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Zernike polynomials provide an excellent metric basis for characterizing the wavefront aberrations of human eyes
and optical systems. Since the Zernike expansion is dependent on the size, position, and orientation of the pupil in
which the function is defined, it is often necessary to transform the Zernike coefficients between different pupils.
An analytic method of transforming the Zernike coefficients for scaled, rotated, and translated pupils is proposed in
this paper. The normalized coordinate transformation functions between the polar coordinates of the transformed
pupil and the Cartesian coordinates of the original pupil are given. Based on the Cartesian and polar representations
of Zernike polynomials, the coefficients’ transformation matrix can be derived directly and conveniently. The first
36 terms of standard Zernike polynomials are used to validate the proposed method. For different types of trans-
formation, transformation rules of individual Zernike terms are systematically analyzed, revealing how individual
terms of the original pupil transform into terms of the transformed pupil. Numerical examples are presented to
demonstrate the validity of the proposed method. Further application of the proposed method to the alignment of
pupil-decentered off-axis optical systems is discussed. © 2018 Optical Society of America
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1. INTRODUCTION

Zernike polynomials have been widely used in the field of oph-
thalmic optics and optical engineering [1–3]. Due to their
property of orthogonality over a unit circle, Zernike polyno-
mials have emerged as the preferred method to describe the
wavefront aberrations of human eyes and optical systems.
Moreover, the lower terms of Zernike polynomials can be re-
lated to the Seidel aberrations such as defocus, astigmatism,
coma, and spherical aberration. Since the Zernike polynomial
coefficients can only be calculated over a specific pupil area, the
need to transform the coefficients to scaled, rotated, and trans-
lated pupils arises.

To test the repeatability of wavefront sensing of the same eye,
multiple tests of individual subjects are often taken, and the
Zernike coefficients are compared or averaged. Epidemiological
studies of aberrations of different subject populations can also
be accomplished through statistical comparison of the wavefront
expansion coefficients for the group. Due to the variations in the
testing conditions and the natural pupil sizes across the popula-
tion, the eye movements and different pupil sizes should be taken

into consideration. The Zernike coefficients need to be trans-
formed to the same pupil area that is of concern. Besides, for some
aberration-correcting methods, such as customized contact lenses
and laser refractive surgery, the expected improvements are usu-
ally limited by the translation and rotation relative to the pupil.
The Zernike coefficients also need to be corrected to account for
the eye movements.

Zernike polynomials are also used to represent the state of
alignment of optical systems during the alignment process. To
develop methods of effectively aligning optical systems, Gray et al.
[4,5] introduced field dependence to the Zernike polynomial
coefficients. By using nodal aberration theory (NAT) [6],
the Zernike coefficients were expressed as functions of the wave
aberration coefficients, the field vector, and the aberration field
decenter vectors that locate the centers of the aberration fields
of each surface. With this bridge established between optical de-
sign and optical testing, the misalignments of each surface were
directly related to the Zernike coefficients obtained by interfer-
ometry, providing a valuable insight into methods for effectively
aligning optical systems. Gu et al. [7] presented an alignment
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method for three-mirror anastigmatic (TMA) telescopes by using
the relationship between the wave aberration coefficients and the
Zernike coefficients. However, both of them have only considered
the case of coaxial optical systems. By introducing a method of
transforming the Zernike coefficients to a decentered pupil, these
works can be directly extended to pupil-decentered off-axis opti-
cal systems.

Transforming the Zernike coefficients between concentric
pupils with different sizes has been the topic of many papers
[8–12]. As for the rotation and translation, Guirao et al.
[13] presented analytical expressions that show the impact of
translation and rotation on individual Zernike terms. For
the case of rotation, owing to the property of invariance under
rotation of the Zernike polynomials, the rotation matrix was
constructed directly. For the case of translation, the Zernike
polynomials at the displaced coordinates were expanded by
means of a Taylor expansion. The translation matrix was con-
structed by taking the first, second, etc., derivatives of the
Zernike polynomials. However, due to the property of Taylor
expansion, this method could only be applied to the case of
small lateral displacement. The first complete theory to analyti-
cally transform Zernike coefficients with regard to scaling,
translation, and rotation was proposed by Lundström and
Unsbo [14]. They developed the methodology of Campbell
[15], where the Zernike polynomials and the coefficients were
converted to the complex plane. The transformation could be
conveniently accomplished in the complex plane, though addi-
tional conversion from complex Zernike coefficients back to
the standard coefficients was required. Alternatively, Tatulli
[16] also presented an analytic method based on the Fourier
transform properties of the Zernike polynomials. The coeffi-
cients of the transformation matrix were given in terms of in-
tegrals of Bessel functions. However, the calculation was
dependent on the respective value of the azimuthal frequencies
of the corresponding Zernike terms. There were nine possible
combinations as presented by the author. The benefit of such
analytic methods is that the explicit relationship between the
coefficients and different transformation parameters can be ob-
tained, though a somewhat higher initial effort to derive the
expressions is required. On the other hand, Bará et al. [17] pro-
posed a numerical method based on the coordinate transforma-
tions of a given set of sampling points and the generation of
corresponding Zernike polynomials. This approach provides
a straightforward way of converting aberration coefficients
between different pupils. However, it cannot give information
on the dependence of the coefficients on different transforma-
tion parameters.

In this paper, an analytic method of transforming Zernike
polynomial coefficients for scaled, rotated, and translated pupils
is proposed. The normalized coordinate transformation func-
tions for arbitrary scaling, rotation, and translation are derived
first. The Cartesian representation of Zernike polynomials is
used in the original pupil, and the polar representation is used
in the transformed pupil. The properties of Zernike polyno-
mials are reviewed, and the derivation of the coefficients’ trans-
formation matrix is presented. The first 36 terms of standard
Zernike polynomials are used as examples to validate the pro-
posed method. Transformation rules of individual Zernike
terms associated with different types of transformation are

analyzed. Further application of the proposed method to
the alignment of pupil-decentered off-axis optical systems is
discussed.

2. TRANSFORMATION OF COORDINATE
SYSTEMS

The scaling, rotation, and translation of a pupil can be parame-
terized by transforming the reference coordinate system. As illus-
trated in Fig. 1, the original pupil is defined in the XOY
coordinate system, and a scaled, rotated, and translated pupil
is defined in the X 0O 0Y 0 coordinate system. The radius of
the original and transformed pupils are R and R 0, respectively.
D denotes the translation vector defined in XOY . Since the
new pupil must be contained in the original pupil, we have
jDj ≤ R − R 0. β is the polar angle of D measured counterclock-
wise from X -axis, α is the rotation angle measured counterclock-
wise from the X axis to X 0 axis. The scaling factor is defined as

B � R 0

R
�R 0 ≤ R�: (1)

For any arbitrary point P within the transformed pupil, the co-
ordinate of the point can be expressed by the position vector r in
XOY and, equivalently, by r 0 in X 0O 0Y 0. The relationship
between the two coordinates of P with respect to the correspond-
ing coordinate systems can be expressed as

r � R�α�r 0 �D: (2)

As the vector r 0 is defined in X 0O 0Y 0, which rotates α from
XOY , the rotation operator R�α� is introduced. Expanding
Eq. (2) into scalar form, the Cartesian coordinate of point P
in XOY can be obtained:8<

:
X � jrj cos�φ� � jr 0j cos�θ� α� � jDj cos�β�
Y � jrj sin�φ� � jr 0j sin�θ� α� � jDj sin�β�
jrj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 � Y 2

p , (3)

where φ is the polar angle of r referring to XOY , and θ is
the polar angle of r 0 referring to X 0O 0Y 0. Since the Zernike

Fig. 1. Illustration of the transformation of reference coordinate
system.
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polynomials are defined over a unit circle, it is more convenient
to express Eq. (3) into a normalized form:8<

:
x � ρ cos�φ� � Bρ 0 cos�θ� α� � d cos�β�
y � ρ sin�φ� � Bρ 0 sin�θ� α� � d sin�β�
ρ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p , (4)

where d � jDj∕R is the normalized translation distance,
ρ � jrj∕R, and ρ 0 � jr 0j∕R 0 are defined as the normalized polar
radius of point P referring to the two coordinate systems, respec-
tively. Eq. (4) gives the explicit expressions of the coordinate
transformation functions between the polar coordinates of
the transformed pupil and the Cartesian coordinates of the origi-
nal pupil. The scaling, rotation, and translation are dealt with
simultaneously.

3. TRANSFORMATION OF ZERNIKE
COEFFICIENTS

The wavefront aberration over the original pupil defined in
XOY can be described by a linear combination of a set of
Zernike polynomials:

W �ρ,φ� �
XM
j�1

cjZ j�ρ,φ�, (5)

where M is the index of the highest-order Zernike term and cj
is the coefficient of the jth Zernike term. The Zernike polyno-
mials over a unit radius pupil using the amplitude normaliza-
tion can be defined as

Z j�ρ,φ� � Zm
n �ρ,φ� � Rm

n �ρ�
�
cos�mφ� for m ≥ 0
sin�jmjφ� for m < 0

,

(6)

where n and m are integers (including zero), n − jmj ≥ 0 and
even. The index n represents the radial degree or the order of
the polynomial, since it represents the highest power of ρ in the
polynomial, and m is called the azimuthal frequency. Rm

n �ρ� is
the radial factor given by

Rm
n �ρ� �

X�n−jmj�∕2

s�0

�−1�s�n − s�!
s!
�
n−m
2 − s

�
!
�
n�m
2 − s

�
!
ρn−2s : (7)

The norm of a Zernike polynomial term is then given by

Nnm �
Z

2π

0

Z
1

0

Zm
n �ρ,φ�Zm

n �ρ,φ�ρdρdφ � π�1� δ0m�
2�n� 1� ,

(8)

where δ0m is the Kronecker symbol. For the convenience of
coordinate transformation as described in Eq. (4), W �ρ,φ�
needs to be transformed into the Cartesian coordinates

W �ρ,φ� � W �x, y, ρ� �
XM
j�1

cjZ j�x, y, ρ�: (9)

Substituting the following trigonometric identities into Eqs. (6)
and (7), the Cartesian representation of the Zernike polyno-
mials can be derived:

8>>>>>><
>>>>>>:

cosmφ�Pbm2c
v�0 �−1�vC2v

m cosm−2vφsin2vφ, m≥0

sinjmjφ�P�
jmj−1
2

�
v�0 �−1�vC2v�1

jmj cosjmj−2v−1φsin2v�1φ, m<0

x�ρ cosφ

y�ρ sinφ

:

(10)

The Cartesian representation of the Zernike polynomials can
be written as

Z j�x, y,ρ�
� Zm

n �x, y,ρ�

�

8>><
>>:

Pn−m
2
s�0

Pbm2c
v�0

�−1�v�s�n−s�!C2v
m ρn−m−2s xm−2v y2v

s!�n−m2 −s�!�n�m
2 −s�! , m≥ 0

Pn−jmj
2

s�0

P�
jmj−1
2

�
v�0

�−1�v�s�n−s�!C2v�1
jmj ρn−jmj−2s xjmj−2v−1y2v�1

s!�n−m2 −s�!�n�m
2 −s�! , m< 0

:

(11)

Similarly, the wavefront aberration over the transformed pupil
defined in X 0O 0Y 0 can be expressed as

W 0�ρ 0, θ� �
XM 0

i�1

c 0iZ i�ρ 0, θ�, (12)

where M 0 is the index of the highest-order Zernike term.
A different set of Zernike polynomials can be used. c 0i is the
coefficient of the ith Zernike term. For any arbitrary points
in the transformed pupil, the wavefront aberration described
by Eqs. (9) and (12), referring to different coordinate systems,
are equivalent:

W 0�ρ 0, θ� � W �x, y, ρ� �
XM
j�1

cjZ j�x, y, ρ�: (13)

Substituting Eq. (4) into Eq. (13), the wavefront aberration
function of the transformed pupil, expressed in terms of ρ 0

and θ, is obtained. Since the Zernike polynomials are orthogo-
nal and complete over the unit radius circle, the coefficients for
a given set of Zernike polynomials of the transformed pupil can
be calculated as

c 0i �
1

N i

Z
2π

0

Z
1

0

W �x, y, ρ�Z i�ρ 0, θ�ρ 0dρ 0dθ, (14)

where N i is the norm of Z i�ρ 0, θ�, and x, y, and ρ satisfy the
description in Eq. (4). Moreover, Eq. (14) can also be expressed
in a matrix form as

c 0 � Tc, (15)

where c 0 � �c 01, c 02,…, c 0M 0 � 0 and c � �c1, c2,…, cM � 0 are col-
umn vectors containing the Zernike coefficients, and T is a
M 0 ×M matrix defined as the transformation matrix.
Eq. (15) indicates that each coefficient of the transformed pupil
is simply a linear combination of the original ones. The ele-
ments of T can be calculated as

T kl �
1

Nk

Z
2π

0

Z
1

0

Z l �x, y, ρ�Zk�ρ 0, θ�ρ 0dρ 0dθ, (16)
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where T kl denotes the element in the kth row and l th
column of T.

Based on the Cartesian and polar representations of Zernike
polynomials, the transformation matrix can be derived directly.
No particular operation on the polynomials is required.
Attributed to the orthogonality of Zernike polynomials, the cal-
culation of each coefficient is independent and is only related to
the corresponding Zernike term, which allows the transforma-
tion of coefficients between different sets of Zernike polyno-
mials. As a result, one can only calculate the coefficients of
concerned Zernike terms. However, in the case that the overall
wavefront aberration is concerned, enough terms of Zernike
polynomials should be considered. Comastri et al. [18] have
given the selection rules of Zernike terms for scaling and trans-
lation and analyzed the missing terms associated with certain
translation directions. Lundström and Unsbo [14] also have
briefly discussed how the individual Zernike coefficients couple
to each other when the pupil is transformed. Generally speak-
ing, the set of Zernike polynomials that are used to describe the
wavefront aberration over the transformed pupil should include
all terms of radial degrees equal to and smaller than the highest
n of the original set.

4. EXAMPLE

The first 36 terms of standard Zernike polynomials listed in
Appendix A are used in this paper to validate the method de-
scribed in the previous section. Nevertheless, it is worth point-
ing out that the proposed method can be applied to any given
set of Zernike polynomials. By calculating the transformation
matrixes of different types of transformation, the transforma-
tion rules of individual terms are systematically analyzed.
A numerical example of simultaneous scaling, translation,
and rotation is presented.

A. Scaling
Concentric scaling of the pupil is considered first. By substitut-
ing α � 0, d � 0, and β � 0, the transformation matrix for
pure scaling of the pupil can be derived. As illustrated in
Fig. 2, the scaling matrix is shown in a black-and-white image,
where the filled squares denote the nonzero elements.

According to the definition of transformation matrix, the
columns of the matrix correspond to the terms of the original
Zernike set, and the rows correspond to the terms of the new
set. By referring to the radial degree and the azimuthal fre-
quency of each term associated with the nonzero elements,
it can be found that the scaling of any Zernike term of radial
degree n and azimuthal frequency m gives rise to contributions
to terms of the same azimuthal frequency and equal or smaller
radial degree, which can be expressed as

�n,m� ⇒ �n 0 ≤ n,m 0 � m�, (17)

where �n,m� and �n 0,m 0� denote the radial degree and the azi-
muthal frequency of the original and new Zernike sets, respec-
tively. For example, the 23rd term of the original set (n � 7,
m � 1) contributes to the 2nd (n 0 � 1, m 0 � 1), 7th (n 0 � 3,
m 0 � 1), 14th (n 0 � 5, m 0 � 1), and 23rd (n 0 � 7, m 0 � 1)
terms of the new set, while the 24th term (n � 7, m � −1)
contributes to the 3rd (n 0 � 1, m 0 � −1), 8th (n 0 � 3,

m 0 � −1), 15th (n 0 � 5, m 0 � −1), and 24th (n 0 � 7,
m 0 � −1) terms.

All of the nonzero elements of the matrix are polynomials of
the scaling factor B and are only dependent on the radial degree
n and n 0 of the corresponding Zernike terms. Appendix B pro-
vides the expressions of all nonzero elements of the scaling ma-
trix up to the 7th order. It is found that our results match
exactly with the formula provided by Janssen and Dirksen
[12]. According to Eq. (4) in [12], a general expression of
the elements can be given as

T nmn 0m 0 � δmm 0 �Rn 0
n �B� − Rn 0�2

n �B��, n 0 ≤ n, (18)

where T nmn 0m 0 denotes the element associated with the (n, m)
and �n 0,m 0� Zernike term, and δmm 0 is the Kronecker symbol.

B. Scaling and Translation
The transformed pupil should be contained in the original one,
which means the translation vector must be subject to the con-
straint jDj ≤ R − R 0. As a result, the scaling and translation
must be performed simultaneously. Let the rotation angle
α � 0, and the transformation matrix of scaling and translation
is obtained. As pointed out by previous research [14,18], the
couplings between individual Zernike terms are dependent on
the direction of the translation. With the help of the derived
transformation matrix, this can be explained theoretically. It
can be found that the common factors of certain elements
of the matrix are sin�aβ� or cos�aβ� (a � 1, 2,…, 6, 7). For
specific translation angles that lead to sin�aβ� � 0 or
cos�aβ� � 0, the corresponding elements will also be equal
to zero. As a result, the associated couplings between individual
Zernike terms will be absent. As shown in Fig. 3, the filled
squares denote the elements independent from the translation
angle, S1–S7 denote the elements of which the common factors
are sin�β� ∼ sin�7β�, and C1–C7 denote the elements of which

Fig. 2. Scaling matrix of the first 36 terms of standard Zernike poly-
nomials; the filled squares denote the nonzero elements.
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the common factors are cos�β� ∼ cos�7β�. Nevertheless, except
for certain translation angles, the general transformation rule of
individual terms for scaling and translation can be given as

�n,m� ⇒

0
B@

n 0 � jm 0j ≤ n� jmj
n 0 − jm 0j ≤ n − jmj
m 0 ≠ −m for m ≠ 0

1
CA

�
0
@ m 0 � −m

for

� jmj � 1, n 0 < n

n even, n 0 < n − 2

1
A: (19)

Generally speaking, the scaling and translation of any Zernike
term of �n,m� gives rise to contributions to the same �n,m�
term and certain terms of smaller radial degrees.

C. Rotation
Rotation of the pupil can be treated independently from the
scaling and translation. By substituting B � 1, d � 0, and
β � 0, the rotation matrix is obtained and illustrated in
Fig. 4. As can be seen from the figure, the rotation of any
Zernike term of radial degree n and azimuthal frequency m will
give rise to contributions to the terms of �n, � m�:

�n,m� ⇒ �n 0 � n,m 0 � �m�: (20)

Moreover, it is found that the expression of the elements of the
rotation matrix can be given as

T nmn 0m 0 � δnn 0δjmjjm 0j

8<
:

1 for m 0 � 0
cos�m 0α� for m 0 � m
sin�m 0α� for m 0 � −m

: (21)

D. COMBINED TRANSFORMATION

Finally, a combined transformation of scaling, translation, and
rotation is considered. As the rotation of the pupil can be
treated independently from the scaling and translation, the
combined transformation matrix can be calculated by multiply-
ing the rotation matrix by the scaling and translation matrix.
However, there is actually no need to treat them separately. By
using the proposed method, the scaling, translation, and rota-
tion can be performed simultaneously, and the combined trans-
formation matrix can be calculated directly. The transformation
matrix is illustrated in Fig. 5. Obviously, the transformation
rule of individual terms can be given as

�n,m� ⇒
�
n 0 � jm 0j ≤ n� jmj
n 0 − jm 0j ≤ n − jmj

	
: (22)

To sum up, an original Zernike term of radial degree n never
affects a term of radial degree higher than n. Therefore, a more
practical and quick selection rule for Zernike polynomials can
be given: the set of Zernike polynomials that is used to describe
the wavefront aberration over the transformed pupil should in-
clude all terms of radial degrees equal to and smaller than the
highest n of the original set, just as presented in the previous
section.

Finally, consider the case of simultaneous scaling (B � 0.6),
translation (normalized d � 0.3 and β � 40°), and rotation
(α � 60°). According to the above analysis, the first 36 terms
of standard Zernike polynomials are used to describe the wave-
front aberrations of both the original and the transformed pu-
pils. By using the proposed method, the transformation matrix
is derived, and the new set of coefficients is calculated directly
from a given set of Zernike coefficients. Using the Zernike pol-
ynomial coefficients, the wavefront maps of the pupils are con-
structed. The wavefront maps and the Zernike polynomial

Fig. 3. Scaling and translation matrix of the first 36 terms of stan-
dard Zernike polynomials; the filled squares denote the elements in-
dependent from the translation angles, S1–S7 denote the elements of
which the common factors are sin�β� ∼ sin�7β�, and C1–C7 denote
the elements of which the common factors are cos�β� ∼ cos�7β�.

Fig. 4. Rotation matrix of the first 36 terms of standard Zernike
polynomials; the black blocks denote the nonzero elements.
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coefficients of the original and the transformed pupils are
shown in Fig. 6. For comparison, the case of scaling and trans-
lation [shown in Fig. 6(b)] and the case of scaling, translation,
and rotation [shown in Fig. 6(c)] are considered, respectively.
Note that the Zernike coefficients of both pupils are calculated
directly from the original set. As can be seen from the figure,
the calculated wavefront of the transformed pupils matches per-
fectly with the corresponding area in the original pupil.

5. FURTHER APPLICATION

The alignment of pupil-decentered off-axis optical systems has
always been a challenging task in the field of optical engineer-
ing. To our knowledge, most existing alignment methods are
based on the Zernike polynomial coefficients obtained from
interferometric testing. On the other hand, by using NAT [6],
analytic expressions of Zernike polynomials of coaxial systems
can be derived [4,5], where the field and misalignment depend-
ences are introduced to the Zernike polynomial coefficients.
According to NAT, the wavefront aberration expansion of a
misaligned coaxial optical system is given as

W �
X#surface
i

W i

�
X#surface
i

X∞
p

X∞
q

X∞
r
W abr,i� ~HAi · ~HAi�p�~ρ · ~ρ�q� ~HAi · ~ρ�r

~HAi � ~H − ~σi, a� 2p� r, b� 2q� r, (23)

where the total aberration W is the sum of the individual sur-
face contributions W i, the subscript i is the surface number,
W abr,i is the wave aberration coefficient for surface i, ~ρ is
the pupil vector representing the pupil position, ~HAi is defined

as the effective aberration field height of surface i, ~H is the field
vector representing the field position, and ~σi is the aberration
field decenter vector that locates the center of the aberration
field of surface i and is determined by the misalignment of
the surface [7,19]. Substituting Eq. (23) into a similar equation
such as Eq. (14), the analytic expressions of field and misalign-
ment dependent Zernike coefficients can be derived:

Aj �
X#surface
i

Aj,i� ~H , ~σi�

�
X#surface
i

1

N j

Z
2π

0

Z
1

0

W i�~ρ, ~H , ~σi�Z j�ρ, θ�ρdρdθ, (24)

where Aj is the coefficient of Z j�ρ, θ� and is the sum of the
surface contributions Aj,i; N j denotes the norm of Z j�ρ, θ�.

Fig. 5. Combined transformation matrix of the first 36 terms of
standard Zernike polynomials; the filled squares denote the nonzero
elements.

Fig. 6. Wavefront maps and corresponding Zernike polynomial co-
efficients of the original and transformed pupils. (a) original pupil;
(b) scaled (B � 0.6) and translated (normalized d � 0.3 and
β � 40°) pupil; (c) scaled (B � 0.6), translated (normalized d �
0.3 and β � 40°), and rotated (α � 60°) pupil. The coefficients of
(b) and (c) are both calculated directly from the original set.
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The Zernike coefficients are expressed as functions of the
field vectors and the aberration field decenter vectors.
Equating them with the Zernike polynomial coefficients mea-
sured on several field positions by interferometric testing,

X#surface
i

Ai� ~H , ~σi� � Aco-axis
measured, (25)

where A denotes the column vector containing coefficients of
concerned Zernike terms. Generally speaking, the terms that
are sensitive to the amounts of misalignment should be used.
Given the field vectors and the Zernike coefficients of each
measurement, Eq. (25) can be solved. The aberration field de-
center vectors and, further, the misalignments (tilt and decen-
ter) of each individual surface can be calculated directly.

Note that Eq. (23) is defined in the coaxial optical systems.
As a result, Eq. (25) can only be applied to the alignment of
coaxial systems. However, by introducing the proposed method
of transforming Zernike coefficients, it can be directly extended
to a pupil-decentered off-axis optical system:

T
X#surface
i

Ai� ~H , ~σi� � Aoff-axis
measured, (26)

where T is the corresponding transformation matrix. In fact,
many alignment methods for coaxial optical systems [7,20]
can also be directly extended to off-axis optical systems in
the same way. Certainly, there are still many practical problems
that have to be considered. For example, the effects of optical-
surface deformation and measurement errors on the wavefront
aberration of the system should be taken into account. The
algorithm of solving the overdetermined nonlinear equations
also needs to be studied. More issues on this topic will be in-
vestigated in detail in our future research and papers.

6. CONCLUSION

An analytic method of transforming the Zernike polynomial
coefficients for scaled, translated, and rotated pupils is proposed
in this paper. The transformation matrix that accounts for the
effects of scaling, translation, and rotation simultaneously can
be derived directly and conveniently. The calculation of each
element of the matrix is independent and is only related to
the corresponding Zernike terms, which allows the transforma-
tion of coefficients between different sets of Zernike polyno-
mials and the coefficients of concerned Zernike terms being
calculated directly and independently. The 36 terms of standard
Zernike polynomials are used as an example to validate the
effectiveness of the proposed method. By analyzing the char-
acteristics of the transformation matrixes of different types
of transformation, the transformation rules of individual
Zernike terms are presented, revealing how individual terms
of the original pupil transform into terms of the transformed
pupil. The presented transformation rules also provide a valu-
able insight into relationships of wavefront aberrations of a
pupil-decentered off-axis system and its coaxial parent system.
Furthermore, a general rule for selecting the set of Zernike
polynomials that is used to describe the wavefront aberration
over the transformed pupil is given. Finally, numerical examples
demonstrate the validity of the proposed method. Appendix C

gives the MATLAB code that is used to derive the transforma-
tion matrix for the 36 terms of Zernike polynomials. The read-
ers may also see Code 1, Ref. [21] for the explicit expression of
the transformation matrix, which can be used directly.

Beside its common application in the field of ophthalmic
optics, further application of the proposed method to the align-
ment of pupil-decentered off-axis optical systems is also intro-
duced. By using the coefficients’ transformation matrix, many
existing alignment methods for coaxial optical systems can be
directly extended to off-axis optical systems. The alignment of
off-axis optical systems will be investigated in detail in our
future research.

APPENDIX A: FIRST 36 TERMS OF STANDARD
ZERNIKE POLYNOMIALS IN CARTESIAN
COORDINATES

j n m Zernike Polynomial Norm

1 0 0 1 π
2 1 1 x π∕4
3 1 −1 y π∕4

4 2 0 2ρ2 − 1 π∕3

5 2 2 x2 − y2 π∕6

6 2 −2 2xy π∕6

7 3 1 x�3ρ2 − 2� π∕8

8 3 −1 y�3ρ2 − 2� π∕8

9 3 3 x�4x2 − 3ρ2� π∕8

10 3 −3 y�4x2 − ρ2� π∕8

11 4 0 6ρ4 − 6ρ2 � 1 π∕5

12 4 2 �x2 − y2��4ρ2 − 3� π∕10

13 4 −2 2xy�4ρ2 − 3� π∕10

14 4 4 ρ4 − 8x2y2 π∕10

15 4 −4 4xy�x2 − y2� π∕10

16 5 1 x�10ρ4 − 12ρ2 � 3� π∕12

17 5 −1 y�10ρ4 − 12ρ2 � 3� π∕12

18 5 3 x�x2 − 3y2��5ρ2 − 4� π∕12

19 5 −3 y�3x2 − y2��5ρ2 − 4� π∕12

20 5 5 x�16x4 − 20x2ρ2 � 5ρ4� π∕12

21 5 −5 y�16x4 − 12x2ρ2 � ρ4� π∕12

22 6 0 20ρ6 − 30ρ4 � 12ρ2 − 1 π∕7

23 6 2 �x2 − y2��15ρ4 − 20ρ2 � 6� π∕14

24 6 −2 2xy�15ρ4 − 20ρ2 � 6� π∕14

25 6 4 �ρ4 − 8x2y2��6ρ2 − 5� π∕14

26 6 −4 4xy�x2 − y2��6ρ2 − 5� π∕14

27 6 6 32x6 − 48ρ2x4 � 18ρ4x2 − ρ6 π∕14

28 6 −6 2xy�16x4 − 16ρ2x2 � 3ρ4� π∕14

29 7 1 x�35ρ6 − 60ρ4 � 30ρ2 − 4� π∕16

30 7 −1 y�35ρ6 − 60ρ4 � 30ρ2 − 4� π∕16

31 7 3 x�4x2 − 3ρ2��21ρ4 − 30ρ2 � 10� π∕16

(Table continued)
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j n m Zernike Polynomial Norm

32 7 −3 y�4x2 − ρ2��21ρ4 − 30ρ2 � 10� π∕16

33 7 5 x�7ρ2 − 6��5ρ4 − 20ρ2x2 � 16x4� π∕16

34 7 −5 y�7ρ2 − 6��ρ4 − 12ρ2x2 � 16x4� π∕16

35 7 7 x�64x6 − 112ρ2x4 � 56ρ4x2 − 7ρ6� π∕16

36 7 −7 y�64x6 − 80ρ2x4 � 24ρ4x2 − ρ6� π∕16

APPENDIX B: ELEMENTS OF THE SCALING
MATRIX

n n 0 Expressions of the Elements

0 0 1
1 1 B
2 0 B2 − 1
2 2 B2

3 1 2B3 − 2B
3 3 B3

4 0 2B4 − 3B2 � 1
4 2 3B4 − 3B2

4 4 B4

5 1 5B5 − 8B3 � 3B
5 3 4B5 − 4B3

5 5 B5

6 0 4B6 − 10B4 � 6B2 − 1
6 2 9B6 − 15B4 � 6B2

6 4 5B6 − 5B4

6 6 B6

7 1 14B7 − 30B5 � 20B3 − 4B
7 3 14B7 − 24B5 � 10B3

7 5 6B7 − 6B5

7 7 B7

APPENDIX C: MATLAB CODE

%Return symbolic transformation matrix for 36 terms of standard
Zernike polynomials
clear all;
syms B… %Scaling factor

d… %Normalized translation distance
beta… %Polar angle of the translation vector
alpha… %Rotation angle
r0… %Normalized polar radius of the transformed pupil
theta; %Polar angle of the transformed pupil

%Coordinates transformation
x=B*r0*cos(theta+alpha)+d*cos(beta);
y=B*r0*sin(theta+alpha)+d*sin(beta);
r=sqrt(x^2+y^2);
%Cartesian representation of 36 terms of standard Zernike
polynomials
Z=[1

x
y
2*r^2−1
2*x^2−r^2
2*x*y
x*(3*r^2−2)
y*(3*r^2−2)
4*x^3−3*r^2*x
−y*(r^2−4*x^2)
6*r^4−6*r^2+1

(Table continued)

−(r^2−2*x^2)*(4*r^2−3)
2*x*y*(4*r^2−3)
r^4−8*r^2*x^2+8*x^4
−4*x*y*(r^2−2*x^2)
x*(10*r^4−12*r^2+3)
y*(10*r^4−12*r^2+3)
−x*(5*r^2−4)*(3*r^2−4*x^2)
−y*(r^2−4*x^2)*(5*r^2−4)
5*r^4*x−20*r^2*x^3+16*x^5
y*(r^4−12*r^2*x^2+16*x^4)
20*r^6−30*r^4+12*r^2−1
−(r^2−2*x^2)*(15*r^4−20*r^2+6)
2*x*y*(15*r^4−20*r^2+6)
(6*r^2−5)*(r^4−8*r^2*x^2+8*x^4)
−4*x*y*(r^2−2*x^2)*(6*r^2−5)
−r^6+18*r^4*x^2−48*r^2*x^4+32*x^6
2*x*y*(3*r^4−16*r^2*x^2+16*x^4)
x*(35*r^6−60*r^4+30*r^2−4)
y*(35*r^6−60*r^4+30*r^2−4)
−x*(3*r^2−4*x^2)*(21*r^4−30*r^2+10)
−y*(r^2−4*x^2)*(21*r^4−30*r^2+10)
x*(7*r^2−6)*(5*r^4−20*r^2*x^2+16*x^4)
y*(7*r^2−6)*(r^4−12*r^2*x^2+16*x^4)
−7*r^6*x+56*r^4*x^3−112*r^2*x^5+64*x^7
−y*(r^6−24*r^4*x^2+80*r^2*x^4−64*x^6)];

%Polar representation of 36 terms of standard Zernike polynomials
Z0=[1
r0*cos(theta)
r0*sin(theta)
2*r0^2−1
r0^2*cos(2*theta)
r0^2*sin(2*theta)
(3*r0^3−2*r0)*cos(theta)
(3*r0^3−2*r0)*sin(theta)
r0^3*cos(3*theta)
r0^3*sin(3*theta)
6*r0^4−6*r0^2+1
(4*r0^4−3*r0^2)*cos(2*theta)
(4*r0^4−3*r0^2)*sin(2*theta)
r0^4*cos(4*theta)
r0^4*sin(4*theta)
(10*r0^5−12*r0^3+3*r0)*cos(theta)
(10*r0^5−12*r0^3+3*r0)*sin(theta)
(5*r0^5−4*r0^3)*cos(3*theta)
(5*r0^5−4*r0^3)*sin(3*theta)
r0^5*cos(5*theta)
r0^5*sin(5*theta)
20*r0^6−30*r0^4+12*r0^2−1
(15*r0^6−20*r0^4+6*r0^2)*cos(2*theta)
(15*r0^6−20*r0^4+6*r0^2)*sin(2*theta)
(6*r0^6−5*r0^4)*cos(4*theta)
(6*r0^6−5*r0^4)*sin(4*theta)
r0^6*cos(6*theta)
r0^6*sin(6*theta)
(35*r0^7−60*r0^5+30*r0^3−4*r0)*cos(theta)
(35*r0^7−60*r0^5+30*r0^3−4*r0)*sin(theta)
(21*r0^7−30*r0^5+10*r0^3)*cos(3*theta)
(21*r0^7−30*r0^5+10*r0^3)*sin(3*theta)
(7*r0^7−6*r0^5)*cos(5*theta)
(7*r0^7−6*r0^5)*sin(5*theta)
r0^7*cos(7*theta)
r0^7*sin(7*theta)];

%Norms of Zernike polynomials
N=[pi;pi/4;pi/4;pi/3;pi/6;pi/6;pi/8;pi/8;pi/8;pi/8;pi/5;pi/10;pi/10;pi/
10;pi/10;pi/12;pi/12;pi/12;pi/12;pi/12;pi/12;pi/7;pi/14;pi/14;pi/14;
pi/14;pi/14;pi/14;pi/16;pi/16;pi/16;pi/16;pi/16;pi/16;pi/16;pi/16];

(Table continued)
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%Transformation matrix
T=sym(zeros(36,36));
matlabpool open;
parfor i=1∶36

for j=1∶36
T(i,j)=int(int(expand(Z0(i)*Z(j)*r0/N(i)),r0,0,1),theta,0,2*pi);

end
end
matlabpool close;
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