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Abstract: Diffusion-based salient region detection methods have gained great popularity. In most
diffusion-based methods, the saliency values are ranked on 2-layer neighborhood graph by connecting
each node to its neighboring nodes and the nodes sharing common boundaries with its neighboring
nodes. However, only considering the local relevance between neighbors, the salient region may be
heterogeneous and even wrongly suppressed, especially when the features of salient object are diverse.
In order to address the issue, we present an effective saliency detection method using diffusing process
on the graph with nonlocal connections. First, a saliency-biased Gaussian model is used to refine
the saliency map based on the compactness cue, and then, the saliency information of compactness
is diffused on 2-layer sparse graph with nonlocal connections. Second, we obtain the contrast of
each superpixel by restricting the reference region to the background. Similarly, a saliency-biased
Gaussian refinement model is generated and the saliency information based on the uniqueness cue
is propagated on the 2-layer sparse graph. We linearly integrate the initial saliency maps based on
the compactness and uniqueness cues due to the complementarity to each other. Finally, to obtain
a highlighted and homogeneous saliency map, a single-layer updating and multi-layer integrating
scheme is presented. Comprehensive experiments on four benchmark datasets demonstrate that the
proposed method performs better in terms of various evaluation metrics.

Keywords: saliency detection; Gaussian model; diffusion process; nonlocal connections

1. Introduction

Saliency detection, which aims to find the most noteworthy region in a scene, is becoming
increasingly important, especially when the amount of image is explosively increasing in the age of Big
Data. It has been effectively applied in many computer vision tasks, such as image segmentation [1],
object detection and recognition [2,3], and image compression [4].

Many saliency detection methods have been proposed. These models can generally be categorized
into top-down and bottom-up methods in terms of the mechanisms. Top-down methods [5,6] are
task-driven which generally require supervised learning and need to exploit high-level human
perceptual knowledge. Bottom-up methods [7–15] are data-driven and usually exploit low-level
cues, such as features, colors, and spatial distances to construct saliency maps. Most bottom-up
methods adopt compactness [8,9,16], uniqueness [7,13–15], and background cues [10–12].

Most compactness-based methods [8,9,16] consider the spatial variance of features.
Generally, salient region has a low compactness variance due to the tight distribution, whereas the feature
of background is distributed over the entire image, which means the higher compactness variance.
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However, the background regions may be wrongly highlighted, especially when the feature of
background also has a compact distribution.

Contrast to the compactness-based methods, the most uniqueness-based methods, consider the
difference between image pixels or regions. According to the contrastive reference regions, these methods
can be roughly divided into local and global contrast-based methods. Local contrast-based methods [13,
14] obtain the uniqueness of pixels or regions with respect to their neighborhoods, while global
contrast-based methods [7,15] restrict the reference regions to the entire image. However, the local
contrast-based methods tend to highlight the edges of salient region rather than the whole salient region,
while the global contrast-based methods are inclined to emphasize the entire image in some cases.

Background-based methods [10–12] construct the saliency map via considering the location
property of the background region in the image. On the contrary, center prior directly introduces the
location prior knowledge of the salient object itself. But substantially, both of them are the explanations
of feature distribution in the spatial dimension, and they are both motivated by the psychophysical
observations that salient objects seldom touch the image boundary, whereas the background regions
can be easily connected to the boundary. However, the background prior may be ineffective because
the salient regions do not always appear at the center of image.

Although the above-mentioned methods have achieved good performances in some respects,
every low-level cue has its own limitations. To address these issues, many combined algorithms
are proposed. Diffusion-based methods [9,16–36], which propagate the saliency information on the
graph, are one of the effective methods. Liu et al. [18] constructed a conditional random field to
combine multiple features for salient object detection. Ren et al. [20] applied a Gaussian Mixture
Model (GMM) to cluster superpixels, and calculated the saliency value using compactness metric with
modified PageRank propagation. Mai et al. [21] presented a data-driven approach to aggregate the
saliency that generated by multiple individual saliency detection methods using a conditional random
field. Gopalakrishnan et al. [22] formulated the problem of salient object detection in images as an
automatic labeling problem on the vertices of a weighted graph. Yang et al. [23] ranked the similarity
of the image elements (pixels or regions) with foreground cues or background cues via graph-based
manifold ranking. Jiang et al. [24] set virtual boundary nodes as the absorbing nodes in a Markov chain,
and computed the absorbed time from transient node to absorbing nodes as the metric of saliency value.
Lu et al. [26] proposed a method to learn optimal seeds for object saliency via combining the low-level
and mid-level vision features. Sun et al. [27] exploited the relationship between the saliency detection
and the Markov absorption probability to construct the saliency map. Jiang et al. [28] used the most
dominant eigenvectors to re-synthesize the diffusion matrix and construct the seed vector based on the
correlations of diffusion maps between the non-border nodes. Li et al. [29] proposed the regularized
random walks ranking to formulate pixel-wised saliency maps from the superpixel-based background
and foreground saliency estimations. Qin et al. [30] introduced the Cellular Automata mechanism
into saliency detection via analyzing the intrinsic relevance of similar regions through interactions
with neighbors. Li et al. [31] devised a co-transduction algorithm to fuse both boundary and object
labels based on an inter propagation scheme. Gong et al. [32] employed the Teaching-to-Learn and
Learning-to-Teach strategies to logically propagate the unlabeled superpixels from simple to difficult.
Xiang et al. [34] propagated the background-driven saliency information on an optimized graph.
Zhou et al. [9] proposed a bottom-up salient region detection diffusion-based method by integrating
compactness and local contrast cues. Zhou et al. [16] propagated the saliency and background seed
vectors on a two-layer sparse graph. Most above-mentioned diffusion-based methods ranked the
saliency values on 2-layer neighborhood graph (or 2-layer sparse graph) by connecting each node to its
neighboring nodes and the nodes sharing common boundaries with its neighboring nodes (or the most
similar node that shares a common boundary with its neighboring nodes). In other words, most of them
merely exploited the intrinsic relevance of local regions via measuring the similarities between each
other. However, when the neighborhood nodes of salient regions are inhomogeneous or incoherent,
the local connective weights, which are supposed to have a high value, may be low. Thus, the saliency
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information may be ranked with an inaccurate connective weight. Naturally, as shown in Figure 1, the
inner salient region may be inhomogeneous, and the background may be wrongly highlighted.

Figure 1. Visual comparisons of the diffusion-based methods with the 2-layer neighborhood graph
(GBMR [23], MC [24], IDCL [9]), 2-layer sparse graph (TLSG [16]) and our graph.

In this paper, we put forward an effective method to overcome these issues. In term of the local
relevance, the 2-layer sparse graph is adopted to optimize the local connections as well as [16], which is
conducted by connecting each node to its neighboring nodes and the most similar node that shares a
common boundary with its neighboring nodes. In term of the nonlocal relevance of different elements,
we extend the nonlocal intrinsic relevance into the 2-layer sparse graph by connecting each node to
the “true-foreground” and “true-background” seeds. As shown in Figure 2f, our proposed graph can
effectively highlight the salient regions with a consistent value. What is more, the use of the nonlocal
connections can effectively improve the performances of 2-layer neighborhood graph, which can be
illustrated in Figure 2d. Second, to address the defect of the center-biased Gaussian model, we design
a saliency-biased Gaussian model to refine the initial saliency maps generated by the compactness and
uniqueness cues. Finally, a single-layer updating and multi-layer integrating scheme is generated to
highlight the salient regions and make full use of the multi-scale saliency information.

The contributions of our paper can be summarized as follows:

1. The nonlocal intrinsic relevance is exploited into the 2-layer sparse graph, and with the saliency
information based on different feature cues, we construct the new foreground and background
biased diffusion matrix.

2. A saliency-biased Gaussian model is presented to overcome the defect of the center-biased model.
3. To preferably highlight the salient regions and excavate the multi-scale saliency information,

we design a single-layer updating and multi-layer integrating algorithm.

The remainder of this paper is organized as follows. In Section 2, we elaborate the proposed
saliency detection method. In Section 3, extensive experiments are executed to evaluate the proposed
approach with comparisons to the state-of-the-art methods on four datasets. In Section 4, we analyze
the limitation of our method. In Section 5, we conclude this paper.
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Figure 2. Visual comparisons of different graph-based methods. (a) Original image; (b) Ground truth;
(c) Saliency maps produced by 2-layer neighborhood graph; (d) Saliency maps produced by 2-layer
neighborhood graph with nonlocal connections; (e) Saliency maps produced by 2-layer sparse graph;
(f) Saliency maps produced by 2-layer sparse graph with the nonlocal connections.

2. Proposed Approach

In this section, our proposed approach is presented in detail, the process of which is shown
in Figure 3. First of all, to improve the robustness of multi-scale salient regions, we use the
SLIC (simple linear iterative clustering) model [37] to abstract the input image into uniform and
compact regions at five scales. Second, a saliency-biased (compactness-biased) Gaussian model
is constructed to refine the initial saliency maps generated by the compactness cue, and then, the
compactness information is diffused on the 2-layer sparse graph with the nonlocal connections.
Similarly, the uniqueness-biased Gaussian model is formed, and the uniqueness information is
propagated on the 2-layer sparse graph (without the nonlocal connections). Finally, we put forward a
single-layer updating and multi-layer integrating scheme to obtain a more homogeneous salient region.

Figure 3. Main steps of the proposed approach.

2.1. 2-Layer Sparse Graph Construction

After abstracting the image, the superpixels are mapped into a graph G = (V, E) with N nodes
V = {vi|1 ≤ i ≤ N }, and edges E =

{
eij
∣∣1 ≤ i, j ≤ N

}
. Node vi corresponds to the image superpixels

and edge eij links nodes vi and vj to each other with an affinity matrix W = [wij]N×N . In this paper,
as proposed in [16], a 2-layer sparse graph is adopted. As shown in Figure 4, the graph is generated by
connecting each node to its neighboring nodes and the most similar node sharing a common boundary



Appl. Sci. 2018, 8, 2526 5 of 22

with its neighboring nodes. As is illustrated in Figure 2, contrast to the 2-layer neighborhood graph,
the 2-layer sparse graph can effectively avoid the disturbances of the dissimilar redundant nodes.
In addition, the nodes on four sides are connected and any pair of boundary nodes are considered to
be adjacent as well as [23,24,27].

Figure 4. The proposed Graph model. (a) Input image. (b) Ground truth. (c) A diagram of the
connections of one of the nodes. A node (illustrated by a yellow dot) connects to its adjacent nodes
(green dot and local connection) and the most similar node (pink dot and local connection) sharing
common boundaries with its adjacent nodes. Additionally, each node connects to the “true-foreground”
nodes (red dot and nonlocal connection) and the “true-background” nodes (black dot and nonlocal
connection). Each pair of boundary nodes connects to each other (blue dot and local connection).

In this paper, we define the weight wij of edge eij in 2-layer sparse graph as:

wij =

 e−
||li−lj ||

σ2 if node vi is connected with vj
0 others

(1)

where
∣∣∣∣li − lj

∣∣∣∣ is the Euclidean Distance between the node i and j in CIELAB color space. σ is
a parameter controlling strength of the weight. We define the affinity matrix of the graph as
W = [wij]N×N , and a degree matrix D = diag{d11, d22, . . . , dNN} is generated, where dii = ∑j wij.

2.2. Compactness-Based Saliency Map

2.2.1. Compactness Calculation

Compactness is the measurement of the spatial variance of low-level feature. In [8], the compactness
is defined as:

Di =
N

∑
j=1

∣∣∣∣pj − µi
∣∣∣∣2w(ci, cj) (2)

where w(ci, cj) describes the similarity of color ci and color cj of segments i and j,pj is again the position
of segment j, and µi = ∑N

j=1 w(ci, cj)pj defines the weighted mean position of color ci.
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In this paper, we adopt the similar constituents with the Equation (2). However, instead of
defining wij as a Gaussian filtering function, we explain the similarity using:

aij = e−
||li−lj ||

σ2 (3)

As proposed in [16], in order to describe the similarity more precisely, we propagate the similarity
using manifold ranking [9] on the 2-layer sparse graph:

S = (D− αW)−1 A (4)

where A =
[
aij
]

N×N , S =
[
sij
]

N×N is the similarity matrix after the diffusion process, and α specifies
the relative contributions to the ranking scores from the neighbors and the initial ranking scores.

As proposed in [16], we finally define the compactness as:

ComVal(i) =

N
∑

j=1

∣∣∣∣pj − µi
∣∣∣∣·sij · nj

∑N
j=1 sij · nj

(5)

where nj is the number of pixels that belong to superpixel vj, pj =
[

px
j , py

j

]
is the centroid of the

superpixel vj, and µi = [µx
i , µ

y
i ] is defined as:

µx
i =

∑N
j=1 sij · nj · px

j

∑N
j=1 sij · nj

(6)

Similarly, µ
y
i is defined as:

µ
y
i =

∑N
j=1 sij · nj · p

y
j

∑N
j=1 sij · nj

(7)

Salient regions generally have a low compactness value due to the concentrated distribution,
whereas the background regions usually spread over the whole image, which means a high
compactness value. Therefore, we calculate the initial saliency map using:

ComSal(i) = 1− norm(ComVal) (8)

The superpixels can be roughly divided into foreground seeds and background seeds based on
the mean value of ComSal. We refer the two cluster sets of foreground seeds and background seeds as
FG and BG, respectively.

2.2.2. Compactness-Biased Gaussian Model

Center-prior introduces the location prior knowledge of the salient object. It is inspired by the
observation that salient object always appears at the center of image. In [38,39], center prior has been
used in the form of Gaussian model:

G(i) = exp

[
−
(
(xi − µx)

2

2σ2
x

+
(yi − µy)

2

2σ2
y

)]
(9)

where xi and yi are the central coordinates of the superpixel vi, µx and µy represent the coordinates of
the image center. However, as Figure 5c shows, the center-biased Gaussian model is not effective and
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may wrongly highlight the background. Inspired by [12], we present the compactness-biased Gaussian
model as follows:

Gcom(i) = exp

[
−
(
(xi − wx)

2

2σ2
x

+
(yi − wy)

2

2σ2
y

)]
(10)

where wx, wy are defined as: 
wx =

∑
NFG
i=1 ComSal(i)·xi

∑
NFG
i=1 ComSal(i)

wy =
∑

NFG
i=1 ComSal(i)·yi

∑
NFG
i=1 ComSal(i)

(11)

where NFG is the number of the superpixel in the foreground seeds. To avoid the disturbances of
the background seeds, we merely choose the foreground seeds to participate in calculation. We set
σx= 0.15× H and σy = 0.15×W, where W and H respectively denote the width and height of the
image. Figure 5d shows the effects of the proposed compactness-biased Gaussian model. As it is
illustrated, compared to the general Gaussian model, the proposed model is more precise to highlight
the salient regions and suppress the background regions.

With the compactness-biased Gaussian model, we refine the initial saliency map generated by
Equation (8):

SGauss_Com(i) = ComSal(i) · Gcom(i) (12)

We obtain the final compactness-based saliency map using the similarity aij as the weight of the
linear combination:

S f g_com(i) = ∑
vj∈FG

SGauss_Com(j) · aij (13)

Figure 5. The jet color maps of different Gaussian refinement models (The values of the Gaussian
models have been converted to 0–255). (a) Original image; (b) ground truth; (c) general Gaussian model
(superpixel-level); (d) compactness-biased Gaussian model(superpixel-level); (e) uniqueness-biased
Gaussian model (superpixel-level); (f) pixel-wise Gaussian model; (g) pixel-wise saliency-biased
Gaussian model.

2.2.3. Diffusion Process with Nonlocal Connections

As shown in Figure 2, the variance of feature in the foregrounds may lead to the variance of
the saliency value, which may result in the inconsistency of salient regions. To address this issue,
many diffusion-based models have been presented [9,16–36]. But most of them merely exploit the local
intrinsic relevance on the graph. However, the weights between the local relevance may be inaccuracy,
especially when the features of the salient regions have a complex distribution, after the diffusion
process which is constructed only with local connections, the incorrect weights on the graph will
inevitably lead to the suppression of the partial salient regions, which can be illustrated in Figure 2.
Inspired by [36], we present a new diffusion model with nonlocal connections to address this issue.
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In Section 2.2.1, we have roughly divided the superpixels into the foreground seeds and the
background seeds. To find the more accurate foreground seeds and background seeds, we generate the
“true-foreground” and “true-background” seed sets which are respectively referred as Tf, Tb using:{

Tf = {vi|ComSal(i) ≥ 0.9, i = 1, 2, · · · , N}
Tb = {vi|ComSal(i) ≤ 0.1, i = 1, 2, · · · , N}

(14)

As Figure 4 shows, the nonlocal connections linking each node and Tf, Tb sets to each other are
appended into the 2-layer sparse graph. For each node in graph, the nonlocal weighted connections
measure the similarity with the foreground and background seed sets. After the manifold ranking
through the proposed graph, the nodes will lean towards the region type (foreground or background)
they belong to. This tendency will help to highlight the salient regions and compress the background
regions. In addition, the value of the salient regions can have a fine consistency, which is difficultly
acquired only with the local connections. With the compactness-based saliency information, we define
the nonlocal weighted connections as:

wnonloacl
ij =

{
e−(ComSal(i)−ComSal(j))2

if i or j ∈ Tf or Tb
0 others

(15)

Therefore, the weight of edge eij in 2-layer sparse graph with the nonlocal connections are defined as:

wcom
ij = wij + wnonlocal

ij (16)

where wij has been defined in Equation (1), similar with the Section 2.1, we construct the affinity matrix
of the graph as WCom = [wcom

ij ]
N×N

, and a degree matrix Dcom= diag{d11, d22, . . . , dNN} is generated,
where dii = ∑j wcom

ij .
We propagate the S f g_com using the manifold ranking [9] with the following formula:

Scom = (Dcom − αWcom)
−1S f g_com (17)

As shown in Figure 6, compare to the initial compactness-based saliency maps and the saliency
maps generated by the 2-layer sparse graph, the salient regions produced after the proposed diffusion
process are more uniform and highlighted.

Figure 6. Main phases of compactness-based saliency calculation. (a) Original images.
(b) Initial compactness-based saliency maps. (c) Saliency maps after compactness-biased Gaussian model.
(d) Saliency maps after the proposed diffusion process. (e) Saliency maps after diffusion on 2-layer sparse
graph. (f) Ground truth.
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2.3. Uniqueness-Based Saliency Map

The process of constructing the uniqueness-based saliency maps is similar to the process of
compactness-based saliency maps. But there still exists some differences, which will be detailed in the
following sections.

2.3.1. Uniqueness Calculation

The uniqueness and compactness cues are complementary to each other in some respects [9],
and many uniqueness-based models have been presented [7,13–15]. Most of them construct the saliency
map by comparing each pixel (or region) to the neighboring pixels (or regions) or the entire map,
which can be referred to the local contrast-based and global contrast-based methods, respectively.
However, as discussed in the Section 1, both of them have the limitation. Similar with [36], we sum
up the drawback as the unreasonable contrastive reference regions. The saliency comes from the
obvious difference with the background. Therefore, we calculate the uniqueness via restricting the
reference region to the background seeds set, which has been referred as BG in Section 2.2.1. In addition,
to further reduce the effect of the background, we use Scom as the weight to integrate the uniqueness.
The uniqueness is finally calculated with:

ConSal(i) = ∑j∈BG Scom·
∣∣∣∣li − lj

∣∣∣∣∣∣·spij (18)

where spij is the weight to control the contribution of the color in CIELAB color space, in this paper,
we set it as:

spij = exp(−
(pi − pj)

2

σ2 ) (19)

and as proposed in [7], σ2 = 0.4. Our proposed approach can well overcome the defect of the global
contrast-based models, which can be seen in Figure 7b,c. The whole salient regions can be precisely
highlighted rather than the whole image, and the background can be highly compressed.

Figure 7. Visual comparisons of global contrast-based method and our proposed uniqueness-based
method. (a) Original images. (b) Saliency maps based on global contrast-based cue. (c) Our proposed
uniqueness-based saliency maps. (d) Global-based saliency maps with Scom as weight and after
diffusion on 2-layer sparse graph with nonlocal connections. (e) Our proposed uniqueness-based
saliency map after diffusion on 2-layer sparse graph with nonlocal connections. (f) Scon saliency map.
(g) Ground truth.



Appl. Sci. 2018, 8, 2526 10 of 22

2.3.2. Uniqueness-Biased Gaussian Model

Similar with the compactness-biased Gaussian model, we construct the uniqueness-biased
Gaussian model as:

Gcon(i) = exp

[
−
(
(xi − wx)

2

2σ2
x

+
(yi − wy)

2

2σ2
y

)]
(20)

We redefine σx = 0.20× H and σy = 0.20×W, and wx, wy denote the weighted center of the
image based on the uniqueness: 

wx = ∑N
i=1 ConSal(i)·xi

∑N
i=1 ConSal(i)

wy = ∑N
i=1 ConSal(i)·yi

∑N
i=1 ConSal(i)

(21)

Different from the compactness-biased Gaussian model, we exploit all of the contrast value into
the calculation. The background regions have been effectively suppressed via restricting the reference
region to the background, so the saliency value of the background regions will be low, which means
the puny effect of the model.

With Equation (20), we refine the initial uniqueness-based saliency map as following:

SGauss_Con(i) = ConSal(i) · Gcon(i) (22)

2.3.3. Diffusion Process

We exploit the nonlocal connections into the 2-layer sparse graph to propagate the compactness
information in Section 2.2.3. Different from it, we spread the uniqueness information without the
nonlocal connections in this section. As analyzed in the Section 2.2.3, the exploitation of nonlocal
connections is a way to measure the similarities between each node and the foreground or background
seeds, which can be considered as another form of the uniqueness calculation process by restricting the
reference region to the foreground and background seeds. So if we diffuse the obtained uniqueness
information on the 2-layer sparse graph with nonlocal connections, it is equal to make up twice
uniqueness calculation processes by restricting the reference region to the background. As a result,
the salient regions may be over highlighted, which can be seen in Figure 7e. But as shown in Figure 7d,
when the contrastive reference region is the entire image (which is named as global contrast-based
method), the 2-layer sparse graph with nonlocal connections can still well highlight the whole salient
regions and suppress the background regions. In other words, the nonlocal connections are also
effective to improve the performances of other feature-based methods.

We propagate the saliency information based on the uniqueness cue using the manifold ranking
formula [9] on the 2-layer sparse graph:

Scon = (D− αW)−1SGauss_Con (23)

where D, α and W have been defined in Section 2.1.

2.4. Combination and Pixel-Wise Gaussian Refinement

We have acquired the compactness-based and uniqueness-based saliency map in Sections 2.2.3
and 2.3.3. As [9] proves, the compactness and uniqueness cues are complementary to each other in a
way. So we linearly combine the two saliency maps with:

Sunite = Scom + Scon (24)
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In Sections 2.2.2 and 2.3.2, the saliency maps have been refined with Equations (10) and (20).
However, the two models are both superpixel-level. To future refine the saliency map pixel-wisely,
we design the pixel-wise Gaussian model:

Gsal = exp[−
(
(xi − xc)

2

2σ2
x

+
(yi − yc)

2

2σ2
y

)
] (25)

where σx = 0.33× H, σy = 0.33×W, xc, yc are defined as:
xc = ∑

i

Sunite(i)·xi
∑
j

Sunite(j)

yc = ∑
i

Sunite(i)·yi
∑
j

Sunite(j)

i, j = 1, 2, 3, · · · · p (26)

xi and yi denote the coordinates of the pixel i, and p is the number of pixels.
We obtain the initial saliency map at each scale with the Equation (25):

Sinit = Sunite · Gsal (27)

2.5. Single-Layer Updating and Multi-Layer Integration

To future highlight the salient regions and effectively excavate the multi-scale saliency information,
we design a single-layer updating and multi-layer integration algorithm.

2.5.1. Single-Layer Updating

Liu et al. [18] and Achanta et al. [14] defined saliency detection as a binary segmentation problem
to separate the salient regions from the background. Inspired by this, we design the single-layer
updating scheme to obtain a more homogeneous salient region. First, we binarize the saliency map
at each scale with an adaptive threshold Ts generated by OTSU [40], and then, the pixels are divided
into two sets: the initial foreground and the initial background regions via the adaptive threshold.
Naturally, the pixels in the initial foreground regions need to be highlighted, while the pixels in the
background should be suppressed. Based on the above analysis, we design the single-layer updating
rule as:

Si+1
s = Si

s + sign(Si
s − Ti

s · 1) · ε i = 0, 1, 2 · · ·M (28)

where sign is the sign function to decide the type of the pixels, i is the number of iterations, Si
s denotes

the saliency values of all pixels at the scale s after i-th updating process, S0
s represents the initial saliency

map Sinit at scale s generated by the Equation (27). Ti
s denotes the adaptive threshold of the saliency

map at the scale s after i-th updating process, 1 is the ones matrix with the image size of W × H, and ε

is the updating weight. In this section, we empirically set ε = 0.08. After M times iterations, the finial
saliency map SM

S at scale s can be obtained. As shown in Figure 8d, compared to the initial saliency
maps at each scale, the foreground regions are more highlighted, and the background regions with the
low saliency values can be well suppressed.
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Figure 8. Main phases of pixel-wise refinement process. (a) Original image. (b) Sunite saliency maps.
(c) Sinit saliency maps. (d) Saliency maps after single-layer updating process. (e) Saliency maps after
multi-layer integration process. (f) Ground truth.

2.5.2. Multi-Layer Integration

In Section 2.5.2, we have acquired the finial saliency map at each scale. To make full use of the
superiority of the multi-layer segmentation, we present the multi-layer integration model. We add
all of the saliency maps which are generated after single-layer updating process to get the coalescent
saliency map Sall , and then, the adaptive threshold of Sall which is referred as Tall is calculated via
OTSU [40]. Similarly, we make up the rule to update the saliency maps generated by the single-layer
updating process:

Ss = SM
s + sign(SM

s − Tall · 1) · τ (29)

where τ = 0.08 is the updating weight. After this one time updating step, we obtain the finial saliency
map Ss at scale s, and then, the finial saliency map can be calculated as:

S =
1

Ns

Ns

∑
s=1

Ss (30)

where Ns = 5 is the number of scales. As Figure 8e shows, the salient regions are homogenous and
highlighted, which is significant for the subsequent image operation, such as object segmentation.

3. Experiment

To show the effectiveness of our proposed algorithm, we evaluated the proposed method on four
datasets: ASD [15], ECSSD [41], DUT-OMRON [23], PASCAL-S [42]. ASD dataset is the most widely
used benchmark and it contains 1000 images selected from the MSRA dataset. Compared to other
datasets, it can be detected relatively easily. ECSSD dataset contains 1000 semantically meaningful but
structurally complex images with pixel-wise ground truth. DUT-OMRON dataset is used to compare
models on a large scale, and it consists of 5168 images with complex background. PASCAL-S selects
850 natural images from the PASVAL VOC 2010 segmentation challenge.

We compared our method with 21 state-of-the-art methods, these methods can been
roughly divided into local contrast-based approaches (SR [13], AC [14]), global contrast-based
approaches (RC [7], FT [15], HC [7]), background-based approaches (GS [10], RBD [11], DSR [12]),
compactness-based approaches (SF [8]), multiple visual cue integration approaches (HS [41]),
diffusion-based approaches (GBMR [23], BSCA [30], MC [24], IDCL [9], TLSG [16]), and other
approaches (GC [43], GR [44], SWD [39], GU [43], MSS [45], FES [46]).
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3.1. Experimental Setup

There are several parameters in the proposed method: N, the number of superpixel nodes used in
the SLIC model; σ in Equations (1) and (3); α in Equations (4), (17), and (23); σx, σy in Equations (10),
(20) and (25); the updating time M in Equation (28); and the updating weight ε, τ in Equations (28) and
(29). For all four datasets, we experimentally set parameter N = 120, 140, 160, 200, 250, 300; σ2 = 0.1;
α = 0.99; σx(σy) = 0.15× H(0.15×W) in Equation (10);σx(σy) = 0.20× H(0.20×W) in Equation (20);
σx(σy) = 0.33× H(0.33×W) in Equation (25); M = 3; ε = τ = 0.08. We carried out a series of
experiments to investigate the influence of various factors on the saliency detection. The experiments
used the ASD dataset, and the performance evaluation is shown in Figure 9.

Figure 9. Saliency performance for different parameter settings. Left: precision-recall curves;
Right: precision, recall, and F-measure at adaptive threshold. (a) σx, σy, (b) M, (c) ε, τ.

3.2. Evaluation Criteria

To prove the effectiveness of our proposed method, we evaluated the performance of the saliency
detection methods using three popular evaluation criterions: the average precision-recall curve,
F-Measure, and mean absolute error (MAE).
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For a saliency map, it can be converted to a binary mask M and Precision with Recall can be
computed by comparing M with ground-truth GT:

Precision =
|M ∩GT|
|M| (31)

Recall =
|M ∩GT|
|GT| (32)

For each method, a pair of the precision and recall scores can be obtained with the threshold ranging
from 0 to 255. Using the sequence of precision-recall pairs, the precision-recall curve can be plotted.

F-measure is a harmonic mean of precision and recall, as in [47], we defined it as:

Fβ =
(1 + β2) · precision · recall

β2 · precision + recall
(33)

Following [47], we set β2 = 0.3 to emphasize the precision. The F-measure curves can be drawn
with the threshold sliding from 0 to 255. Additionally, we applied an adaptive threshold Ta to the
saliency map, which is defined as twice the mean saliency of the image:

Ta =
2

W · H ∑W
i=1 ∑H

j=1 S(i, j) (34)

where W and H are the width and height of the saliency map S.
To further evaluate the methods, we adopted the mean absolute error (MAE) as another evaluation

criterion. The MAE score calculates the average difference between the saliency map M and the ground
truth GT, it is defined as:

MAE =
1

W · H
W

∑
i

H

∑
j
|S(i, j)− GT(i, j)| (35)

MAE is more meaningful in evaluating the applicability of a saliency model in vision task such as
object segmentation.

3.3. Parameter Analysis

We conducted a series of experiments to investigate the influence of various factors on saliency
detection. These factors or parameters include σx, σy in Equations (10), (20), and (25); the updating time
M in Equation (28); and the updating weight ε, τ in Equations (28) and (29); the graph with the nonlocal
connections; and the integration of the feature-bias Gaussian model; the diffusion process with nonlocal
connections; the single-layer updating and the multi-layer integration process. These experiments are
processed in ASD dataset.

(1) Parameters: The parameter σx, σy decide the distribution amplitude of Gaussian model.
To precisely refine the saliency map based on different cue, the σx, σy in Equations (10), (20), and (25)
should be different with each other. Compactness cue denotes the spatial variance of features, but the
background may be wrongly highlighted, especially when the background also has a compact
distribution. So the σx, σy in Equation (10) should be lower than others. Figure 9a shows the
precision-recall curves and the average precisions, recalls and F-measures using an adaptive threshold
with different σx, σy values in Equations (10), (20), (25). As we can see, the different values of σx(σy)

within the scope of the stated ranges have a similar result. Similarly, when the value of M and ε, τ are
varied, the performances change a small amount, which can be seen in Figure 9b,c. This means the
performances are not sensitive to these two parameters. But to promote the recall and balance the
performance, we set M = 3 and ε = τ = 0.08.

(2) Graph Construction: We expanded the nonlocal connections to 2-layer sparse graph. To validate
it, we compared the performances of 2-layer neighborhood graph, 2-layer neighborhood graph with
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nonlocal connections, 2-layer sparse graph, and our proposed graph. Figure 10 shows the precision-recall
curves and the average precisions, recalls and F-measures using an adaptive threshold. As is illustrated in
Figure 10, the nonlocal connections can effectively promote the performance of the 2-layer neighborhood
graph. Additionally, the result of the 2-layer sparse graph also has an improvement, whereas the progress
may be slightly lower than 2-layer neighborhood graph. Respectively, the 2-layer sparse graph and
the nonlocal connections can improve the topotaxy between different elements locally and globally.
Generally, the local topotaxy may have a bigger impact of the results than the nonlocal topotaxy because
of the closer spatial proximity. So as shown in Figure 10, the improvement of results via 2-layer sparse
graph can be more obvious than the nonlocal connections. But the nonlocal connections can still improve
the result of the 2-layer sparse graph by reducing the impact of the imprecise local connections.

Figure 10. Evaluation of influence of different graph construction methods. (a) Precision-recall curves.
(b) Precision, recall, and F-measure at adaptive threshold.

(3) Component Analysis: We combined the saliency-biased Gaussian model, the diffusion process
with nonlocal connections, the single-layer updating and multi-layer integration process in our algorithm.
To prove the efficiency of these components, a series of experiments were carried out. The precision-recall
curves and the average precisions, recalls, and F-measures at an adaptive threshold are displayed
in Figure 11. As is illustrated in Figure 11b, the saliency-biased Gaussian model is effective in the
improvement of precision, while the diffusion process with nonlocal connections mainly contributes to
the recall. This can be explained logically. The saliency-biased Gaussian model can highlight the salient
regions and compress the background, which means the high precision according to the Equation (31).
Relatively, as the above mentioned, the diffusion process with nonlocal connections can obtain a more
homogenous salient region, which leads to the high recall according to the Equation (32). To have a
better comprehensive performance, the single-layer updating and multi-layer integration process were
implemented to balance the precision and the recall.

Figure 11. Valuation of influence of different components. (a) Precision-recall curves. (b)
Precision, recall, and F-measure at adaptive threshold. Com: compactness-based saliency calculation;
Uni: uniqueness-based saliency calculation; Gau: saliency-biased Gaussian model; Dif: diffusion process
with nonlocal connections; SM: single-layer updating and multi-layer integration process.
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3.4. Visual Comparisons

To demonstrate the advantage of our proposed algorithm, some images with complex
backgrounds are shown in Figure 12. We compared our method with state-of-the-art approaches on
the ASD, ECSSD, DUT-OMRON, PASCAL-S datasets.

Figure 12. Visual comparison of state-of-the-art approaches to our method on four datasets.

As Figure 12 shows, the most salient region detection methods can effectively manage cases with
relatively simple backgrounds and homogenous objects. However, these methods fail to manage
the complicated cases, especially when the salient object and the background are similar with each
other. In contrast, our method can deal with these intricate scenarios more effectively. We compare
these methods in the following two aspects: (1) the effectiveness of the background suppression;
(2) the integrity and uniformity of the salient objects. First, as shown in Figure 12, only one low level
cue cannot effectively suppress the background regions, such as the global contrast-based method
RC [7], which can be proved with the second image in DUT-OMRON dataset. When the salient regions
are compacted, SF [8] which utilizes the compactness cue can have a good performance, such as the
fourth image in ASD dataset. However, SF may wrongly suppress the salient regions. In addition,
the background-based method RBD [11] cannot always suppress the background effectively, such as
the third image in DUT-OMRON dataset and the second image in PASCAL-S dataset. TLSG [16] which
generated the saliency map with the compactness cue and diffused the saliency map on 2-layer sparse
graph can obviously improve the performance in some cases, such as the second and third images in
DUT-OMRON dataset. However, there still exists some cases that it cannot manage effectively, such as
the first images in ECSSD dataset and PASCAL-S dataset. HS [41] which exploited the hierarchical
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saliency can obtain a good performance, especially when the salient objects are small, such as the
second image in ASD dataset. But it cannot well suppress the background regions, such as the third
images in DUT-OMRON dataset. Relatively, the diffusion-based methods BSCA [30], GBMR [23],
MC [24] can obtain a homogeneous salient region. But when the salient objects are heterogeneous
and the background regions are cluttered, they cannot always highlight the salient objects completely
and uniformly, in some cases, they even wrongly highlight the background regions, such as the
second images in ASD dataset and DUT-OMRON dataset. However, our method can manage these
complicated scenarios effectively. Especially, when the salient objects are not compacted, our method
can also highlight the salient region uniformly but slightly incompletely, such as the third images in
the PASCAL-S dataset. What is more, our method shows the well robustness to the scale variations
of the salient objects. When the salient objects are relatively small, our method can still have a good
performance, which can be seen in the first and fourth images in DUT-OMRON dataset. In some
scenes, the saliency maps generated by our method can almost be the same with the ground truth.

3.5. Quantitative Comparison

We quantitatively evaluated the performance of our method comparing to other published results.
We carried out the experiment on the ASD, ECSSD, DUT-OMRON, and PASCAL-S datasets and compared
the results using three evaluation criteria: the average precision-recall curve, F-measure, and MAE.

3.5.1. ASD

We quantitatively compared the performances of our method with 20 state-of-the-art methods: SR [13],
AC [14], RC [7], FT [15], GS [10], RBD [11], DSR [12], SF [8], HS [41], GBMR [23], BSCA [30], MC [24],
IDCL [9], TLSG [16], GC [43], GR [44], SWD [39], GU [43], MSS [45], and FES [46]. The performances of
MC [24], GBMR [23], and RBD [11] methods are at top in a recent saliency benchmark study [47].

The average precision-recall curves in Figure 13a show the proposed method performs better
than other approaches for the ASD dataset. As shown in Figure 13b, compared to the diffusion-based
methods GBMR [23], BSCA [30], MC [24], IDCL [9], TLSG [16], our method can obtain a higher
precision and F-measure but a slightly lower recall. In addition, the MAE of our method is lowest in
these methods, which means the tiny difference between the saliency map and the ground truth.

Figure 13. The comparison results on the ASD dataset. (a) Precision-recall curves. (b) Precision, recall,
and F-measure at adaptive threshold. (c) Mean absolute error (MAE).
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3.5.2. ECSSD

We compared our method with 15 saliency detection algorithms: SR [13], RC [7], FT [15], GS [10],
RBD [11], DSR [12], SF [8], HS [41], GBMR [23], MC [24], BSCA [30], IDCL [9], SWD [39], GC [43],
and TLSG [16]. Figure 14 shows the effectiveness of our method.

Figure 14. The comparison results on the ECSSD dataset. (a) Precision-recall curves. (b) Precision,
recall, and F-measure at adaptive threshold. (c) MAE.

The precision-recall curves in Figure 14a show the proposed approach can obtain a better
performance than other methods for recall values from 0 to 0.9, but it performs poorly compared with
the BSCA [30], DSR [12], and TLSG [16] for recall values from 0.9 to 1. In addition, our method can
obtain a highest precision and F-measure among these saliency detection methods, which can been
seen in Figure 14b. Similar with the performance of our method on ASD dataset, MAE of our method
is also the lowest.

3.5.3. DUT-OMRON

Using the DUT-OMRON datasets, we quantitatively compared the proposed method with nine
state-of-the-art approaches: SF [8], MC [24], RC [7], GS [10], RBD [11], HS [41], GBMR [23], BSCA [30],
and TLSG [16]. As shown in Figure 15a, our method performs better than other methods for recall
values from 0 to 0.95, but the precision of the proposed method is slightly lower than RBD [11] for
recall values from 0.95 to 1. As Figure 15b shows, our method can obtain a highest precision and
F-measure but a slightly lower recall. In addition, our method can obtain the lowest MAE, which is
illustrated in Figure 15c.
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Figure 15. The comparison results on the DUT-OMRON dataset. (a) Precision-recall curves. (b)
Precision, recall, and F-measure at adaptive threshold. (c) MAE.

3.5.4. PASCAL-S

Similarly, using the PASCAL-S datasets, we carried out the experiments to compare the proposed
method with 11 approaches: RC [7], HC [7], RBD [11], SF [8], HS [41], GBMR [23], BSCA [30], TLSG [16],
DSR [12], MC [24], GC [43]. The precision-recall curve in Figure 16a shows the proposed method can
obtain a better performance than other methods for recall values from 0 to 0.75. Figure 16b shows
the proposed method can acquire a good comprehensive performance with the highest precision and
F-measure. In addition, as is illustrated in Figure 16c, these methods can obtain a similar MAE value,
but the MAE of the proposed method is still lowest.

Figure 16. The comparison results on the DUT-OMRON dataset. (a) Precision-recall curves. (b)
Precision, recall, and F-measure at adaptive threshold. (c) MAE.

4. Failure Cases

As proved in the above section, our method performs better than most of the state-of-the-art
method in term of various evaluation metrics. However, the proposed method mainly depends on the
color information: the compactness cue considers the spatial variance of the color, while the uniqueness
cue uses the color contrast in the color space. Therefore, it may fail to manage the images that do not
have much color variation, especially when foreground and background objects have similar colors.
Figure 17 shows the estimated salient region produced by our method is inaccurate. To overcome this
limitation, some studies have been conducted by incorporating more features such as texture [48] or
even high-level knowledge [49]. We will work on these problems in the future.
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Figure 17. Failure cases of our method and some diffusion-based approaches.

5. Conclusions

In this paper, we proposed a saliency detection method by propagating the saliency seed vectors
calculated via compactness and uniqueness cues. First, we obtained the initial saliency maps based
on the optimized compactness and uniqueness cues. Then, a saliency-biased Gaussian model was
designed to refine the saliency maps more precisely. After considering the limitation of the local
intrinsic relevance, we exploited the nonlocal intrinsic relevance into 2-layer sparse graph to obtain
a more homogeneous salient region. Finally, we presented a single-layer updating and multi-layer
integration algorithm to effectively excavate the multi-scale saliency information. The comprehensive
experimental results demonstrated the effectiveness of the proposed method. What is more, the salient
regions generated by our method are uniform and highlighted, which is significant for the subsequent
image operations, such as object segmentation and object classification.
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