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Abstract: In this paper, a calibration method is proposed which eliminates the zeroth order effect in 
lateral shearing interferometry. An analytical expression of the calibration error function is deduced, 
and the relationship between the phase-restoration error and calibration error is established. The 
analytical results show that the phase-restoration error introduced by the calibration error is 
proportional to the phase shifting error and zeroth order effect. The calibration method is verified 
using simulations and experiments. The simulation results show that the phase-restoration error is 
approximately proportional to the phase shift error and zeroth order effect, when the phase shifting 
error is less than 2° and the zeroth order effect is less than 0.2. The experimental result shows that 
compared with the conventional method with 9-frame interferograms, the calibration method with 
5-frame interferograms achieves nearly the same restoration accuracy. 
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1. Introduction 

The lithography lens is an essential component 

of the lithography machine. The measurement of 

system wavefront aberration for the projection lens 

is one of the core technologies for the development 

of lithography [1‒4]. There are several methods to 

measure system wavefront aberration, such as 

grating lateral shearing interferometry [5‒8] and 

point diffraction interferometry [9‒12]. Compared 

with the point diffraction interferometry, it is easy to 

realize the ultra-high precision measurement of high 

numerical aperture (NA) projection lens with grating 

lateral shearing interferometry. As a result, the 

grating lateral shearing interferometry is a promising 

technology for system wavefront aberration 

measurement [13]. 

In grating lateral shearing interferometry, the 

undesired zeroth order diffracted beam will reach 

the detector, causing the zeroth order effect error. 

Furthermore, the error is not negligible for 

wavefront aberration measurement of lithography 

lens. In 2004, Zhu et al. proposed a 9-frame phase 

shifting algorithm to solve the zeroth order effect 
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problem under the condition of small phase shifting 

error [14]. In 2013, we improved the 11-frame 

algorithm to solve this problem under the condition 

of large phase shifting error [15]. The above 

mentioned solutions are achieved by designing a 

special phase shifting algorithm to suppress the zero 

order effect. These solutions increase the complexity 

of the phase shifting algorithm and require the 

collection of more frames of interferograms. It takes 

a longer time to collect more interferograms when 

more random errors, such as temperature, pressure, 

and vibration, are introduced. Moreover, it also 

increases the phase shifting amount, which requires 

design and fabrication of more complex phase 

shifter. 

In this paper, we propose a calibration method to 

eliminate the zeroth order effect in lateral 

interferometry. A procedure of phase shifting 

calibration is performed before the procedure of 

phase shifting interferometry. The calibration 

procedure quantitatively calculates the zeroth order 

effect to eliminate its influence and thus reduce the 

complexity of the specially designed phase shifting 

algorithm. The principle of calibration is analyzed 

theoretically, and the analytical expression of the 

calibration error function is deduced. The 

relationship between the phase-restoration error and 

the calibration error is established. Finally, the 

simulations and experiment are described. 

2. Principles 

A typical grating lateral shearing interferometer 

is shown in Fig. 1. Grating divides the incident beam 

into diffracted beams. The ± 1st order diffracted 

beam passes through a spatial filter, and the 0th and 

higher order diffracted beams are eliminated. 

However, there is still a certain percentage of the 0th 

order beam reaching the charge-coupled device 

(CCD) detector that causes the zeroth order effect 

error.  

Therefore, the error of the zeroth order effect 

must be eliminated before phase shifting 

interferometry. The method to eliminate the zeroth 

order effect is mainly achieved in two procedures. 

One procedure is the constant calculation during 

phase shifting calibration, and the other one is the 

removal of the zeroth order effect during phase 

shifting interferometry. The calibration constant is 

calculated once for one tested lens. 

 

Grating 

Projection
 lens 

  

CCD 

spatial filter

 
Fig. 1 Block diagrams of grating lateral shearing 

interferometer. 

2.1 Calculation of calibration constant 

We propose a 9-step phase shifting calibration 

method to calculate the calibration constant to 

quantify the zeroth order effect. The phase shifting 

amount for each step is π / 2, then the phase shifting 

amount in the calibration procedure can be 

expressed as 

2n n
πφ =                (1) 

where n (n = ‒4, ‒3, …, 0, …, 3, 4) is the number of 

step. 

The 0th and ± 1st order beams interfere with 

each other in the calibration procedure. The fringe 

intensity distribution of In for the n-th step is 

( )
( ) ( )

1 1

2 2 3 3

cos

      cos / 2 cos / 2

n n

n n

I Q V

V V

θ φ
θ φ θ φ

= + + +

+ + +
   (2) 

where θ1 is an unknown phase needing to be restored, 

θ2 and θ3 are undesired phases distorted by the 0th 

order beam, V1 is the intensity modulation of the 

tested interference, and V2 and V3 are the intensity 
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modulations of the undesired interference. 

In order to calculate the zeroth order effect, the 

calibration constants of K1 and K2 are defined as 

follows: 

1 2 2 3 3

2 2 2 3 3

sin sin

cos cos .

K V V

K V V

θ θ
θ θ

= +
 = +

         (3) 

According to (1) to (3), the calibration constants 

can be calculated as follows: 

( ) ( )

( )

1 1 1 3 3

2 4 4 0

2 2

4 4
1

2 .
4

K I I I I

K I I I

− −

−


= − − − −


 = − + −

     (4) 

2.2 Removal of the zeroth order effect 

In the phase shifting interferometry procedure, 

the intensity distribution of Ij for the j-th step is 

( )
( ) ( )

1 1

2 2 3 3

cos

       cos / 2 cos / 2

j j

j j

I Q V

V V

θ ϕ

θ ϕ θ ϕ

= + + +

+ + +
  (5) 

where φj is phase shifting amount in the 

interferometry. 

The intensity distribution of the zeroth order 

effect to be calibrated is represented as follows: 

( ) ( )2 2 3 3

2 1

cos / 2 cos / 2

    cos( / 2) sin( / 2).

cj j j

j j

I V V

K K

θ ϕ θ ϕ
ϕ ϕ

= + + +

= −
  (6) 

After calibrating K1 and K2, the zeroth order 

effect with corresponding phase shifting amount can 

be calculated according to (6). The intensity 

distribution of each frame after removing the error 

of the zeroth order effect can be expressed as 

follows: 

( )1 1costj j cj jI I I Q V θ ϕ= − = + + .     (7) 

From (7), we conclude that the intensity 

distribution is not affected by the zeroth order effect. 

The calibration and removal of the zeroth order 

effect are achieved. 

3. Error analyses 

3.1 Intensity distribution calibration error 

Owing to the manufacturing error and alignment 

error of micro displacement stage and grating, the 

phase shifting error always exists in the phase 

shifting calibration procedure. The phase shifting 

amount for n-frame is 

2n n n
πφ ε= ⋅ + ⋅              (8) 

where ε is the phase shifting error. 

We substitute (8) into (4) and express (4) as two 

sets of Taylor expansions for the phase shifting error 

of ε, ignoring the higher order of ε2 or more. The 

calibration constants are approximated as follows: 

1 2 2 3 3

1

1 1
1 1

' ( )sin ( )sin
2 2

1
     (1 )

2

K V V

K

ε εθ θ

ε

− −≈ +

= −    
(9) 

2 2 2 3 3 2' cos cosK V V Kθ θ≈ + = .      (10) 

In the phase shifting interferometry, the intensity 

distribution of the zeroth order effect with phase 

shifting calibration error can be expressed as 

follows: 

2 1

1

' ' cos( / 2) ' sin( / 2)

     sin( / 2).
2

cj j j

cj j

I K K

I K

ϕ ϕ
ε ϕ

= −

= +
    (11) 

The intensity distribution calibration error of the 

zeroth order effect is expressed as follows: 

1' sin( / 2)
2cj cj cj jI I I K
ε ϕΔ = − = .     (12) 

In general, the intensities of the ± 1 order beams 

are equal, therefore, V2 = V3. The intensity 

distribution calibration error is expressed as 

2cjI V AεΔ =               (13) 

where 2 3(sin sin )sin( 2) / 2jA θ θ ϕ= +  is a 

constant. 

From (13), we conclude that the intensity 

distribution calibration error of the zeroth order 

effect is proportional to the phase shifting error and 

the zeroth order effect. As the phase shifting error 

increases, the calibration error increases linearly. As 

the zeroth order effect increases, the calibration error 

increases linearly. 

3.2 Phase-restoration error 

The intensity distribution calibration error is 
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shown as the gray of the interferogram, which is an 

intermediate quantity in the measurement. The final 

result of the measurement is phase. Therefore, it is 

necessary to establish the relationship between the 

phase-restoration error and the calibration error. 

The intensity distribution of 'tjI  affected by 

calibration error is denoted as follows: 

'tj tj cjI I I= − Δ .             (14) 

Here, the widely used Hariharan algorithm is 

used to illustrate the method to establish the 

relationship between the phase-restoration error and 

calibration error [16]. The phase shifting amount for 

each step of the Hariharan algorithm is π / 2. The 

Hariharan algorithm is expressed as 

1 1

2 2 0

2( )
tan

( ) 2

I I

I I I
θ −

−

−=
+ −

         (15) 

where θ is the phase to be restored. 

The phase with the calibration error is expressed 

as 

1 1 1
2

2 2 0

2( ) 2
tan ' tan (1 2 )

( ) 2
t t

t t t

I I K
V B

I I I

εθ θ ε−

−

− −
= = −
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(16) 

where 

2 3

2 2 0

(sin sin )2

2 ( ) 2t t t

B
I I I

θ θ
−

+
=

+ −
        (17) 

and B is a constant. 

Considering that the phase-restoration error of 

∆θ is small, the phase-restoration error is as follows: 

2

' tan( ')

     sin 2 .V B

θ θ θ θ θ
ε θ

Δ = − ≈ −
=

        (18) 

From (18), the phase-restoration error introduced 

by the calibration error of the zeroth order effect 

varies as the sine of double phase, and the worst 

condition is at π / 4. The phase-restoration error is 

also proportional to the phase shifting error and 

zeroth order effect. As the phase shifting error 

increases, the phase-restoration error increases 

linearly. As the zeroth order effect increases, the 

phase-restoration error increases linearly. 

4. Simulations 

In this section, a lateral shearing interferometry 

affected by the zeroth order effect is simulated to 

verify the analyses. The wavefront with common 

aberrations locates in unit circle. The wavefront is 

sheared in the x direction, the shearing ratio is 0.1, 

and the zeroth order effect is V2 = V3 = 12.5%V1. The 

shearing phase is shown in Fig. 2. 
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Fig. 2 Shearing phase in the simulation. 

According to the calibration method, under the 

conditions of ε = 1° and V2 = V3 = 12.5%V1, the phase 

shifting amount of each step is π / 2, and a sequence 

of 9-frame interferogram is obtained in the 

calibration procedure. According to (4), the 

calibration constants K1 and K2 are calculated. When 

j = ‒2, the calibration result of the zeroth order effect 

is shown in Fig. 3. 
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Fig. 3 Calibration results of the zeroth order effect when    

j = ‒2. 

Depending on the calibration constants, the 

phase is restored using the Hariharan algorithm in 
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the interferometry procedure. The restoration phase 

is illustrated in Fig. 4. 
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Fig. 4 Restoration phase after removing the zeroth order 

effect. 

By comparing the results of Figs. 2 and 4, the 

phase-restoration error is obtained, as shown in Fig. 

5. The root mean square (RMS) of phase-restoration 

error is 0.001598 rad. Under the same condition, the 

RMS of phase-restoration error is 0.001509 rad with 

the 9-frame phase shifting algorithm proposed by 

Zhu [14]. Two different methods are used to deal 

with the interferograms with the zeroth order effect, 

and the relative error of the phase-restoration error is 

less than 6%. Therefore, the calibration method is 

expected to be available. 
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Fig. 5 Phase-restoration error caused by the calibration error 

of the zeroth order effect. 

Under the condition of V2 = V3 = 12.5%V1, 

simulations with different phase shifting errors are 

carried out, respectively. We linearly fit the 

relationship between the phase-restoration error and 

the phase shifting error, as shown in Fig. 6. The fit 

result shows the coefficient of determination is 

0.9794, which is closed to 1. Therefore, when the 

phase shifting error is less than 2°, the 

phase-restoration error approximately increases with 

the phase shifting error linearly, that is consistent 

with the theoretical analysis in Section 3. 

Under the condition of ε = 1°, simulations with 

different zeroth order effects are carried out. We 

linearly fit the relationship between the 

phase-restoration error and the zeroth order effect, as 

shown in Fig. 7. The fit result shows the coefficient 

of determination is 0.9888, which is close to 1. 

Therefore, when the zeroth order effect is less than 

0.2, the phase-restoration error increases with the 

zeroth order effect approximately linearly,      

that is consistent with the theoretical analysis in 

Section 3. 
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Fig. 6 Relationship between the phase-restoration error and 

phase shifting error. 
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Fig. 7 Relationship between the phase-restoration error and 

the zeroth order effect. 

5. Experiments 

The experimental grating lateral shearing 

interferometer is shown in Fig. 8. 
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Fig. 8 Experimental lateral shearing interferometer. 

With the calibration method described in Section 

3, the restoration phase is shown in Fig. 9 by using 

the experimental interferometer. With the 

conventional 9-frame phase shifting algorithm, the 

restoration phase is shown in Fig. 10. The difference 

between the two restoration phases is shown in   

Fig. 11. 

With the calibration method, the RMS of the 

phase with the calibration method is 5.5342 rad. 

With the 9-frame phase shifting algorithm, the RMS 

of the phase is 5.5346 rad. We compare the results of 

the two phases point by point, the RMS of the phase 

difference is 0.1134 rad. Relative error of the RMS is 

less than 2.5%. We perform 10 experiments under 

the same experimental conditions. The experimental 

results are shown in Fig. 12. The average relative 

error is 2.07%, and the RMS of relative error is 

0.01%. 
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Fig. 9 RMS of the restoration phase with the calibration 

method. 
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Fig. 10 RMS of the restoration phase with the conventional 

9-frame phase shifting algorithm. 
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Fig. 11 RMS of the restoration phase difference with two 
methods. 
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Fig. 12 Relative errors with 10 experiments. 

Compared the conventional method with 

9-frame interferograms, the calibration method   

with 5-frame interferograms achieve nearly the same 

restoration accuracy. Hence, the calibration  

method is available to eliminate the zeroth     
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order effect. 

6. Conclusions 

A calibration method to eliminate the zeroth 

order effect is proposed in the paper. The principle 

of calibration is analyzed theoretically, and the 

analytical expression of the calibration error caused 

by the phase shifting error is deduced. Using the 

Hariharan algorithm, the relationship between the 

phase-restoration error and calibration error is 

established. The results show that the calibration 

error of intensity distribution is proportional to the 

phase shifting error and zeroth order effect. The 

phase-restoration error introduced by the calibration 

error of the zeroth order effect is also proportional to 

the phase shifting error and zeroth order effect. The 

calibration method is verified by carrying out 

simulations and experiments. The simulation results 

show that the phase-restoration error is 

approximately proportional to the phase shift error 

and zeroth order effect, when the phase shifting 

error is less than 2° and the zeroth order effect is less 

than 0.2. Simulations are consistent with the 

theoretical analysis. The experimental result shows 

that compared with the conventional method with 

9-frame interferograms, the calibration method with 

5-frame interferograms achieves nearly the same 

restoration accuracy. Therefore, the calibration 

method is available to eliminate the zeroth order 

effect. 
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