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In this paper, we present a detailed and rigorous study of cylindrical harmonic Fresnel lenses (HFLs) using the
finite difference time domain method (FDTD) and angular spectrum method (ASM). The HFL is a kind of dif-
fractive lens that can have maximum diffraction efficiency at several discrete harmonic wavelengths, which is
suitable for some broadband applications. Previous studies on HFLs were investigated mainly in the domain
of paraxial approximation. By using our proposed calculation method, we have determined the efficiency, focal
length, maximum focus intensity, and full width at half maximum (FWHM) of the focal spot for several harmonic
numbers and for F -numbers of 0.5, 1, and 3. To compare with the paraxial approximation, we have presented the
response to both s-polarized and p-polarized light with constant refractive index and real dispersive material,
BK7. Moreover, we have also analyzed the cases with oblique illumination. We have shown that the harmonic
wavelengths do not change with F∕# and that the diffraction efficiency and FWHM of the focus increase as F∕#
increases. New results on harmonic wavelengths shift and oblique angle of incidence response have been
detailed. © 2018 Optical Society of America

OCIS codes: (050.1965) Diffractive lenses; (050.1755) Computational electromagnetic methods.
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1. INTRODUCTION

The diffractive Fresnel lens (DFL), also called kinoform, was
invented by a research group of IBM [1,2]. Since then, tremen-
dous interests have been aroused due to its compactness.
However, the dispersion of a DFL is large compared to optical
glass (Abbe number of −3.5 ), excluding direct broadband ap-
plication. Because its dispersion sign is opposite to the normal
optical glass, hybrid diffractive-refractive achromatic lenses
have been studied and used [3]. The optical power of the dif-
fractive element is chosen much lower than the refractive one.
These kinds of structures can reduce the dimension and weight
of optical systems. To achromatize by only using diffractive
optical elements (DOEs), two main paths have been proposed:
stacks of DOEs with different Abbe numbers and harmonic
lenses. However, the stack of DOEs can only increase the
broadband efficiency. The Abbe number is still around −3.5
[4–8]. A harmonic Fresnel lens (HFL) or multiorder diffractive
lens can keep high diffraction efficiency and constant focal
length at several discrete wavelengths [9,10]. Recently, metasur-
faces have been proposed to function as flat lenses, which
paves a new way for optical components [11–15]. However,
the mass manufacturing for this kind of nanostructure is still
challenging.

With broadband properties, HFLs can be applied in many
situations, such as intraocular lenses [16], contact lenses, and
optical detection in microflow cytometry [17]. The previous
works focused on HFLs have been carried out with scalar ap-
proach [9,10,18]. The results become inaccurate when F∕# is
smaller than 1 [19]. Based on the boundary element method
(BEM) or the improved first Rayleigh–Sommerfeld method
(IRSM), metallic cylindrical micromirrors or cylindrical
Fresnel lenses have been deeply studied [19–26]. However,
to our knowledge, rigorous studies of harmonic Fresnel lenses
(HFLs) have not been performed for the moment. Compared
to ordinary Fresnel lenses, the broadband property of HFL is
more effective.

The finite difference time domain (FDTD) is very suitable
to calculate the broadband properties because only one simu-
lation that covers the selected spectrum is needed. To reduce
the computational time, the height of the FDTD region is lim-
ited to nearly the same height as the HFLs. For the field outside
the HFLs, because the medium is homogeneous, we can use the
angular spectrum method (ASM) to calculate the field [27–30].
In this paper, we apply FDTD plus ASM to calculate the rig-
orous properties of HFLs. To reduce the calculation burden, we
consider two-dimensional cases which correspond to cylindrical
lenses. Different F∕# are considered under p and s polarized
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illuminations. Results with on-axis and off-axis illuminations
are also presented.

2. BASIC PRINCIPLE OF HFLs

Based on scalar diffraction theory and paraxial approximation
condition, the maximum effective thickness of an ordinary
Fresnel lens is [2]:

hmax �
λd
n − 1

, (1)

where λd is the design wavelength, and n is the refractive index
of the lens material. For HFL with a harmonic number ph, the
thickness is [9,10]:

hmax � ph
λd
n − 1

: (2)

The harmonic wavelengths are a set of discrete values given
by [9,10]:

λp �
phλd
m

, (3)

where m is a positive integer that equals the diffractive order. In
the case of the paraxial approximation, the dependence of the
focal length with the illumination wavelength λ can be

expressed as [10]

f �λ� � phλd f d

mλ
, (4)

where f d is the aimed focal length.
The scalar diffraction efficiency, ηm, of the mth diffracted

order is given by [9,10]:

ηm � sin c2
�
phλd �n�λ� − 1�
λ�n�λd � − 1�

− m
�
: (5)

The diffraction efficiency ηm equals 1 when λ satisfies
Eq. (3), neglecting reflectance and assuming a constant index
n in the visible spectral range.

An ordinary Fresnel lens corresponds to a HFL when
ph � 1. As ph increases, the height of the lens becomes higher,
and each groove becomes larger. Figure 1 shows this effect.

Figure 2 shows a detailed cross section of a HFL. Two
grooves with rotational symmetry are presented. In this paper,
we define the grooves as a phase shift of 2phπ. Point O is the
center of the groove numbered 0 which is defined by the semi-
section OA’. Points A and B 0 define the groove numbered 1.
To obtain a constructive interference, the radius of the first
groove should be:

r1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f phλd � �phλd �2

q
:

By generalization, the radius of a groove numbered i is
given by

ri �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2if d phλd � �iphλd �2

q
: (6)

Suppose O is the origin of the coordinates, according to the
Fermat principle, we have PF � nP 0O� OF , where P is an
arbitrary point on the profile. Hence, the equation of the
profile in each groove is given by

xi�r� �
f d − n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
d � r2i

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
d �1� n2� � �n2 − 1�r2 � r2i − 2nf d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
d � r2i

qr

1 − n2
, (7)

which is a part of a hyperbola and where r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � z2

p
. The

maximum groove depth decreases as the groove number in-
creases, which means A 0A > B 0B in Fig. 2.

Fig. 1. Modification of the height and width of grooves when
the harmonic number of a HFL increases, with a constant
F∕# � 2. The diameter is 400 μm.

Fig. 2. Principle of a harmonic lens with a harmonic number
equaling ph.
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A conventional perfect refractive lens composed of one plane
surface and one hyperbola can focus perfectly a normal incident
plane wave on the image focal point. The asymptotic line of this
hyperbola determines the minimum F∕# which is given by

F∕#min �
1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
n2 − 1

p : (8)

For a Fresnel lens, each groove numbered i is a hyperbola
with a different vortex Oi (see Fig. 2 with the grooves 0, 1, and
2). Physically, the vortices should not overpass the image focal
point F , which determines the minimum F∕# of a HFL. The
vortex coincides with F when:

ri ≥ f
ffiffiffiffiffiffiffiffiffiffiffiffi
n2 − 1

p
, (9)

which gives the same minimum F∕# as Eq. (8). As an example,
if n � 1.5, the minimum F∕# is 0.45. The physical origin of
this F∕# limitation is the critical angle on the profile inside the
lens material. Light will be totally reflected if the F∕# is smaller
than this limitation.

3. OPTICAL PROPERTIES OF HFL WITH
NORMAL ILLUMINATION

For all the simulations, the electromagnetic near-field distribu-
tion is obtained numerically by the commercially available tool,
namely, FDTD solutions from Lumerical. We use a maximum
mesh size of λ∕�15n�, where n is the refractive index of the
corresponding medium. We apply perfectly matched layers
(PMLs) as the boundary conditions in the four sides. All the
simulations are performed in 2D. For the computation of
the field distribution in the air, we use ASM. Figure 3 shows
an example of outputs from the FDTD and ASM field projec-
tion for a HFL with ph � 9, F∕# � 1, the diameter of the lens
is 400 μm and λd � 0.5 μm. The illumination wavelength is
also 0.5 μm. In the left part, we show the real value of the elec-
tric field (s polarized) inside the HFL. In the right part, the
intensity distribution of the electric field is given with the
position of the focal image area. We get focusing at the x
coordinate of 400 μm. The full width at the half maximum
(FWHM) of the focal spot is 0.5 μm, and the axial depth
of the focus is 6 μm (the distance between the position of
intensity equals Imax∕e—on the right and left sides).

Several HFLs with the same diameter D � 400 μm but dif-
ferent F∕# have been investigated below. The design wave-
length is λd � 0.5 μm and the calculated spectral range is
from 0.4 to 0.7 μm with a step size of 0.001 μm, which covers
the visible spectrum. At the beginning and for the sake of sim-
plicity, we have supposed that the refractive index of the HFL is
nd � 1.5 at all wavelengths. We define the focusing efficiency
as the energy inside the central lobe over the total illumination
energy, the focal length as the length between the external
central point of the HFL and the maximum intensity position
inside the focal spot.

The focus efficiency, focal length, maximum intensity, and
the full width at half maximum versus wavelength are shown in
Fig. 4 for unitary s-polarized normal incident plane wave. All
the values are given for the maximum intensity position. Three
different HFLs with F∕# � 0.5, F∕# � 1 and F∕# � 3 have
been simulated. A different color corresponds to a different
harmonic number ph.

First, we notice that the harmonic wavelengths are indepen-
dent of the F∕#, and approximately fulfill Eq. (3) in all cases.
The focal length also approximately verifies Eq. (4). Then, as
the design wavelength is 0.5 μm, we obtain peak efficiency at
this wavelength in all cases. In the case where ph � 1 is an ordi-
nary kinoform lens, we obtain only one peak at λd . The focal
length monotonically decreases as the wavelength increases,
which corresponds to an Abbe number of vrefractive � −3.5.
If ph > 1, the number of efficiency peaks increases as ph in-
creases. The FWHM decreases as F∕# diminishes which cor-
responds to the diffraction theory results. As we have calculated
before, F∕# � 0.5 is almost the limit for a refractive index
nd � 1.5. However, the FWHM value is larger than λ∕2 when
F∕# � 0.5 in all cases, which means that a HFL cannot pro-
vide super resolution imaging. As the focal length changes with
the wavelength, the real F∕# is also changing with the wave-
length. The FWHM almost remains constant for an ordinary
Fresnel lens for different wavelengths as shown in Fig. 4(c).

The focus efficiency is a decreasing function of F∕#. This is
a phenomenon that we cannot obtain from scalar equation
Eq. (5). As F∕# decreases, the radius r increases (see Fig. 2),
and the incident angle with respect to the profile of the HFL
increases too, which leads to a lower transmittance.

Figure 4 shows that maximal diffraction efficiencies are ob-
tained at harmonic wavelengths. The discontinuities for focal
lengths are obtained at wavelengths where the diffraction effi-
ciencies are minimal. To explain the oscillating phenomenon
of the efficiency curve when ph > 1, we plot electric field in-
tensity distributions in Fig. 5 at two different wavelengths
where ph � 9 and F∕# � 1 as an example. The associated re-
sults labeled by red and blue stars are pointed out in Fig. 4(b).
We observe two clear light spots at each wavelength with differ-
ent relative intensities. At λ � 0.480 μm, the further spot is
stronger, while at λ � 0.525 μm, it is the opposite. At effi-
ciency minima, the two light spots have the same intensity,
which corresponds to the focal length leaps in Fig. 4.

For the diffraction efficiency and focal length, we compare
the paraxial case using Eqs. (5) and (4) with the result obtained
by FDTD plus ASM projection as shown in Fig. 6. The
calculation method for efficiency in the FDTD plus ASM

Fig. 3. Intensity distribution computed by FDTD approach com-
bined with ASM field projection for a HFL with ph � 9, F∕# � 1,
D � 400 μm, and λ � 0.5 μm.
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projection is the energy inside the central lobe over the total
illumination energy, which cannot reach 1. However, the
maximum efficiency for paraxial approximation can reach 1
at harmonic wavelengths.

In Fig. 6, we have also considered the case of a nondispersive
fictitious material with a constant index of refraction n �
1.5185 which is the index of BK7 at a wavelength of
0.55 μm and the case with dispersive glass BK7. The harmonic
number is ph � 10, the design wavelength λd � 0.55 μm, and
F∕# � 1 in all cases. Both s and p normal polarizations are
considered. Compared to Fig. 4, we plot efficiency and focal

Fig. 4. Optical properties of several HFLs with different F∕# for normal s-polarized plane wave. The focus efficiency, focal length, maximum
intensity and FWHM versus wavelength are plotted, respectively. Each color represents a different harmonic number ph: (a) F∕# � 0.5,
(b) F∕# � 1, and (c) F∕# � 3.

Fig. 5. Electric field intensity distribution of a harmonic lens with
ph � 9 with F∕# � 1: (a) λ � 0.480 μm, which corresponds to the
red star in Fig. 4(b) and (b) λ � 0.525 μm, which corresponds to the
blue star in Fig. 4(b).

Fig. 6. Comparison of efficiency (top) and focal length (bottom)
between the results of paraxial scalar approximation and results calcu-
lated by FDTD plus ASM. The harmonic number is ph � 10, the
design wavelength λd � 0.55 μm and F∕# � 1 in all cases. An ideal
material with constant index of refraction n � 1.51852 and a real
material, BK7, are considered. Both s and p normal polarized light
are simulated.
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length only because the maximum intensity and FWHM of the
focal spot are difficult to calculate by paraxial approximation.

If we take into account the dispersion of the material, the
harmonic wavelengths shift towards the design wavelength λd ,
and the maximum efficiency does not change. The values
of harmonic wavelengths are almost the same between paraxial
approximation and electromagnetic calculation. The shifted
points of focal length in each case correspond to the efficiency
minima. Considering the polarization, we observe that
p-polarized light can have about 5% higher efficiency than
s-polarized light. This difference is mainly caused by the differ-
ent reflectance on the HFL surfaces of the two polarizations.

We also calculated the efficiency and focal length of several
HFLs using a transmittance function and ASM as shown in
Fig. 7. The transmittance function is defined as

T �r� � exp

�
j
2π
λd

�n − 1�xi�r�
�
, (10)

where xi�r� is calculated by Eq. (7). The harmonic number is
ph � 10, the design wavelength is λd � 0.55 μm and the re-
fractive index is n � 1.51852. We notice that the harmonic
wavelengths are shifted compared to the result calculated by
FDTD plus ASM (dashed curve). The deviation gets larger
as F∕# becomes smaller. This study indicates that when
considering small F∕# HFLs, FDTD calculation is needed
to get accurate result.

4. OPTICAL PROPERTIES OF HFLs WITH
OBLIQUE ILLUMINATION

With the FDTD method and the field projection, we have also
calculated the case at oblique incidence. In this case, because
the determination of the intensity envelope is difficult, due
to its nonregularity, we have only calculated the maximum

intensity which is proportional to efficiency as shown in
Fig. 4. We have calculated the maximum intensity of F∕# �
3 and F∕# � 1 for three different oblique angles α � 1°,
α � 3°, and α � 5°, respectively, as shown in Fig. 8. The maxi-
mum intensity is obtained within a square area whose side
length is f and center is the nominal focus position.

The harmonic wavelengths are unchanged if the incident
angle is less than a certain value (typically in our example 1°
when F∕# � 1 and 5° when F∕# � 3). This typical angle
value increases as F∕# increases. The comparison between
Figs. 8 and 4 shows that the maximum intensity decreases
much less with the same oblique illumination if F∕# is larger.
We can say that the harmonic wavelengths are more stable
when F∕# is larger. If F∕# is smaller, for example F∕# � 1,
the result is more sensitive to the incident angle. We can hardly
distinguish which wavelength is the harmonic one at α � 5°.

In geometrical optics, we can obtain the same conclusion
using raytracing. The aberrations are more serious if F∕# is

Fig. 7. Efficiency and focal length calculated by using transmittance
function and ASM. The harmonic number is ph � 10, the design
wavelength λd � 0.55 μm. Three cases with F∕# � 1, F∕# � 2
and F∕# � 3 are plotted. The dashed curve represents the result using
FDTD and ASM.

Fig. 8. Maximum electric field intensity versus wavelength with dif-
ferent incident angles α � 1°, α � 3° and α � 5°: (a) F∕# � 3, and
(b) F∕# � 1. The maximum intensity is obtained within a square area
whose side length is f and center is the nominal focus position.

Fig. 9. Raytracing through lenses with design wavelength:
(a) Aspherical lens with F∕# � 1, raytracing of normal incident rays
(blue) and with an oblique incident angle α � 5° (green), (b) Fresnel
lens with F∕# � 1. Incident angle is α � 5°, and (c) Fresnel lens with
F∕# � 3, Incident angle is α � 5°.
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small with the same incident angle as shown in Fig. 9. We also
notice that the aspherical lens which can focus a plane wave on
a perfect point in Fig. 9(a) has a similar effect on the Fresnel
lens in Fig. 9(b) for the same oblique incidence, except that the
Fresnel lens can generate some stray light on the extreme boun-
dary grooves.

Using FDTD and ASM, we plot the electric field intensity
distribution of a HFL for F∕# � 1 and ph � 1 with an oblique
angle α � 5° at two wavelengths. In Fig. 8, the intensity maxi-
mum corresponds to λ � 0.4 μm and the minimum to
λ � 0.5 μm. When ph � 9, the local intensity maximum (re-
spectively minimum) corresponds to λ � 0.54 μm (respec-
tively λ � 0.5 μm). The four electric field intensities are
shown in Fig. 10. Because of the aberration, we clearly see caus-
tics which are similar as shown in Fig. 9. Because of the com-
plexity of the caustics, definitions of parameters for evaluation
need to be further developed in the future.

5. CONCLUSION

HFLs present the advantage of working well with several
discrete wavelengths for normal incidence. We have investi-
gated the efficiency, focal length, maximum focus intensity,
and FWHM of the focal spot for several harmonic numbers
and F-numbers using FDTD and ASM field projection.
Compared to the paraxial approximation, the values of the har-
monic wavelengths are almost the same both with constant re-
fractive index and dispersive materials. Moreover, a FDTD
analysis can give more detailed information. We can summarize
our main results in the following statements. Considering F∕#,
the harmonic wavelengths do not change with F∕#; the diffrac-
tion efficiency and FWHM of the focus are increasing func-
tions of F∕#. For the polarization, we observe that
p-polarized light has higher efficiency than s-polarized light
(from our examples the difference is typically 5%). When con-
sidering the dispersion of real optical glasses, the harmonic

wavelengths shift towards the designed wavelength but do not
change the maximum efficiencies. Finally, for oblique illumina-
tion, we conclude that the diffraction efficiency decreases as the
oblique angle of incidence increases because of the aberrations.
With larger F∕#, HFLs can stand larger angles of incidence, and
the harmonic wavelengths are also unchanged with different an-
gles of incidence if the aberrations are not too high. In the next
step, quantitative methods should be developed to study the off-
axis aberrations of the HFLs. Meanwhile, it would be very useful
if a raytracing model for HFLs could be built and incorporated
into optical design software such as Zemax and Code V. Finally,
the experimental verification should be carried out.
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