


 
 

(19) 

As shown in Figure 4, there is a maximum error in a certain measurement range. The linearity 

of position measurement using QD in x-direction is defined as: 

max ,L
x

E

S





 
(20) 

where maxLE  denotes the maximum error and S  is the measurement range. It is obvious that the 

maximum error of Gauss beam maxLE  is larger than the maximum error of 
1
0

l
pLG 
  beam max 2LE . 

Therefore, the linearity of the estimation of the 
1
0

l
pLG 
  beam is better than that of the Gaussian beam, 

which means a higher position measurement accuracy in theory. 

 

Figure 4. The simulation curves of estimation in the measurement range from −1 mm to 1 mm; the 

blue line represents the theoretical estimation; the red curve is the estimation of Gauss beam by 

simulation; and the green curve is the estimation of L-G beam by simulation. 

In Figure 5, the error 0 0x x x  
 increases with the increment of the distance from the origin. 

As mentioned before, the estimation of the 
1
0

l
pLG 
  beam has a better accuracy than that of the Gauss 

beam. Even so, the maximum error still reaches 0.016 mm, which will have a great impact on the 

accuracy of the system. Therefore, it is necessary to improve the IIM. 
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Figure 5. Errors of the 
1
0

l
pLG 
  beam and the Gauss beam using the IIM when   is 0.65 mm. 

2.2.2. Improved New Estimation Method 

It can be seen that the 

1

0

( )

2
XQ E

x 


  
 in Equation (19) is the product of two parts. 

1( )XQ E

 is a function of the XE , which determines the overall change trend of the entire function. 
  is the radius of the incident beam, which can be seen as the proportional coefficient of the centroid 

position and the estimation. 

In order to obtain a higher accuracy, an error compensation factor 
= ( , , )f R d 

 is introduced 

in consideration of the error effects of the detector diameter and the gap size. The estimation of the 

beam position can be written as: 

1

0

( )
( , , ),

2
XQ E

x R d  


   
 

(21) 

where 
( , , )R d 

 introduces factors R  and d  which are not considered by IIM. R  and d  

are fixed in a practical application, ( , , )R d   has only one variable parameter  . So we combine 

the last two parameters into one, redefined as the effective beam radius 
( , , )e R d    

, then: 

0 ( ) ,X ex G E   
 

(22) 

where 

1( )
( )

2
X

X

Q E
G E




. Equation (22) is the expression of the improved new estimation method. 

The effective beam radius e  represents the influence of , ,R d  on the beam position. In order 

to obtain the e , we assume a beam with a radius of   is incident on a QD with radius R and gap 

width d. The beam is moved from 
( ,0)

 to 
( ,0)

 at intervals of 0.001 mm. N sets of data points 

are measured along the x-direction. The centroid position of the beam 0 ( 1... )ix i N
and quadrant 

output current value AiI , BiI , CiI , DiI  are recorded. Then, we set the upper limit of the integral 

to the detector boundaries and calculate the estimation XiE  of each point according to Equation (9). 

Thus, we can get the XiE  corresponding to the 0ix . At the same time, 
( )XiG E

 of each point are 
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also obtained. With the least square method, the following mathematical model of residuals is 

constructed by substituting each pair of 
0 ( )i Xix G E 

 
，

 into Equation (22): 
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Let 
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 , the optimal e  can be obtained: 
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In this paper, we use Matlab to simulate the tendency of e  with the changes of 

d

R  and R



, 

as shown in Figure 6. As can be seen, 

d

R  has a small effect on the e . With the gradual increase of

R



, a peak of e  appears near 
1

R




. In this paper, a QD with R = 1.5 mm and d = 0.045 mm is 

discussed as an example. Figure 7 shows the relationship between   and e . As R and d are fixed, 

e  is only a function of the incident radius  . Because of the non-linear relationship between e

and  , the polynomial fitting method can be used to fit the expression of e . Since the difference 

of residuals between the six polynomials and the five polynomials is only 0.1 mm, the five polynomial 

fitting is adopted here, and the expression is as follows: 

5 4 3 21.0315 2.9185 1.7991 0.402 0.6992 0.7757.e           
 

(26) 

Substituting Equation (26) into Equation (22) results in the polynomial expression of the 

improved new estimation method: 

 

Figure 6. The tendency of e  with the changes of 

d

R  and R



. 
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Figure 7. Relationship between   and e  when R is 1.5 mm and d is 0.045 mm. 

3. Results and Discussion 

In order to evaluate the improved new estimation method, the maximum error xMAX
 and the 

root mean square error xRMSE
 are adopted. The specific analysis is as follows. 

xMAX
 is the maximum value of xi , which represents the extreme value of the error in the 

detection range: 

   0 0( ) ,xMAX xi i e iMAX MAX x x    
 

(27) 

xRMSE
 is the root mean square error (RMSE), which is used to measure the deviation between 

the observed value and the true value in the detection range: 

2 2
0 0

1 1

1 1
= [ ( ) ] ,

N N

xRMSE xi i e i
i i

x x
N N

  
 

  
 

(28) 

When   is 0.95 mm, e  is 1.1124 mm. As shown in Figure 8, the xMAX
 of the IIM in the 

detection range of [−0.95~0.95 mm] is 0.096 mm, while the xMAX
 of the improved new estimation 

method is 0.0025 mm which is 97.4% lower than the IIM. In addition, the xRMSE
 of the IIM is 0.0497 

mm, while the xRMSE
 of the improved new estimation method is only 0.0012 mm, which is reduced 

by 97.6%. 
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Figure 8. Comparison of the errors between the improved new estimation method and the infinite 

integral method when   is 0.95 mm. 

It is worth noting that there are two main types of sources of error in the measurement system: 

One is the random error caused by the factors such as dark current of the QD and the asymmetry or 

distortion of the beam; the other is the inherent error existing in the positioning method. The main 

aim of our method is to eliminate the inherent error. Therefore, a lower signal-to-noise ratio as well 

as an L-G beam asymmetry or a distortion will affect the position measurement results. In 

consideration of that, filters should be deployed in the system, and increasing the signal energy is 

also a good way to improve the signal-to-noise ratio. 

When we change the   in the range of [0.15 mm, 0.95 mm], the curves of the xRMSE
 using 

IIM and the improved new estimation method are shown in Figure 9. It can be seen that there is a 

little difference between the xRMSE
 of the two methods when the radius is near 0.75 mm. This is 

mainly because an L-G beam with the radius about 0.75 mm is less affected by the gap and avoids 

too much energy loss. In addition, the xRMSE
 under different radii are all less than 0.004 mm. 

 

Figure 9. Comparison of the xRMSE
 between the improved new estimation method and the infinite 

integral method with different  . 

Table 1 compares the xMAX
 of the two methods with different  . Similar to the discussion of 

xRMSE
, the smallest difference between the xMAX

 of the two methods is obtained when   is 0.75 

mm. The improved new estimation method has smaller xMAX
 at different beam radii, all less than 
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0.01 mm. In brief, the improved new estimation method presented in this paper has better performances 

both in terms of xMAX  and xRMSE , and it also shows good stabilities for different beam radii. 

For the improved new estimation method, only one parameter effective radius e  is introduced. 

Compared with the method mentioned in Reference [24], the new method has less parameters, which 

are more suitable for practical applications. 

Table 1. Comparison of the xMAX  between the improved new estimation method and the infinite 

integral method for different radii. 

 /mm e /mm 
xMAX

 of the Infinite 

Integral Method/mm 

xMAX
 of the 

Improved New 

Estimation 

Method/mm 

Decrease 

Percententage 

of the xMAX
 

0.15 0.9057 0.0225 0.0047 79.1% 

0.25 0.9216 0.0227 0.0039 82.8% 

0.35 0.9359 0.0228 0.0036 84.2% 

0.45 0.9463 0.0228 0.0035 84.6% 

0.55 0.9556 0.0223 0.0037 83.4% 

0.65 0.9696 0.0173 0.0057 67.1% 

0.75 0.9957 0.0095 0.0076 25.0% 

0.85 1.0414 0.0419 0.0097 76.8% 

0.95 1.1124 0.0960 0.0025 97.4% 

4. Conclusions 

In conclusion, an improved position measurement method for the L-G beams has been 

proposed. Through introducing the effective radius, the error effects of the detector diameter and the 

gap size are compensated. Therefore, compared with IIM, significant accuracy improvement is 

realized without introducing a large number of parameters. It is verified by simulation that this 

approach can reduce the maximum error by 97.4% when the beam radius is 0.95 mm; meanwhile, the 

root mean square errors under different radii are all less than 0.004 mm. The simulation results show 

the robustness and accuracy of our method with respect to different spot radii. In addition, the 

proposed method is also applicable for other types of QDs with different radii and gaps. Because of 

these advantages, this method is expected to be applied in an OAM wireless optical communication 

system using multiplexing of OAM beams and optical tweezers. 
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