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A B S T R A C T

Detection of objects from satellite optical remote sensing images is very important for many commercial and
governmental applications. With the development of deep convolutional neural networks (deep CNNs), the field
of object detection has seen tremendous advances. Currently, objects in satellite remote sensing images can be
detected using deep CNNs. In general, optical remote sensing images contain many dense and small objects, and
the use of the original Faster Regional CNN framework does not yield a suitably high precision. Therefore, after
careful analysis we adopt dense convoluted networks, a multi-scale representation and various combinations of
improvement schemes to enhance the structure of the base VGG16-Net for improving the precision. We propose
an approach to reduce the test-time (detection time) and memory requirements. To validate the effectiveness of
our approach, we perform experiments using satellite remote sensing image datasets of aircraft and automobiles.
The results show that the improved network structure can detect objects in satellite optical remote sensing
images more accurately and efficiently.

1. Introduction

With the development of remote sensing technology, the resolution
of optical remote sensing images has greatly improved and images have
become largely available. Compared with other types of images, remote
sensing images provide more details and a clearer texture. Thus, object
detection using optical remote sensing images offers many advantages.
Firstly, optical remote sensing images can be used to detect “radar
stealth” objects that use surface coatings and special structures.
Secondly, optical remote sensing images can provide more favorable
features for detection (Cheng and Han, 2016). In the international
classification competition in 2012, researchers used deep convolution
neural networks (deep CNNs) to classify objects, and the precision of
their approach was significantly higher than those of other methods
(Guo et al., 2016). In this context, deep learning (Chen and Lin, 2014;
Salakhutdinov, 2014), particularly deep CNN (LeCun et al., 2015;
Schmidhuber, 2015) processing, has been applied in several fields
ranging from object detection (Alshehhi et al., 2017; Fytsilis et al.,
2016) to object classification (Paoletti et al., 2017; Szegedy et al., 2015;
Zeiler and Fergus, 2013; Zhang et al., 2017) and tracking (Cui et al.,
2016; Wang and Yeung, 2013). Different methods of reducing the

network training complexity and overfitting have been presented.
These include initialization from the original random distribution to
those of Gauss and Xavier (Glorot and Bengio, 2010), as well as at-
tempts to reduce the difficulty of training decline and improve con-
vergence. Moreover, the BN (Ioffe and Szegedy, 2015) approach has
been demonstrated to not only reduce training difficulty, but also the
possibility of overfitting. The rectified linear unit (ReLU) and para-
metric ReLU (PReLU) (Glorot et al., 2011; Goodfellow et al., 2013; He
et al., 2015c; Kim et al., 2015; Pan and Srikumar, 2015) activation
functions have replaced the original sigmoid and tanh activation
functions, and since these functions more closely resemble human
biological activation, the precision of the results is greatly enhanced. In
addition, the use of the dropout technique (Baldi and Sadowski, 2013;
Srivastava et al., 2014) has added to the success of the deep CNN ap-
proach.

In this context we adopt in our study deep CNNs to detect objects
(airplanes and automobiles) in our data sets. There are several frame-
works in object detection based on deep CNNs, like Regions with CNN
features (RCNN) (Girshick et al., 2014), Fast Region-based Convolu-
tional Network (Fast RCNN) (Redmon et al., 2015), and others (Kabani
and Elsakka, 2016; Sermanet et al., 2013; Zitnick and Dollar, 2014).
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Among these frameworks, the Faster RCNN approach affords suitable
precision for real-time object detection (Ren et al., 2016). In the field of
remote sensing, many researchers have focused on airplane detection
using deep CNNs. Some of them have designed their own frameworks.
Wu et al. (2015) proposed the BING approach in combination with a
CNN to perform aircraft detection. However, the average detection time
(or test time) for test images with this approach is about 6.414 s. In
addition, the precision is not that high. Along similar lines, Cao et al.
(2016) performed airplane detection by means of RCNN, which is
thought to perform poorer than Faster RCNN in terms of both precision
and speed. Zhang et al. (2016) performed aircraft detection by using
weakly supervised CNNs. This approach is similar to the RPN+Fast
RCNN (Faster RCNN without feature sharing) approach.

In the field of remote sensing, many researchers have also per-
formed vehicle detection using deep CNNs. Ammour et al. performed
car detection by combining CNNs and support vector machines (SVMs),
similar to the RCNN approach (Ammour et al., 2017). Tang et al. per-
formed vehicle detection by using RCNNs and Hard Negative Example
Mining (Tang et al., 2017), which is an improvement on the Faster
RCNN. They performed vehicle detection by adapting ZF-Net as the
baseline and using the RealBoost algorithm to replace the Fast RCNN.

Our work is different from these approaches, since we adopt a more
advanced framework, the Faster RCNN (Ren et al., 2016) framework,
and choose the VGG16 network (Simonyan and Zisserman, 2015), a
very deep CNN network, as the base network to detect objects. So Faster
RCNN forms the holistic framework and VGG16-Net is the base network
used in this framework. To improve the precision and recall of the tests,
we adopt specific measures to strengthen the capability of VGG16-Net.
Since the computational cost is a major problem that restricts Faster
RCNN applications, we propose the use of a fully convolutional neural
network instead of the fully connected layers in the Faster RCNN fra-
mework. Through this approach, the memory requirements of the final
model become significantly smaller. The test-time also reduces con-
siderably. Moreover, the precision of the approach is still able to meet
our requirements.

The main contributions of this paper are thus as follows:

1. 1 For the detection of dense objects in optical remote sensing
images, we adopt dilated convolutions instead of traditional con-
volutions to improve precision.

2. As certain objects in satellite remote sensing images are small and
difficult to detect, we adopt a bootstrapping strategy called Online
Hard Example Mining (Shrivastava et al., 2016) for mining hard
negative examples, and we add it to Faster RCNN.

3. We use a multi-scale representation and its combinations in a new
manner.

4. We propose a fully convolutional neural network instead of the fully
connected layers in the Faster RCNN framework.

5. The object detection accuracy and recall show significant improve-
ment with our approach.

The rest of the paper is organized as follows: In the next section, we
describe the basic principles of CNNs and the development and prin-
ciples of Faster RCNN. The details of our method are explained in
Section 3. Our analysis and comparison of experimental results are
presented in Section 4. Finally, Section 5 concludes the paper.

2. Related work

2.1. Principles of convolutional neural networks

Traditional CNNs are composed of multiple stages, with each stage
consisting of a convolution layer, a feature pooling layer, and a fully
connected (FC) layer (Krogh and Hertz, 1992; Lecun et al., 1998).

Convolution layers: At the convolution layer, the previous layer’s
feature maps −Xi

l 1 are convolved with learnable kernelskij
l , a trainable

bias parameterbj is added and the result is processed by the activation
function f (·) to form the output feature map. This process can be ex-
pressed as:
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Here, Mj represents a selection of input maps. In this work, we chose
ReLU, which is called the rectifier activation function, as the activation
function in the new layers since it works better than the logistic sigmoid
and hyperbolic tangent functions (Glorot et al., 2011).

Feature pooling layer: This layer treats each feature map sepa-
rately. In general, this layer is called the subsampling layer, and it
produces down-sampled versions of the input maps. This means that the
number of input and output maps is the same, but the output maps are
smaller in size. The results are robust to small variations in the location
of features in the previous layer. This process can be expressed as:

= −X down X( )j
l

j
l 1

(2)

Here, down (·) denotes a down-sampling operation. By means of
down-sampling, we reduce the size of the input by summarizing neu-
rons from a small spatial neighborhood (Scherer et al., 2010).

Fully connected (FC) layers: After data processing by several
convolutional and subsampling layers, high-level reasoning in the
neural network is performed via FC layers. Neurons in an FC layer have
full connections to all activations in the previous layer. Their activa-
tions can hence be computed with a matrix multiplication followed by a
bias offset. The flowchart of a CNN is shown in Fig. 1.

Training is performed by means of the backpropagation algorithm
(Chen et al., 2008) to minimize the aberrations between the ideal
output and the actual output of the CNNs. In general, for the purpose of
detection, a CNN is followed by a classification module.

CONV1
FC6 FC7

Classfication

Pool1 CONV2
Pool2

Fig. 1. Flowchart of convolutional neural network.
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2.2. Development and basic principles of faster RCNN

The application of RCNNs (Girshick et al., 2014) is considered a
remarkable achievement in object detection. The approach combines
CNNs and a support vector machine (SVM) (Jiang et al., 2013) as well
as bounding boxes (Zitnick and Dollar, 2014) to detect objects. RCNNs
can be used to detect objects with high accuracy. However, the ap-
proach is time-consuming for each proposal region of different images
to repeatedly undergo CNNs. Moreover, a proposal region needs to be
cropped (or warped) to a fixed size for the FC layers. However, the
cropped region may not contain the entire object and the warped
content may result in unwanted geometric distortion. Consequently, the
spatial pyramid pooling (SPP)-Net model (He et al., 2015), which uses
an SPP layer to remove the fixed-size constraint, was proposed to ad-
dress this issue. As the fixed-size constraint arises only from the FC
layers, the pyramid pooling layer is added on top of the last convolu-
tional layer. Moreover, with the use of SPP-Net, one can run the con-
volutional layers only once on the entire image. When compared with
RCNN, SPP-Net exhibits significant improvements. However, SPP-Net
still suffers from several disadvantages, as it is unable to update weights
before the SPP layer and the training is still under a multistage pipeline.
On the basis of SPP-Net, Ross proposed the Fast RCNN (Girshick and
IEEE, 2015). With Fast RCNN, one can update all the network layers.
The training now involves only a single stage via the use of multi-task
loss. In addition, this model is faster and more precise than SPP-Net and
RCNN. Importantly, there is no need of disk storage for feature caching,
which is needed for the SVM. The SVM is replaced by the Softmax layer
(Liu et al., 2016b), which can be inserted into the network directly.
With this model, we can fine-tune all the networks, which directly aids
us in finding reasonable parameters. While Fast RCNN has exhibited
considerable improvements in terms of performance, the aspect of re-
gion proposal has become the bottleneck for real-time requirements
Consequently, Faster RCNN was proposed to address this problem (Ren
et al., 2016). In order to overcome the disadvantages of Fast RCNN, the
approach uses a deep fully convolutional network called Region Pro-
posal Network (RPN) (Ren et al., 2016) to propose regions. Subse-
quently, Fast RCNN uses the proposed regions to detect objects. RPN
and Fast RCNN can share features, and this is speculated to aid in im-
proving accuracy. The flowchart of Faster RCNN is shown in Fig. 2. The
layers before ROI-pooling should be labeled Conv1-Conv5, but for
simplicity, we only depict Conv1, Conv3, and Conv5. This simplifica-
tion is also used in Figs. 3 and 4.

Among the abovementioned frameworks, Faster RCNN (FRCNN)
affords several advantages, and researchers are constantly developing
and refining this approach. In this work, we therefore also choose Faster
RCNN as our framework. Since the VGG16-Net performs better than ZF-
Net as a baseline, we choose it as our base net. Other base-models such
as Resnet50 or Resnet101 are also suitable, but the memory needed
during training in these cases is extremely large. Moreover, Faster
RCNN with Resnet50-Net or Resnet101-Net is significantly harder to
realize in practice; the results with this combination are not

significantly better than those obtained with VGG16-Net in our data-
sets.

3. Proposed approach

3.1. Fine-tuning deep convolutional neural networks

When labeled data is scarce, there are two options. One approach is
to use unsupervised pre-training followed by supervised fine-tuning.
The other option is the use of a supervised pre-training model on a large
auxiliary dataset, followed by domain-specific fine-tuning on the da-
taset (Girshick et al., 2014). In this work, we select the latter approach.
The original Faster RCNN model is designed for 21 classes of the object.
Here, since we only detect airplanes or cars, we only have two cate-
gories: the object and the background. Every object has a
tuple − −andforaground truthbounding boxregression wesetupthecategoriesas, , ,
and for a ground-truth bounding-box regression, we set up the cate-
gories as ∗ +K4 ( 1), where K denotes the number of categories.

3.2. Online hard example mining

Online Hard Example Mining (OHEM) is a type of bootstrapping
technique (Shrivastava et al., 2016), which is applied to the standard
Fast RCNN framework. We apply the technique to Faster RCNN because
every dataset has certain examples that are hard to train. The Faster
RCNN adopts the hard example mining by setting the ratio between the
foreground ROIs and background ROIs as 3:1, which is valid for VOC
datasets. However, this setting may not be appropriate for our datasets.
Still, the OHEM can aid in solving this problem. The flowchart of Faster
RCNN with OHEM is shown in Fig. 3. In our approach, we sort the input
ROIs by loss and consider the examples on which the current network
performs the poorest as hard examples. The network computes forward
and backward passes only for the selected hard examples, accumulates
the gradients, and passes them on to the convolutional network.

3.3. Dilation

In optical remote sensing images, many objects are usually small
and dense. For example, when an object of 28 * 28 pixels passes through
a basic VGG16-Net network, the output map has a resolution of only
two pixels. Therefore, the output feature map cannot contain too much
information, resulting in low accuracy and recall. Dilated convolutions
are specially designed for dense prediction support expansion of re-
ceptive field without loss of resolution. They improve the receptive field
and thus the accuracy and recall rate, especially for small objects. In
order to enlarge the receptive field by using dilated convolution, the
pool4 layer is omitted, and we extend all Conv5 filters to 2.

3.4. Multi-scale representation and combination

In general, the last layer of Conv5 is adopted to generate candidate

ROI Pooling

Classfication

Bbox Regressor

CONV6

Classfication

Bbox Regressor

Input image Layers from Backboned Model Conv Feature maps FC6 FC7

CONV1 CONV3 CONV5

Fig. 2. Flowchart of Faster region convolutional neural network (Faster RCNN).
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regions or detect objects. For many tasks this is not enough, because the
shallow layers in CNNs include fine-grained details. These are con-
ducive to detect small objects or blur objects. Nowadays, a multi-scale
representation and its combinations such as Hyper-Net have been
proven to be effective (Kong et al., 2016). This method just connects
some layers to detect objects which would cause overfitting sometimes.
Besides, Hyper-Net puts ROI-pooling into the RPN stage and adds some
special layers which we consider as not necessary. In this paper, we also
adopt the multi-scale representation and its combinations to detect
objects, as our objects need information of shallow layers. We not just
only connect some different layers, we also adopt lateral connections.
By our approach, we can detect objects more accuracy. The total flow
chart is shown in Fig.4. In order to deduce overfitting, for the new layer,
we add Batch Normalization (Ioffe and Szegedy, 2015) and scale layer
to help convergence. For this new convolution layer, we adopt an in-
itialize method called Xavier (Glorot and Bengio, 2010; He et al.,
2015c), which has been proven more helpful to convergence than
Gaussian. Lastly, ReLu (Glorot et al., 2011; Gulcehre et al., 2016; He
et al., 2015c; Pan and Srikumar, 2015; Xu. et al., 2015) activation is

ROI Pooling

Classfication

Bbox Regressor

CONV6

Classfication

Bbox Regressor

Input image Layers from Backboned Model Conv Feature maps FC6 FC7

CONV1 CONV3 CONV5

Hard RoI Sampler
( useing these RoI losses to 

select hard examples)

OHEM

Fig. 3. Flowchart of Faster RCNN with OHEM.
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Input image Layers from Backboned Model Multi Scale Feature maps FC6 FC7

CONV1 CONV3 CONV4 CONV5

Classfication

Bbox Regressor

Hard RoI Sampler
( useing these RoI losses to 

select hard examples)

OHEM

Fig. 4. Flow chart of Faster RCNN with OHEM and multi-scale prediction.
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Fig. 5. Details of multi-scale representation and its combinations.
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Fig. 6. Flowchart of our approach.
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needed for this new layer. Some papers use the top-down and lateral
approach, but this requires too much GPU memory. Furthermore, they
are too slow, both in training and in testing.

Details of our multi-scale representation and its combinations is
shown in Fig.5.

3.5. Lighter and faster FRCNN

In this paper we adopt “Faster RCNN with enhanced VGG16-net”, a
framework that affords more accurate object detection than other fra-
meworks. The memory requirement of the final model is large and the
test-time is about 0.104 s for an image of size 1200×600 pixels (with
the CuDNN opened using Tianx). Thus, the question of reducing the
memory requirement of the final model and increasing the speed of
detection becomes significant. Here, we propose an approach to reduce
the detection time and the storage space required, which is important
for practical applications. The ROI-pooling layer forms a significant
aspect of Faster RCNN. However, the two following layers are FC layers,
which require a large number of parameters. This leads to increased
storage space and decreased detection speed. Thus, we adopt a con-
volutional layer instead of these two FC layers. In order to ensure that
the weights can be updated, the size of the convolution kernel is set to 3
and the pad is set as 1. For the last classification, the input size of the
feature map should be 1 * 1, and we therefore add a new pooling layer
after the convolutional layer. Details of our “Lighter and Faster” FRCNN
are illustrated in Fig. 6. For simplicity, we only display the modified
part after the ROI-pooling layer without OHEM.

4. Experiment and discussion

All experiments in this study were performed on two commonly
used remote sensing datasets: the airplane and car datasets (Zhu et al.,
2015). The aircraft and car datasets are both proposed by the University
of the Chinese Academy of Science. The airplane dataset is composed of
1000 optical remote sensing images, with about 7000 objects in total.
The car dataset is composed of 500 optical remote sensing images, with
about 7000 objects in total. all the experiments were performed on the
GTX-Tianx, Intel(R) Core(TM) i7-6850K CPU with Caffe (Jia et al.,
2014), MATLAB2014a, and certain other software such as Opencv3.0.
We choose VGG16-Net (Simonyan and Zisserman, 2015) as the base-
line, which is a good choice for its detection ability. In terms of preci-
sion, it is better than ZF-Net (Krizhevsky et al., 2012). Further, in terms
of speed, it performs significantly better than ResNet (He et al., 2015a).
Our framework was run for 40000 stochastic gradient descent (SGD)
iterations (Bottou, 2012; Duchi et al., 2011; Kingma and Ba, 2014;
Krogh and Hertz, 1992; Zeiler, 2012). The learning rate was set as 0.001
with the momentum set as 0.0005 (Duchi et al., 2011; Kingma and Ba,
2014; Qian, 1999; Zeiler, 2012).

We adopt the two commonly used objective criteria of average
precision (AP) and recall to evaluate the performance of our approach.
These parameters defined as follows:

− =
+

average precision
True positive

True positive True negative (3)

=
+

recall
True positive

True positive False negative (4)

These two criteria are generally used in deep learning. “False ne-
gative” is a test result indicating that a condition does not hold, while in
fact it does. “True negative” is a test result indicating that a condition
does not hold and in fact it does not. “True positive” is a result in-
dicating that a given condition exists and it does exist. We evaluate all
the images in the test set instead of evaluating the objects in a single
image. This approach is different from the traditional evaluation that
involves evaluating the result with a single image.

4.1. Precision and recall analysis

Accuracy and recall rate form our foremost priorities. It is mean-
ingful to improve the speed of the convolution network on the basis of

Table 1
Comparison between improved VGG16-Net and original VGG16-Net for air-
plane dataset.

Plane

OHEM (O) × √ × √ √
Dilation (d) × × √ √ √
Multi-scale (M) × × × × √
AP 0.8871 0.9038 0.8942 0.9065 0.9070
Recall 0.8875 0.9278 0.9227 0.9631 0.9685

Fig. 7. Column charts depicting improved VGG16-Net performance on aircraft dataset.
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precision and recall rate, and therefore, we first analyze the impact of
different improvement schemes on accuracy and recall rate.

4.1.1. Aircraft datasets
As mentioned before, the aircraft dataset includes 1000 optical re-

mote sensing images, with about 7000 objects. For higher resolution
and larger size, Faster RCNN with the base VGG16-Net can yield good
precision and recall, but with our improved methods, we can further

improve the precision and recall, particularly the recall. The precision
and recall of the different improvement schemes (OHEM, Dilation, and
Multi-scale on or off) are listed in Table 1.

A more intuitive comparison is shown in Fig. 7.
Several effects of the different improvement schemes on the results

can be observed. The comparison between the different frameworks and
the baselines was introduced in Section 4.3. With regard to the results
listed in Table 1 and Fig. 7, we note that the different improvement
schemes indeed improve the result. The final precision is slightly better
than that of the original framework. This improvement is not very
significant. This is due to the fact that the size of the aircraft is not very
small, whereas our improvements are more suitable for small objects.
One can see that some smaller aircraft can be detected very accurately.
This is clear from Fig. 8, where some representative results of our ap-
proach are shown. It is thus worth noting that the recall rate increases
substantially. This is because the receptive field is extended by the di-
lation and the multi-scale representation. A small object that has been
neglected in the original framework is learned in our approach.

In Fig. 8, one can see that both large and small airplanes can be

Fig. 8. Some representative results of our approach for plane dataset.

Table 2
Comparison between improved VGG16-Net and original VGG16-Net for vehicle
data set.

Car

OHEM (O) × √ × √ √
Dilation (d) × × √ √ √
Multi-scale (M) × × × × √
AP 0.7519 0.7729 0.7973 0.8388 0.8790
Recall 0.7836 0.8205 0.8629 0.8759 0.8846
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detected precisely. From these images, it can be noted that our method
is able to obtain very effective results, which makes the method suitable
for object detection in optical remote sensing images. Even in en-
vironments such as a foggy environment, objects can still be detected.

4.1.2. Car datasets
The car dataset is composed of 500 optical remote sensing images,

with about 7000 objects in total. With the Faster RCNN and the base
VGG16-network, we found the precision to be very low and the recall to
be even lower. This was because the resolution (that is, the size) of cars
is less than that of airplanes. However, by applying our improvement
schemes, the recall and precision improved significantly. the recall and
precision subsequently improved significantly. Here, we also discuss the
effect of different improvement schemes on the results; the precision
and recall obtained with the various schemes are listed in Table 2.

A more intuitive comparison is shown in Fig. 9.
The accuracy rate for car detection has increased by 13%, the recall

rate by 10%. This has two reasons. Firstly, dilation is a good approach
to extend the receptive field, which can aid in detecting small objects.
With a larger receptive field, more features can be extracted by deep
CNNs. Secondly, deconvolution and the lateral connection, which are
used in our multi-scale representation and its combinations, also aid in
extending the receive field without loss of resolution. Furthermore,
OHEM is a suitable approach to address examples that are hard to train.
The stronger the ability of the approach is to cope with difficult ex-
amples, the better the features are that can be learned by CNNs.
Overall, our approach thus offers better feature learning, and therefore
the accuracy rate and recall rate both increased by more than 10% in
our experiments. Some representative results of our approach are
shown in Fig. 10.

As can be seen, cars are detected very accurately and the bounding-
box regression works very well. One can pinpoint the location of the
object very accurately. Thus, our method is very suitable for the de-
tection of small objects. Objects can be suitably acquired in dense si-
tuations involving road vehicles or in residential areas.

4.2. Analysis of lighter and faster FRCNN

Besides the accuracy and recall rates, the detection speed is also an
important aspect. In this section, we compare our Lighter and Faster
FRCNN with FRCNN without the inclusion of our improvement

schemes. The average accuracy and test-time as well as the required
memory for different channels are listed in Table 3, where *******
stands for no channels. As the image sizes of the two datasets are the
same, the average test time of the images is almost the same.

As can be observed from the results in Table 3, we chose the number
of channels as 32, which is suitable for our datasets. We note that our
Lighter and Faster RCNN performs significantly better than Faster
RCNN in terms of both speed and memory requirements, while the
accuracy is also very high. The convolution layer is more powerful than
the FC layer. A more detailed analysis is provided in Figs. 11 and 12
(where the memory requirement is normalized, we just provide detailed
analysis of airplane).

From Figs. 11 and 12, the influence of the different channels ap-
pears more intuitive and clear. From the discussion above, we note that
with our approach the speed can increase by up to 13 frames per second
and the memory required becomes significantly smaller.

4.3. Comparison with other popular frameworks

In Sections 4.1 and 4.2, we discussed the effect of different im-
provement schemes on the detection results. Here, we discuss the ad-
vantages of our approach over other frameworks. The recent years have
seen the proposal of several frameworks for object detection. Among
these, we chose some well-known ones such as Faster RCNN,
YOLO9000 (Redmon and Farhadi, 2016), SSD (Liu et al., 2016a) and
RFCN (Dai et al., 2016; Xie et al., 2016) for our comparison. Moreover,
many deep CNNs such as ZF-Net (Zeiler and Fergus, 2014), VGG-Net,
Resnet50, and Resnet101 (He et al., 2015a; Xie et al., 2016) have also
been proposed. These frameworks and deep CNNs are effective in many
detection tasks. Here, we mainly analyze the precision and recall of
different frameworks and different baselines. These results are listed in
Table 4.

As proposed by He, for Resnet50/Resnet101, ROI pooling should be
performed before conv5. On this ROI-pooled feature, all layers of Conv5
and beyond are adopted for each region, and they play the roles of
VGG-16’s FC layers. We call this modification Faster RCNN*. Further,
RFCN is another famous framework proposed by Dai (Dai et al., 2016;
Xie et al., 2016). This framework is more compatible with Resnet50/
Resnet101 for both speed and precision. Further, although Resnet50/
Resnet101 afford better classification than VGG16-net, our results
compare to RFCN with Resnet50/Resnet101 and Faster RCNN* with

Fig. 9. Column charts showing improvement in VGG16-Net performance on car dataset.
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Resnet50/Resnet101. Faster RCNN and RFCN includes to two-stage
detectors. Compared to Faster RCNN and RFCN, one-stage detectors
such as SSD and YOLO9000 are applied over a regular, dense sampling
of objects locations, scales, and aspect rations. Because the Faster RCNN
contains a size conversion operation, for a more equitable comparison,
we change the input size of SSD and YOLO9000 to 800 * 600.
YOLO9000 works very well for for VOC datasets, but may be not sui-
table for our datasets. One-stage detectors must process a large amount
of candidate object locations which would cause class imbalance. Class
imbalance would affect the precision. We can see that newest SSD’s
performance is much better, because it uses many tricks: much richer
data expansion; the use of multi-layer network information and hard
example mining. They do hard example mining by setting the ratio
between the foreground ROIs and background ROIs as 3:1. Although
they use of multi-layer network information, the feature of different
layers is unrelated. Moreover, we change the input size of SSD and
YOLO9000 to 800 * 600 rather than 300 * 300 (448 * 448 for
YOLO9000). This operation is helpful to improve precision.

Fig.10. Some representative results of our approach for the car dataset.

Table 3
Average memory, precision, and test-time required for the different channels.

Frame Channels Memory (M) AP(Plane/
Car)

Test-time
(s)

Faster RCNN 4096 (Fc
layer)

512.0 0.887/0.752 0.104

Faster RCNN(No FC) ******* 58.9 0.667/0.653 0.086

Lighter and faster
FRCNN

1024 77.8 0.887/0.752 0.096
512 68.3 0.887/0.752 0.089
256 63.6 0.887/0.752 0.087
128 61.2 0.887/0.752 0.086
64 60.0 0.887/0.752 0.085
32 59.5 0.887/0.752 0.083
16 59.2 0.887/0.745 0.082
8 59.0 0.887/0.739 0.081
4 58.9 0.887/0.736 0.081
2 58.9 0.856/0.679 0.081
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The corresponding precision–recall curves are shown in Fig. 13. The
precision–recall curve is an important indicator of the performance of a
given model.

From the results, we note that the precision and recall rates of our
approach are both considerably better than those of other frameworks
and other baselines. The corresponding column charts of the test-time

and memory requirement are shown in Fig. 14 (where the memory
requirement is normalized).

In terms of speed, our approach performs highly satisfactorily.
Importantly, the storage space required in our (faster and lighter) ap-
proach is significantly less than that for the other frameworks. Overall,
our approach thus performs significantly better than other frameworks
and baselines.

5. Conclusions

The task of object detection in optical remote sensing images has
attracted considerable research attention in recent years. At the same
time, significant progress has been made in object detection by the
application of deep learning, particularly deep CNNs. In this work, we
propose several improvements for deep CNNs in optical remote sensing.
For dense objects in optical remote sensing images, we adopt dilated
convolutions instead of traditional convolutions to improve precision.
As certain objects in satellite remote sensing images are small and
difficult to detect, we adopt a bootstrapping strategy called OHEM for
mining hard negative examples. We implement OHEM in Faster RCNN
for object detection. Moreover, multi-scale representation and combi-
nations are utilized in a novel manner in this work. The computational
cost of the method is a primary issue that restricts its application. We

Fig. 11. Plots of precision, test-time, and memory requirement with Lighter and Faster RCNN (Left plane/right car).

Fig. 12. Column charts depicting precision, test-time, and memory requirements with Lighter and Faster RCNN (Left plane/right car).

Table 4
Average precision and recall of different frames and baselines.

Frames AP
(Plane/car)

Recall
(Plane/car)

Memory Test-time

SSD 0.891/0.813 0.945/0.837 95.0M 0.049s
YOLO9000 0.885/0.669 0.922/0.735 268.2M 0.022s
Faster RCNN (ZF) 0.841/0.647 0.861/0.652 233.2M 0.070 s
Faster RCNN (VGG) 0.887/0.752 0.888/0.784 512.0M 0.104 s
Faster RCNN*

(Resnet50)
0.897/0.759 0.930/0.781 94.4M 0.416 s

Faster RCNN*
(Resnet101)

0.898/0.761 0.931/0.792 170.6M 0.527 s

RFCN (Resnet50) 0.898/0.784 0.944/0.793 108.5M 0.119 s
RFCN (Resnet101) 0.899/0.806 0.946/0.822 184.7M 0.139 s
Ours* (FC) 0.907/0.879 0.968/0.885 549.3M 0.133 s
Ours (Faster and lighter) 0.907/0.879 0.968/0.885 71.5M 0.112 s
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thus propose the use of a fully convolutional neural network instead of
fully connected layers in the Faster RCNN framework. Through this
approach, the memory requirement of the final model significantly
reduces along with the test-time relative to the corresponding ones of
the original framework. Importantly, the resulting precision fulfills our
requirements. Our approach is useful for the application of deep CNNs
to object detection in remote sensing images. In future, we plan to
further improve the network's detection ability.
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