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Abstract With continuous advances in related technolo-
gies, precision tests of modern gravitational theories with
orbiting gradiometers becomes feasible, which may naturally
be incorporated into future satellite gravity missions. In this
work, we derive, at the post-Newtonian level, the new secu-
lar gravity gradient signals from the non-dynamical Chern–
Simons modified gravity for satellite gradiometry measure-
ments, which may be exploited to improve the constraints on
the mass scale MCS or the corresponding length scale θ̇ of
the theory with future missions. For orbiting superconducting
gradiometers, a bound MCS ≥ 10−7 eV and θ̇ ≤ 1 m could in
principle be obtained, and for gradiometers with optical read-
out based on the similar technologies established in the LISA
PathFinder mission, an even stronger bound MCS ≥ 10−6–
10−5 eV and θ̇ ≤ 10−1–10−2 m might be expected.

1 Introduction

Among modifications of Einstein’s general relativity (GR),
extensions to the Einstein–Hilbert action with second order
curvature terms are of particular interest, which may arise
from the full, but still lacking, quantum theory of gravity [1].
The Chern–Simons (CS) modified gravity [2–6] belongs to
such extensions of GR, which has physical roots in particle
physics and string theory. In particle physics, the CS modifi-
cation or the Pontryagin term �RR is known to be related to
the chiral current anomaly that caused by spacetime curva-
ture [7,8], which may also serve as a possible candidate that
sources the baryon asymmetry of the Universe [9] through
gravi-leptogenesis [10]. In string theory, the CS modification

a e-mail: xupeng@amss.ac.cn
b e-mail: qqllee815@chd.edu.cn

emerges as an anomaly-canceling term through the Green–
Schwarz mechanism [11]. More interestingly, the CS exten-
sion to GR may provide us insights into the physics of possi-
ble parity-violations in gravitation, that includes effects like
amplitude birefringent gravitational waves [5,12,13], differ-
ent gravito-magnetic (GM) sectors [12–14], and etc.. There-
fore, experimental tests of the CS modified gravity and the
resulted constraints are of importance.

The CS modified gravity is considered as an effective the-
ory, that the ultra-violet modifications to gravitation and their
possible observable effects are to be studied in more funda-
mental and sophisticated theories such as string theory or
loop quantum gravity. Theoretical studies had shown that in
CS modified gravity the Lorentz symmetry can be satisfied
[5,15,16], and, up to now, experimental constraints on CS
gravity are mainly from astrophysical observations and Solar
system tests. Of course, it is natural to expect that stronger
bounds on CS gravity might come from particle physics
because of the connections between these theories. In this
work, we will focus on the tests, with orbiting gradiometers,
of the non-dynamical formulation of the CS modified gravity
[5], where the coupling field or the deformation parameter
θ is externally prescribed (one notices that the arbitrariness
in θ could not be completely removed in the dynamical for-
mulation due to the different choices of the potential V (θ)).
The first constraint [14] on the time derivative of the cou-
pling scalar θ̇ and the corresponding mass scale MCS ∼ 1/θ̇

of the non-dynamical CS gravity was obtained based on the
observations from the LAGEOS I, II [17,18] and the Gravity
Probe-B [19] missions, which had set MCS ≥ 10−13 eV and
θ̇ ≤ 106 m, and a stronger bounds MCS ≥ 4.7 × 10−10 eV
and θ̇ ≤ 0.4 × 103 m (been revised in [20]) was obtained
based on the data from double binary pulsars [21].
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Theoretical studies of testing relativistic gravitational the-
ories with orbiting gravity gradiometers in space were firstly
carried out in 1980s [22–24], and such measurement schemes
could be naturally incorporated into future satellite gradiom-
etry missions or missions that carrying high sensitive gra-
diometer as one of the key payloads. For the baseline design
of high sensitive gravity gradiometers in micro-gravity or
zero-g environment in space, such as electrostatic or super-
conducting ones, one generally has pairs of proof masses
aligned along each of the measurement axes, and a combi-
nations of strategies of proof mass disturbances isolation,
proof mass position sensing and control is employed, see
[25–28] for reviews. The proof masses are generally enclosed
within sensor cages or housings, vacuum maintenances and
other shielding devices, and, with such setup, fluctuations
forces subjected to proof masses are to be reduced or iso-
lated as much as possible. The relative motions or accelera-
tions between the “free-falling” proof masses (with respect to
certain noise level) in space will give rise to measurements of
the tidal matrix from spacetime curvature R j

0i0 along certain

orbits (for Newtonian limits, R j
0i0 reduces to ∂i∂ jU with U

the Newtonian gravitational potential). For electrostatic and
superconducting gradiometers, the difference between the
compensating forces that restoring the proof masses to their
nominal positions can be used as the direct readouts of the
tidal accelerations. The GOCE satellite, launched in March
2009, carried an electrostatic gravity gradiometer containing
six proof masses in three pairs to map out the geopotential
of Earth, whose sensitive had reached 10 mE/Hz1/2 in the
frequency band of 5 ∼ 100 mHz [27]. With the continuous
advances, the multi-axis superconducting gravity gradiome-
ter under the development could reach the sensitivity about
10−2 mE/Hz1/2 in the band around 1 mHz in space [25,29].
As an alternative optical readout method, the relative motions
between proof masses as integrations of tidal accelerations
can also be precisely measured by onboard laser interferom-
eters1. The LISA PathFinder (LPF) mission [30,31], which
can be view as a demonstration of an one dimensional optical
gradiometer with the resolution of the onboard laser inter-
ferometer better than 9 pm/

√
Hz in the mHz band, had

even reached the noise floor of 10−3–10−4 mE/Hz1/2. Tests
of relativistic gravitational theories including the CS mod-
ified gravity with satellite gradiometry now becomes more
and more feasible, and for CS gravity a preliminary mea-
surement scheme had been studied in [32,33]. It was firstly
noticed by Mashhoon and Theiss [22,34–36] that along orbit
motions relativistic secular tidal effects that growing with
time may exist (known as the Mashhoon–Theiss anomaly),

1 Updated progresses and references of the research of optical gra-
diometer supported by the geo-Q research project can be found in http://
www.geoq.uni-hannover.de/a07.html. http://www.geoq.uni-hannover.
de/b07.html

which would greatly improve the measurement accuracy of
relativistic tidal components. Recently, the physical mecha-
nism behind such secular tidal effects had been studied and
explained in [37,38]. From the post-Newtonian (PN) point of
view, the difference between the relativistic precession of the
local free-falling frame (or the parallel transported measure-
ment axes) and the orbit plane with respect to the sidereal
frame will produce modulations of Newtonian tidal forces
along certain axes and then gives rise to periodic secular
tidal signals [37,39]. Back to the tests of the CS modified
gravity, in the far field expansion of the non-dynamical the-
ory, the CS gravity will add modifications to the GM sector
of GR [12,13], and therefore will give rise to new secular
tidal effects that could be read out precisely along certain
measurement axes of an orbiting gradiometer. In this work,
we derive, at the PN level, the new secular tidal tensor from
the non-dynamical CS modified gravity under the local Earth
pointing frame along a relativistic polar and nearly circular
orbit. For (possible) future experiments, we give the estima-
tions of the bound on the characteristic mass scale MCS that
could be drawn from such a measurement scheme.

2 Models and settings

The action of the non-dynamical CS modified gravity is given
by

S = 1

16πG

∫
d4x

√−g

(
R + 1

4
θ �RR

)
, (1)

for clarity the Natural units c = h = 1 are adopted hereafter
and in the end the SI units will be recovered. In the non-
dynamical theory with the canonical coupling [5], the scalar
θ is an externally prescribed and spatially isotropic function
that proportional to the coordinate time. The field equation
reads

Rμν − 1

2
gμνR + Cμν = 8πGTμν, (2)

where

Cμν = ∇ρθερλσ(μ∇σ R
ν)
λ + 1

2
∇ρ∇λθεσδλ(μRν)ρ

δσ .

The introduction of the new scalar degree of freedom gives
rise to a new constraint

∇νC
νμ = −1

8
∇μθ(�RR) = 0.

If the constraint is satisfied, the Bianchi identities and the
equations of motion for matter fields ∇νT νμ = 0 are recov-
ered, which ranks the non-dynamical CS modified gravity a
metric theory [40,41].

In this work, we model Earth as an ideal uniform and rotat-
ing spherical body with total mass M and angular momen-
tum J. The geocentric inertial coordinates system {t, xi } is
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defined as follows, that one of its bases ∂
∂x3 is parallel to the

direction of J and the coordinate time t is measured in asymp-
totically flat regions. For an orbiting proof mass or satellite,
we have the PN order relations

v2 ∼ GM

r
∼ O(ε2),

GJv

r2 ∼ O(ε4), (3)

where v is the 3-velocity, r =
√∑3

i=1(x
i )2 and for low

(with altitude below 2000 km) and medium (altitude between
2000 km and a geostationary orbit) Earth orbits ε = M

r is
about 10−5–10−6. Up to the required order, the metric field
outside the ideal Earth model can be expanded as

gμν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 + 2GM
r − 2G2M2

r2

(
2Gx2

r3 + 6Gx1x3

r5MCS

)
J

(
− 2Gx1

r3 + 6Gx2x3

r5MCS

)
J − 2G[(x1)2+(x2)2−2(x3)2]

r5MCS
J

(
2Gx2

r3 + 6Gx1x3

r5MCS

)
J 1 + 2GM

r 0 0

(
− 2Gx1

r3 + 6Gx2x3

r5MCS

)
J 0 1 + 2GM

r 0

− 2G[(x1)2+(x2)2−2(x3)2]
r5MCS

J 0 0 1 + 2GM
r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

where the mass scale MCS of the CS modified gravity reads

MCS ≡ 2

θ̇
. (5)

As mentioned, the non-dynamical CS modified gravity dif-
fers from GR only in the GM sector.

3 Reference orbit and local tetrad

Being a metric theory, motions of free-falling masses or satel-
lites in CS modified gravity satisfy the geodesic equation.
According to the general choices of orbits for satellite gra-
diometry missions (like GOCE [27]), we choose the refer-
ence orbit followed by the mass center of the gradiometer
to be a polar and circular one with the relativistic precession
caused by the GM effect

x1 = a cos Ψ cos Ω̇τ, (6)

x2 = a cos Ψ sin Ω̇τ, (7)

x2 = a sin Ψ. (8)

Here a denotes the orbit radius, Ψ = ωτ the true anomaly, ω
is the mean angular frequency with respect to the proper time
τ along the orbit and Ω is the longitude of ascending node
with initial value Ω(0) = 0. The precession rate of the node
Ω̇ = Ω̇GR+Ω̇CS , where the Lense–Thirring precession rate
Ω̇GR = 2GJ

a3 [42] and the correction from the non-dynamical
CS modified gravity had been worked out in [14] as

Ω̇CS = ΠCSΩ̇GR = 15
a2

R2 j2

(
R

a

4

χ

)
y1

(
4

χ

)
Ω̇GR, (9)

where R is the averaged radius of Earth, jl(x) and yl(x) are
spherical Bessel functions of the first and second kind, and
χ was a new PN parameter introduced in [12,13] which can
be related to the mass scale as χ = 4

aMCS
. For polar circular

orbit, the GM force in CS modified gravity generated by
spherical sources [14] will also change slightly the orbital
eccentricity to e ∼ χO(ε2), which is too small to be relevant
to secular tidal effects at the PN level. Therefore, in this work
the small eccentricity is ignored, and its effects together with
other orbital perturbations in satellite gradiometry, such as
those from geopotential harmonics, can be found in [27,43].

For satellite gradiometry missions, spacecraft attitudes are
generally chosen to follow the Earth pointing orientation (like
GOCE [27]). Then, we define the local free-falling Earth
pointing frame by the tetrad {E μ

(a) } attached to the mass

center of the orbiting gradiometer. We set E μ

(0) = τμ with

τμ the 4-velocity of the mass center, E μ

(1) is parallel to the

3-velocity v in space, E μ

(2) along the radial direction and

E μ

(3) is transverse to the orbit plane. For the existence of the
geodetic and frame-dragging precession of the local frame
[44], we solve for the spatial bases {E μ

(i) } in the following
three steps. First, in the geocentric coordinates system, we
solve for the precession of the local inertial frame (Fermi-
shifted frame) along the orbit given in Eqs. (7), (8). Second,
with respect to the local inertial frame, we rotate {E μ

(i) } with
an initial angular velocity to make it an Earth pointing triad.
At last, since the local frame is moving along the orbit, we
need to perform the boost Lorentz transformations of the
bases {E μ

(i) } with respect to the 4-velocity τμ. The general
time scales or periods of frame-dragging precessions in Earth
orbit are about c2a3

GJ ∼ 107 years, which is extremely long
compared with general mission lifetimes. Then, following the
above three steps and within the short time limit τ

a � a2

GJ ,
the tetrad can be worked out up to the PN level as

E μ

(0) =

⎛
⎜⎜⎜⎜⎝

1 + a2ω2

2 + GM
a

− aω sin Ψ

0

aω cos Ψ

⎞
⎟⎟⎟⎟⎠ . (10)
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E μ

(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

aω

−
(

1 + a2ω2

a − GM
a

)
sin Ψ

− (1+ΔCS)GJΨ sin Ψ

2a3ω(
1 + a2ω2

a − GM
a

)
cos Ψ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

E μ

(2) =

⎛
⎜⎜⎜⎜⎜⎝

0(
1 − GM

a

)
cos Ψ

(1+ΔCS)GJ (Ψ cos Ψ −3 sin Ψ )

2a3ω(
1 − GM

a

)
sin Ψ

⎞
⎟⎟⎟⎟⎟⎠

, (12)

E μ

(3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

(1+ΔCS)GJ (3 sin 2Ψ −2Ψ )

4a3ω

1 − GM
a

3(1+ΔCS)GJ sin2 Ψ

2a3ω

⎞
⎟⎟⎟⎟⎟⎟⎠

, (13)

where the correction to the precessions of the bases from the
non-dynamical CS modified gravity reads [14]

ΔCS = 15
a2

R2 j2

(
R

a

4

χ

) [
y1

(
4

χ

)
+ 4

χ
y0

(
4

χ

)]
. (14)

4 Secular gradient observables

We introduce the position difference vector Zμ between
the pair of two adjacent free-falling proof masses of cer-
tain measurement axis in the orbiting gradiometer. Gener-
ally |Z | ∼ 10−1 m, which is much shorter compared with
the orbital radius a ∼ 107 m, therefore the relative motion
between the test masses can be obtained by integrating the
geodesic deviation equation along the reference orbit

τρ∇ρτλ∇λZ
μ + Rμ

ρνλτ
ρτλZν = 0. (15)

In the local frame {E μ

(a) }, the above geodesic deviation
equation can be expanded as

d2

dτ 2 Z
(a) = −2γ

(a)
(b)(0)

d

dτ
Z (b)

−
(

d

dτ
γ

(a)
(b)(0) + γ

(c)
(b)(0)γ

(a)
(c)(0)

)
Z (b)

− K (a)
(b) Z (b). (16)

where Z (a)E μ

(a) = Zμ, γ
(a)

(b)(c) = E (a)ν∇μE(b)νE
μ

(c) are
the Ricci rotation coefficients [45]. The first line of the right
hand side of the above equation is the relativistic analogue of
the Coriolis force, the second line contains the inertial tidal
forces and the last line is the tidal force from the spacetime
curvature, where the tidal matrix from curvature is defined
by

K μ
ν = R μ

ρνλ τρτλ. (17)

For electrostatic and superconducting gradiometers, the
motions of test masses are suppressed by compensating
forces. Then the total tidal tensor T(a)(b) affecting the gra-
diometer will be

T(a)(b) = − d

dτ
γ(a)(b)(0) − γ(a)(c)(0)γ

(c)
(b)(0) − K(a)(b). (18)

After straightforward but tedious algebraic manipulations
and leaving out all the terms beyond 1

a2 O(ε4) and 1
a2 ΨO(ε4),

we work out, to the PN level, the tidal tensors in the local
free-falling Earth pointing frame along the reference orbit.
For the tidal tensor K(a)(b), as expected we have K(a)(0) = 0,
and the Newtonian part

K N
(i)( j) =

⎛
⎜⎝

GM
a3 0 0

0 − 2GM
a3 0

0 0 GM
a3

⎞
⎟⎠ (19)

which agrees exactly with the classical Newtonian tidal ten-
sor ∂i∂ j

GM
r evaluated in such Earth-pointing frame. The PN

part may be divided into the tidal tensor KGR
(i)( j) from GR

and the new tensor KCS
(i)( j) from the CS modification, which,

within the short time limit τ
a � a2

GJ , can be worked out as
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KGR
(i)( j) =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 3G2M2

a4 0 3GJω cos Ψ
a3

0 − 3GM(a3ω2−2GM)

a4 − 9GJ (GMΨ cos Ψ +(2ω2a3+GM) sin Ψ )

2a6ω

3GJω cos Ψ
a3 − 9GJ (GMΨ cos Ψ +(2ω2a3+GM) sin Ψ )

2a6ω

3GM(a3ω2−GM)

a4

⎞
⎟⎟⎟⎟⎟⎟⎠

, (20)

KCS
(i)( j) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0

0 0 3G2 JM(Ψ (ΔCS−4ΠCS) cos Ψ −3ΔCS sin Ψ )

2a6ω

0 3G2 JM(Ψ (ΔCS−4ΠCS) cos Ψ −3ΔCS sin Ψ )

2a6ω
0

⎞
⎟⎟⎟⎟⎟⎠

, (21)

here KGR
(i)( j) agrees exactly with the former result derived in

[37]. Due to the relativistic precessions of the free-falling
local frame and the orbit plane, the modulations of Newto-
nian tidal tensor given in Eq. (19) produces secular terms in
the K(2)(3) and K(3)(2) components, which are the expected
secular gradient observables appeared along polar and nearly
circular orbits. Finally, with the tidal tensor from inertial
forces in Eq. (18) been worked out, the total tidal tensor
T(i)( j) turns out to be

T(i)( j) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− a2ω4 + 4GMω2

a − ω2 0 −GJ (ΔCS−3)ω cos Ψ

a3

+GM
a3 − 3G2M2

a4

0 7G2M2

a4 − ω2GM
a − 2GM

a3 − ω2 3G2 JMΨ (ΔCS−4ΠCS−3) cos Ψ

2a6ω

−GJ (2(ΔCS+9)ω2a3+9GM(ΔCS+1)) sin Ψ

2a6ω

3GJ (ΔCS+1)ω cos Ψ

a3
3G2 JMΨ (ΔCS−4ΠCS−3) cos Ψ

2a6ω
− 3G2M2

a4 + 3ω2GM
a + GM

a3

−GJ ((2(3ΔCS+9)ω2a3+9GM(ΔCS+1)) sin Ψ )

2a6ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (22)

5 Conclusions

In conclusion, how the new secular gradient components
given in Eq. (21) can be measured by an orbiting 3-axis gra-
diometer is discussed, and the expected constraints on the
mass scale of the non-dynamical CS gravity set by the pro-
posed measurement scheme is given. Following [23,32,46],
we orient two of the three gradiometer axes 45 degrees above
and below the orbital plane and difference their outputs to
reject the Newtonian and PN gravitoelectric terms and there-
fore measure only the GM gradient terms. In the local frame
{E μ

(a) }, the three axes of the gradiometer are oriented as

n̂ =
⎛
⎝ sin φ

− cos φ

0

⎞
⎠ , p̂ = 1√

2

⎛
⎝ cos φ

sin φ

−1

⎞
⎠ , q̂ = 1√

2

⎛
⎝ cos φ

sin φ

1

⎞
⎠ ,

see Fig. (1) for the illustration. The difference between the
readouts in the p̂ and q̂ axes turns out to be

1

2
(Tp̂p̂ − Tq̂q̂)

= −3G2 J sin φMΨ (ΔCS − 4ΠCS) cos Ψ

2a6ω

+9G2 J sin φMΨ cos Ψ

2a6ω

+GJ sin φ sin Ψ (2a3(2ΔCS + 9)ω2 + 9GM(ΔCS + 1))

2a6ω

−GJ (ΔCS + 3)ω cos φ cos Ψ

a3 . (23)

The boxed term is the secular gradient signal sCS to be mea-
sured, which is from the non-dynamical CS modifications
and grows linearly with time within the mission lifetime.
Such combinations of readouts can be obtained without really
re-orientating the gradiometer axes according to Fig. 1 in
mission operations, but can be derived in the post data pro-
cession by combining the cross-track readouts of multi-axis
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Fig. 1 The axes of the gradiometer are oriented as follows, p̂ and q̂ are
symmetric with respect to the E μ

(1) − E μ

(2) plane, and n̂ is orthogonal

to the p̂ − q̂ plane. The angle between n̂ and − E μ

(2) is φ

gradiometers (like in GOCE [27]). As MCS → ∞ or χ → 0
we have ΠCS → 0 and ΔCS → 0, the above combined read-
out will then reduce to the GM gradient terms from GR as
expected [37]. The magnitudes of these GR gradient terms,
especially for the secular one to the right of the boxed signal,
are suppose to be very large compared with that of the CS
secular signal sCS . In the low energy regime or the weak field
limit, GR had passed many stringent tests [41]. From the PN
point of view, the weak field limits of general metric theories
of gravity [40] can be described by ten standard PN param-
eters (CS gravity and the related parameter not included),
which, confronted with modern experiments, have been con-
strained to agree precisely with the values predicted by GR,
see [41] for details. Therefore the relative large tidal gra-
dient terms from GR in Eq. (23) can be treated as from a
well-test theory, and are to be modeled by GR in post data
analysis. The CS gradient signal sCS and the new parameter
χ or MCS is then to be fitted out in the residuals or measured
as the deviations from the prediction of GR. Similar strategy
has been used in fitting the signals from the non-dynamical
CS gravity in the data of the LAGEOS I, II missions and the
Gravity Probe B mission [14]. Errors in such combination
1
2 (Tp̂p̂ − Tq̂q̂) may also arise from misalignments and mis-
pointings of the gradiometer axes, and the related analysis
and possible solutions are discussed in [46].

Recovering the SI units, we have

sCS = −3G2 JMΨ (ΔCS − 4ΠCS) sin φ cos Ψ

2c2a6ω
.

Form previous experiments [14,20,21], the new PN param-
eter χ = 4h̄c/aMCS had already been constrained to be
a small quantity χ ≤ 10−4. ΠCS and ΔCS can then be
expanded as

ΠCS = O(χ2),

ΔCS =
15a3χ cos

(
4
χ

)
sin

(
4R
aχ

)

4R3 + O(χ2).

Therefore, one has

sCS = −
45G2 cos

(
4
χ

)
sin

(
4R
aχ

)
χ JMΨ sin φ cos Ψ

8c2a3R3ω

+O(χ2).

To give the estimation, we assume the orbital altitude to
be 500 km and the mission life time about one year. After
one year’s accumulation, the total orbital cycle N in sCS

will be 3.5 × 104, and the secular signal will reach about
4.3χ mE. With proper data analysis methods employed, the
total signal-to-noise ratio can be further amplified by a fac-
tor of the square root of the total cycles

√
N . Therefore,

for superconducting gradiometers with potential sensitiv-
ity better than 10−2 mE/

√
Hz in low frequency band near

0.1 mHz [29], a rather strong constraint on the CS mass scale
of the non-dynamical theory may in principle be obtained
as

MCS ≥ 10−7 eV and θ̇ ≤ 1 m.

For future gradiometers with optical readout1 based on simi-
lar measurement schemes and techniques from the LPF mis-
sion, an even stronger bound may be expected

MCS ≥ 10−6−10−5 eV and θ̇ ≤ 10−1−10−2 m.

Therefore, to conclude, the proposed experiment could natu-
rally be incorporated into future missions that carrying high-
sensitive gradiometers as key payloads, which in principle
would improve the current constraints of the CS modified
gravity and add potential scientific objectives to such satel-
lite gradiometry missions.
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