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Abstract. Active optics usually uses the computation models based on numerical methods to correct misalign-
ments and figure errors at present. These methods can hardly lead to any insight into the aberration field depend-
encies that arise in the presence of the misalignments. An analytical alignment model based on third-order nodal
aberration theory is presented for this problem, which can be utilized to compute the primary mirror astigmatic
figure error and misalignments for two-mirror telescopes. Alignment simulations are conducted for an R-C tele-
scope based on this analytical alignment model. It is shown that in the absence of wavefront measurement
errors, wavefront measurements at only two field points are enough, and the correction process can be com-
pleted with only one alignment action. In the presence of wavefront measurement errors, increasing the number
of field points for wavefront measurements can enhance the robustness of the alignment model. Monte Carlo sim-
ulation shows that, when −2 mm ≤ linear misalignment ≤ 2 mm, −0.1 deg ≤ angular misalignment ≤ 0.1 deg,
and −0.2 λ ≤ astigmatism figure error (expressed as fringe Zernike coefficients C5∕C6, λ ¼ 632.8 nm)
≤0.2 λ, the misaligned systems can be corrected to be close to nominal state without wavefront testing
error. In addition, the root mean square deviation of RMS wavefront error of all the misaligned samples
after being corrected is linearly related to wavefront testing error. © 2018 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JATIS.4.1.019002]
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1 Introduction
Two-mirror telescopes have an important application in
astronomy and other science. Modern two-mirror telescopes
commonly used are generally divided into two categories:
aplanatic telescopes (e.g., R–C telescopes) and nonaplanatic
telescopes (e.g., Cassegrain and Gregorian telescopes). In
Cassegrain and Gregorian telescopes, the primary mirror
(PM) and secondary mirror (SM) correct spherical aberration
independently. The field of view is mainly limited by coma
with a linear field dependence. The R–C telescope can correct
the third-order spherical aberration and coma simultaneously, so
the imaging field can be larger than that of the nonaplanatic tele-
scope, and its imaging field is mainly limited by the third-order
astigmatism with a quadratic field dependence.

The aperture of a modern two-mirror telescope is growing
larger and larger. With the influence of gravity, temperature,
and other factors, misalignments and figure error always
occur in telescopes. An active optics system is installed for
real-time correction, which can correct errors arising from incor-
rect optical manufacturing, deformations, and misalignments
due to gravity or thermal reasons.

The active optics correction can be divided into rigid-body
alignment error correction and figure error correction. For two-
mirror telescopes, SM is less affected by stress and temperature
gradient because of its smaller aperture. We usually do not cor-
rect its figure error, and only rigid-body alignment error correc-
tion is needed. While the aperture of PM is usually relatively
large, figure error is more likely to occur, and astigmatism
is the most common figure error. This paper focuses on

computation of misalignment and PM astigmatism figure
error parameters of two-mirror telescopes.

For the alignment of two-mirror telescopes, McLeod1 pro-
posed an alignment method for fast wide-field two-mirror tele-
scopes, which first correct coma and then correct the
astigmatism. He deduced the analytic relationship between
the ellipticity and position angles of slightly defocused images
and the misalignments. The calculation of the misalignments is
achieved by measuring the image shape of the off-axis field of
view. Noethe and Guisard2 derived formulas for all parameters
defining the field astigmatism of misaligned two-mirror tele-
scopes with arbitrary geometries and stop positions anywhere
on the line connecting the vertices of the two mirrors. They
applied their formulas to alignment of the ESO Very Large
Telescope. Holzlöhner et al.3 used fifth-order aberration theory
to deduce misalignments and optical surface deformations of
a telescope from its star images.

There are also some numerical models for optical system
alignment, such as the sensitivity matrix model,4,5 differential
wavefront sampling method,6,7 and merit function regression
method.8 At present, the sensitivity matrix model is used as
the most common active optics correction algorithm, and it
has been used in many astronomical telescope projects.4,5

The model represents the Zernike coefficients that characterize
the wavefront error of a misaligned system as a linear combi-
nation of misalignments. A linear system of equations is estab-
lished for the Zernike coefficient and misalignments, which can
be used to solve misalignments. There is a problem with this
method: it cannot bring high accuracy to the estimation of
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the misalignment parameters if the misalignment values are
large, as a result of the nonlinearity of the Zernike coefficient
sensitivity to the alignment parameters.8–10 In addition, it is
based on data reduction and numerical methods but without
a tie to aberration theory.

The nodal aberration theory (NAT) is to study the aberration
theory of an optical system with decentered and tilted compo-
nents. Its initial idea was raised by Shack,11,12 and later
Thompson further developed the theory.13–18 Schmid et al.19

used NAT to study the alignment for two-mirror telescopes, and
developed some important rules. He first explained why the
assumption that perfect performance on axis ensures a fully
aligned telescope is false based on NAT. He also analyzed
the aberration field of the misaligned two-mirror system with
the astigmatism error of the PM (pupil), and found that the loca-
tion denoting the midpoint of the two astigmatic nodes does not
vary with figure errors (at a pupil), and it is solely dependent on
misalignments.20 The key insight to accomplish this distinction is
to recognize that after aligning the telescope for zero field-con-
stant coma, one astigmatic node remains effectively at the field
center when there is no astigmatic figure error. Consequently,
astigmatism measured at the center of the field directly reveals
the existence of an astigmatic figure component on the PM.
However, there is no more in-depth discussion for quantitative
calculation method of misalignments in the above research.

In the research described below, we propose a method based
on NAT for calculating the misalignments and PM astigmatism
figure error of two-mirror telescopes on the basis of Schmid’s
work. Section 2 briefly introduces the NAT and details the estab-
lishment of the computation model for a misaligned two-mirror
telescope. In Sec. 3, an R–C telescope is used to carry out align-
ment simulation experiments, which include the alignment experi-
ment with and without wavefront testing error, and the Monte
Carlo alignment experiment. Section 4 summarizes this article.

2 Misalignment-Affected Aberration Fields of
Two-Mirror Telescopes

2.1 Nodal Aberration Theory

NATevolved from the aberration theory of rotationally symmet-
ric optical systems. It uses a more general vector form of the

wave aberration expansion instead of the scalar form in a rota-
tionally symmetric system, which is expressed as

EQ-TARGET;temp:intralink-;e001;326;730

W ¼
X
j

X∞
p

X∞
n

X∞
m

Wðsph;asphÞ
klm;j ½ ~Hðsph;asphÞ

Aj · ~Hðsph;asphÞ
Aj �p

× ð~ρ · ~ρÞn½ ~Hðsph;asphÞ
Aj · ~ρ�m

k ¼ 2pþm; l ¼ 2nþm; (1)

where the subscript j is the surface number, Wklm;j is the wave

aberration coefficient for surface j, ~HAj denotes the effective
field height for surface j, and ~ρ is the normalized vector describ-

ing the position in the pupil. ~HAj and ~ρ are shown in Fig. 1. Note
that a fundamental concept in NAT is the decomposition of the
surface wave aberration contributions into two separate contri-
butions each, one associated with the spherical base curve, the
other determined by the aspheric departure (if any) from the
spherical base curve. The superscript sph and asph are used
to distinguish them.

In Eq. (1), the effective field height vector ~Hðsph;asphÞ
Aj (as

shown in Fig. 1) is given as

EQ-TARGET;temp:intralink-;e002;326;505

~Hðsph;asphÞ
Aj ¼ ~H − ~σðsph;asphÞj : (2)

The vector ~σðsph;asphÞj was first introduced by Buchroeder,21

which represents the decentration of the center of the aberration
field of surface with respect to the optical axis ray (OAR) inter-
cept with the Gaussian image plane. OAR is the ray that is emit-
ted from the center of the field of view and passes through the
center of the aperture stop. In a rotationally symmetric system,
the OAR coincides with the z-axis (optical axis), as shown in

Fig. 2. ~σðsph;asphÞj is called aberration field decenter vectors in
NAT, which depends on the misalignments of optical elements.

For the spherical surface contribution to the aberration field,
as detailed by Thompson,14,15 the location of the center of sym-
metry for the surface contribution is given by

Fig. 1 Concepts of effective field height and aberration field decenter vectors.
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EQ-TARGET;temp:intralink-;e003;63;544~σðsphÞj ¼ −
u#OAR j

���!
− β#0 j
�!þ y#OAR j

���!
· cj

uj þ yjcj
; (3)

where u#OAR j

���!
denotes the OAR paraxial angle prior to surface j

referenced to the z-axis. y#OAR j

���!
denotes the OAR intersection

height at surface j referenced to the z-axis. cj denotes the cur-
vature of surface j. uj corresponds to the paraxial chief ray angle
incident at surface j. yj corresponds to the paraxial chief ray

height at surface j, and β#0 j
�!

corresponds to the equivalent tilt

of surface j,15 which is related to the misalignments. β#0 j
�!

is
given by

EQ-TARGET;temp:intralink-;e004;63;387β#0 j
�! ¼

�
−BDEj þ XDEjcj
ADEj þ YDEjcj

�
: (4)

A right-handed coordinate system is utilized in our paper. In a
misaligned or generally nonsymmetric optical system, there are
six kinds of misalignments, which are the decenter along the x-,
y-, and z-axes (XDE, YDE, and ZDE) and the tilts in y − z
plane, x–z plane, and x–y plane (ADE, BDE, and CDE), respec-
tively (referred to as DAR, decenter and return in CODE V). A
positive XDE/YDE is the displacement in the þx∕y direction,
and a positive ADE/BDE is the rotation which is left handed
about the þx∕y axis.

The location of the aspheric contribution is located at14,15

EQ-TARGET;temp:intralink-;e005;63;232~σðasphÞj ¼ δv�j
�!
yj

¼ 1

yj

��
XDEj

YDEj

�
− y#OAR j

���!�
; (5)

where δv�j
�!

denotes the intersection height of the OAR with
respect to the aspheric vertex of surface j, as shown in Fig. 1.

The mathematical relationship between aberration field
decenter vectors and misalignments in the optical systems is
given in Eqs. (3) and (5).

2.2 Aberration Field Decenter Vectors for Individual
Surfaces of Two-Mirror Telescopes

Most large astronomical telescopes in use today have the aper-
ture stop located on the PM. The reason for the particular choice

is mainly caused by the large relative cost of the PM aperture
size. So in this paper, we focus on the telescopes whose aperture
stop locates on the PM. For such telescopes, we can use the PM
as the datum for alignment, and use the SM as the misaligned
element without losing the generality. The SM actually has
a total of six misalignments, which are XDESM, YDESM,
ZDESM, ADESM, BDESM, and CDESM. ZDESM is not studied
in the paper because it does not destroy the rotational symmetry
of the system, and mainly introduces the spherical aberration
and defocus aberration, which can be solved using the axisym-
metric aberration theory. Due to the rotational symmetry of the
system, the existence of CDESM does not affect the imaging
properties, nor does it introduce any aberration. Therefore,
this paper mainly studies the four kinds of misalignments:
XDESM, YDESM, ADESM, and BDESM. The misalignments
of SM result in a decentration of the symmetry center of the
aberration field. It is necessary to study the relationship between
the aberration field decenter vectors and the misalignments to
establish the computation model of a misaligned two-mirror
system.

The paraxial quantities uj and yj can be derived by tradi-
tional paraxial equations for rotationally symmetric optical
systems, which are given by

EQ-TARGET;temp:intralink-;e006;326;291uSM ¼ −uPM; (6)

EQ-TARGET;temp:intralink-;e007;326;261yPM ¼ 0; (7)

EQ-TARGET;temp:intralink-;e008;326;236ySM ¼ −d1uPM: (8)

The OAR quantities u#OAR j

���!
and y#OAR j

���!
can be computed by

the LCS paraxial ray-trace equations for optical systems with
tilted and decentered surfaces as developed by Buchroeder,21

which are given as

EQ-TARGET;temp:intralink-;e009;326;166u#OARPM
����! ¼ u#OARSM

����! ¼
�
0

0

�
; (9)

EQ-TARGET;temp:intralink-;e010;326;122y#OARPM
����! ¼ y#OARSM

����! ¼
�
0

0

�
: (10)

The aberration field decenter vectors for PM and SM can be
obtained after substituting Eq. (4), the expressions for the

Fig. 2 (a) OAR for an aligned two-mirror telescope with the stop on the PM. Note that OAR coincides with
optical axis in an aligned two-mirror telescope (b) OAR in the presence of SM misalignments, which no
longer coincides with the optical axis. Concepts of effective field height, aberration field decenter vectors,
and boresight error (Δ ~H IMG) are also shown.
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OAR quantities [Eqs. (9) and (10)] and the paraxial quantities
[Eqs. (6)–(8)] into Eqs. (3) and (5), which are given as

EQ-TARGET;temp:intralink-;e011;63;730~σðsphÞPM ¼
�
0

0

�
; (11)

EQ-TARGET;temp:intralink-;e012;63;689~σðsphÞSM ¼ −
1

upr1ðd1 þ rSMÞ
�
XDESM − BDESMrSM
YDESM þ ADESMrSM

�
; (12)

EQ-TARGET;temp:intralink-;e013;63;649~σðasphÞPM ¼
�
0

0

�
; (13)

EQ-TARGET;temp:intralink-;e014;63;610~σðasphÞSM ¼ −
1

d1upr1

�
XDESM

YDESM

�
; (14)

where rj denotes the radius of surface j, dj denotes the thickness
of surface j, and uPM is the incident angle of the chief ray at the
PM in the nominal system.

The mathematical relationship between aberration field
decenter vectors and misalignments in the two-mirror telescopes
is given in this section. In the following section, we will derive
the mathematical relationship between wavefront aberration and
aberration field decenter vectors of two-mirror telescopes. The
relationship between coma and astigmatism induced by mis-
alignments and aberration field decenter vectors is derived in
Secs. 2.3 and 2.4, respectively. Section 2.5 deduces the contri-
bution of astigmatic figure error of the PM to wave aberrations
of two-mirror telescopes. Finally, the equation of wavefront
aberration and misalignments can be obtained, and the calcula-
tion model of the misalignments is established. The alignment
model building process is shown in Fig. 3.

2.3 Third-Order Coma Aberration Field of
Misaligned Two-Mirror Telescopes

According to third-order NAT, in a misaligned system, coma can
be expressed by the following equation:13

EQ-TARGET;temp:intralink-;e015;63;330WCOMA3
¼ ½ðW131

~H − ~A131Þ · ~ρ�ð~ρ · ~ρÞ; (15)

with W131 ¼
P

jW131j, ~A131 ¼
P

jW131j~σj.
For a nonaplanatic telescope (such as R–C telescope), the

system corrected third-order coma. The coma aberration field
in these telescopes can be expressed as

EQ-TARGET;temp:intralink-;e016;63;256WCOMA3
¼ ½−~A131 · ~ρ�ð~ρ · ~ρÞ: (16)

In optical testing, the wavefront at the exit pupil of an optical
system is usually fitted into a Zernike polynomial. Therefore,

from the practical engineering application point of view,
Eq. (16) should be rewritten as a new form that contains the
Zernike coefficients. The Seidel coefficients can be expressed
exactly as the infinitesimal sum of the Zernike polynomials.22

However, in the two-mirror system, the high-order Zernike coef-
ficients fitted to the exit pupil plane are very small and can be
ignored in the calculation of misalignments. Therefore, it is suf-
ficient to use the first 16 fringe Zernike coefficients to establish
the misalignments computation model.

According to the definition of the coordinate system in NAT

EQ-TARGET;temp:intralink-;e017;326;642~ρ ¼ j~ρj
�
cos φ
sin φ

�
; (17)

EQ-TARGET;temp:intralink-;e018;326;601~ρð~ρ · ~ρÞ ¼ j~ρj3
�
cos φ
sin φ

�
; (18)

leading to
EQ-TARGET;temp:intralink-;e019;326;550

WCOMA3
¼

�
W131

~Hx − ~A131;x

W131
~Hy − ~A131;y

#
·

� j~ρj3 cos φ

j~ρj3 sin φ

�
;

for Cassegrain or Gregorian telescopes; (19)

EQ-TARGET;temp:intralink-;e020;326;488

WCOMA3
¼

"
−~A131;x

−~A131;y

#
·

� j~ρj3 cos φ

j~ρj3 sin φ

�
;

for R − C telescopes; (20)

where ~A131;x and ~A131;y are the x- and y-components of ~A131,
respectively. According to the relationship between the Seidel
coefficients and Zernike coefficients
EQ-TARGET;temp:intralink-;e021;326;390"
~A131;x

~A131;y

#
¼

�
W131

~Hx − 3CCOMA;x

W131
~Hy − 3CCOMA;y

�
;

for Cassegrain or Gregorian telescopes; (21)

EQ-TARGET;temp:intralink-;e022;326;321

� ~A131;x

~A131;y

�
¼

�
−3CCOMA;x

−3CCOMA;y

�
; for R − C telescopes; (22)

with

EQ-TARGET;temp:intralink-;e023;326;266

�
CCOMA;x

CCOMA;y

�
¼

�
C7 − C10 − 4C14

C8 − C11 − 4C15

�
; (23)

where CCOMA represents the Zernike coma coefficients obtained
by wavefront testing, and Ci is the i’th fringe Zernike coefficient.

Fig. 3 Alignment model building process.
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2.4 Third-Order Astigmatism Aberration Field of
Misaligned Two-Mirror Telescopes

The third-order astigmatism in the NAT is given by13

EQ-TARGET;temp:intralink-;e024;63;712WAST3
¼ 1

2

�X
j

W222j
~H2 − 2 ~HA222 þ ~B2

222

�
· ~ρ2; (24)

with W222 ¼
P

jW222j, ~A222 ¼
P

jW222j~σj, and ~B2
222 ¼P

jW222j~σ2j .
From the Eq. (24), we can see that misalignments addition-

ally introduce the field-linear astigmatism and field-constant
astigmatism.

According to the definition of the coordinate system in NAT

EQ-TARGET;temp:intralink-;e025;63;598~ρ2 ¼ ρ2
�
cos 2φ
sin 2φ

�
; (25)

leading to
EQ-TARGET;temp:intralink-;e026;63;542

WAST3
¼

2
4 W222ð ~H2

x− ~H2
yÞ

2
− ~Hx

~A222;x þ ~Hy
~A222;y þ

~B2
222;x

2

W222
~Hx

~Hy − ~Hx
~A222;y − ~Hy

~A222;x þ
~B2
222;y

2

3
5

·

� j~ρj2 cosð2φÞ
j~ρj2 sinð2φÞ

�
: (26)

According to the relationship between the Seidel coefficients
and Zernike coefficients

EQ-TARGET;temp:intralink-;e027;63;436

�
− ~Hx

~Hy
1
2

0

− ~Hy − ~Hx 0 1
2

�26664
~A222;x

~A222;y

~B2
222;x

~B2
222;y

3
7775¼

�
CAST;x−

W222

2
ð ~H2

x − ~H2
yÞ

CAST;y −W222
~Hx

~Hy

�
;

(27)

with

EQ-TARGET;temp:intralink-;e028;63;334

�
CAST;x

CAST;y

�
¼

�
C5 − 3C12

C6 − 3C13

�
; (28)

where CAST represents the Zernike astigmatism coefficients
obtained by wavefront testing.

2.5 Astigmatic Aberration Field Introduced by
Astigmatic Figure Error of the PM

The astigmatism figure error can be easily expressed with the
Zernike polynomial (fringe Zernike polynomial Z5 and Z6

terms). Zernike astigmatism needs to be introduced into the
NAT computation model, which can be expressed as follows:

EQ-TARGET;temp:intralink-;e029;63;187

�
ðFIGUREÞC5

ðFIGUREÞC6

�
·

�
Z5

Z6

�
¼

�
ðFIGUREÞC5

ðFIGUREÞC6

�
·

� j~ρj2 cos 2φ
j~ρj2 sin 2φ

�
;

(29)

where ðFIGUREÞC5 and ðFIGUREÞC6 are astigmatic figure errors of
the PM expressed by the Fringe Zernike astigmatic coefficients
C5 (axis at 0 deg or 90 deg) and C6 (axis at �45 deg),
respectively.

When the PM with the astigmatism figure error is the stop
surface, the imaging beams of the different field of view have the

same footprint on the PM. At the same time, since the field of
view of the two-mirror telescope is very small, it can be consid-
ered that the effect of the astigmatism error is the same for the
imaging beam of different fields. Therefore, it can be concluded
that when the PM is the aperture stop, the astigmatism figure
error on the PM is introduced into field-constant astigmatism.
Based on this argument, it is only necessary to add the field-con-
stant astigmatism introduced by figure error into the field-con-
stant astigmatism introduced by misalignments, and the wave
aberration expression of the two-mirror telescope that has astig-
matic figure error on PM can be obtained.

The field-constant astigmatism ðFIGUREÞ ~B
2
222 introduced

by figure error is added to the field-constant astigmatism
ðMISALIGNÞ ~B

2
222 introduced by misalignments, given as

EQ-TARGET;temp:intralink-;e030;326;598

~B2
222 ¼ ðMISALIGNÞ ~B

2
222 þ ðFIGUREÞ ~B

2
222

¼
X
j

W222j~σ2j þ ðFIGUREÞ ~B
2
222; (30)

so the wave aberration introduced by the figure error is given by
EQ-TARGET;temp:intralink-;e031;326;525

ðFIGUREÞWATS3 ¼
1

2
ðFIGUREÞ ~B

2
222 · ~ρ2

¼ 1

2
ðFIGUREÞ ~B

2
222

� j~ρj2 cos 2φ

j~ρj2 sin 2φ

�
: (31)

According to the relationship between optical path difference
and figure error, the wave aberration introduced by the figure
error also can be expressed by

EQ-TARGET;temp:intralink-;e032;326;424ðFIGUREÞWATS3 ¼ ðn 0 − nÞ
�
ðFIGUREÞC5

ðFIGUREÞC6

�
·

� j~ρj2 cos 2φ
j~ρj2 sin 2φ

�
;

(32)

leading to

EQ-TARGET;temp:intralink-;e033;326;354ðFIGUREÞ ~B
2
222 ¼ −4

�
ðFIGUREÞC5

ðFIGUREÞC6

�
: (33)

Therefore, when the PM has an astigmatism error, Eq. (27)
should be rewritten as

EQ-TARGET;temp:intralink-;e034;326;291

"
− ~Hx

~Hy
1
2

0

− ~Hy − ~Hx 0 1
2

#266664
~A222;x

~A222;y

ðMISALIGNÞ ~B
2
222;x

ðMISALIGNÞ ~B
2
222;y

3
77775

¼
"
CAST;x þ 2ðFIGUREÞC5 −

W222ð ~H2
x− ~H2

yÞ
2

CAST;y þ 2ðFIGUREÞC6 − ~Hx
~HyW222

#
: (34)

Utilizing Eqs. (11)–(14), (21), (22), and (34), we can establish a
computation model of misalignment and PM astigmatism figure
error parameters of two-mirror telescopes. Four equations can be
established with wavefront testing of a field point. A total of
six parameters are to be solved, which are XDESM, YDESM,
ADESM, BDESM, ðFIGUREÞC5, and ðFIGUREÞC6. Wavefront testing
of two field points is needed to solve all the parameters.

The computation model of misalignment and PM astigma-
tism figure error parameters of two-mirror telescopes is essen-
tially a nonlinear system. In this paper, we use the medium-scale
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fminunc algorithm in also MATLAB optimization toolbox to
solve the misalignments.

3 Alignment Example

3.1 Optical Design of R–C Telescope

In this section, we will analyze and validate the correction effect
of the model using an R–C telescope with astigmatism figure
error on the PM. The simulation experiment includes three
cases: simulation with and without wavefront testing error,
and the Monte Carlo alignment simulations.

The optical design parameters of the R–C telescope are
shown in Table 1. The aperture is 3 m, f number is 20, and
the field of view is 2ω ¼ �0.12 deg.

The telescope is shown in Fig. 4, and the full-field display of
Zernike coma (C7 and C8), Zernike astigmatism (C5 and C6Þ,
and RMS wavefront error are shown in Fig. 5. As can be seen
from the Fig. 5, the R–C telescope is corrected for third-
order coma, and the imaging field is limited by third-order
astigmatism.

The wavefront aberration coefficients of the telescope can be
calculated by Code V, which are listed in Table 2.

3.2 Case 1: Alignment Experiment without
Wavefront Testing Error

In this section, the computation model is used to calculate and
correct the misaligned R–C telescope and the astigmatism error.
The misalignments and figure errors of the telescope are intro-
duced, as shown in Table 3.

The optical design software Code V is used to model the tele-
scope. The full-field displays of Zernike astigmatism C5∕6 and
Zernike coma C7∕8 are shown in Fig. 6.

As can be seen from Fig. 6, the binodal astigmatism and
field-constant coma occur in the misaligned R–C system. We
use wavefront testing results of two field points, a center
field point ([0, 0]), and an external field point ([0.12 deg,
0]), to align this telescope.

Table 1 Optical design parameters of the R–C telescope.

Surface Type Conic constant Radius (mm) Thickness (mm)

PM (stop) Conic −1.00212 −11214.953 −5000

SM Conic −1.48118 −1340.206 6499.984

Image — — −625.954 —

Fig. 4 The optical layout of the R–C telescope.

Fig. 5 FFDs for fringe Zernike coefficients (a) C5∕6, (b) C7∕8, and (c) RMS wavefront error for the nominal
TMA telescope.

Table 2 Wavefront aberration coefficients of the R–C telescope.

Surface W 040 (λ) W 131 (λ) W 222 (λ) W 220M (λ) W 311 (λ)

PM (spheric
contributions)

1417.902 −88.812 1.391 0.695 0

PM (aspheric
contributions)

−1420.911 0 0 0 0

SM (spheric
contributions)

−166.495 45.119 −3.057 2.762 −0.581

SM (aspheric
contributions)

169.504 43.693 2.816 2.816 0.181

sum 0 0 1.150 6.273 −0.400

Note: λ ¼ 632.8 nm, similarly hereinafter.

Table 3 The misalignments and figure errors of the telescope.

XDESM YDESM ADESM BDESM ðFIGUREÞC5 ðFIGUREÞC6

−0.4 mm 0.3 mm −0.04 deg −0.08 deg −0.11λ 0.09λ
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The steps of alignment simulation are as follows: first, we
use the wavefront fitting function of Code V to obtain the
Zernike coefficients of the wavefront of the two-field points,
and then substitute the Zernike coefficients into the computation
model so that we can get the quadratic equations about the mis-
alignments and Zernike coefficients. The solution of the amount
of misalignments can be obtained by solving the equation.
Finally, the telescope is corrected with the misalignments and
figure error of the solution, and the corrected optical system
is compared with the nominal system and the initial misaligned
system to verify the correction effect.

We use two iterative alignments to correct the misaligned
telescope. The states of the optical system after each correction
are shown in Fig. 7. In this paper, average and maximum RMS
wavefront errors in the whole field of view are used to character-
ize the system’s wave aberration state, which are calculated with
361ð19 × 19Þ equally spaced field points in a circular field
whose angular radius is 0.12 deg.

The value of the residual misalignments and RMS wavefront
error after each iteration alignment is shown in Table 4, and the
values in the table are reserved for four digits after the deci-
mal point.

It can be seen that the wavefront error basically reaches the
nominal level after the first alignment, and the system changes is
not obvious after the second correction. After the first align-
ment, the residual linear misalignments is about 10 μm, the
residual angular misalignments is <1″, and the astigmatism fig-
ure error is fully corrected. It is shown that the computation
model can accurately solve misalignments and figure error
with the wavefront error data of two-field points.

3.3 Case 2: Alignment Experiment with Wavefront
Testing Error

In the actual environment, there are some factors (airflow dis-
turbance, vibration, etc.) that affect wavefront testing accuracy.
These error sources can cause the Zernike coefficients obtained
by wavefront testing to be inaccurate, and increase calculation

Fig. 6 Full-field displays of Zernike astigmatism and Zernike coma of misaligned telescope. (a) The
Zernike astigmatism (C5 and C6) and (b) the Zernike coma (C7 and C8).

Fig. 7 The state of optical system after each correction. (a) Linear misalignment, (b) angular misalign-
ment, (c) astigmatism figure error, and (d) RMS wavefront error.

Table 4 The optical system state after each iteration alignment.

Nominal
state

Original
misaligned

state

After the
first

alignment

After the
second

alignment

XDESM (mm) — −0.4 0.0103 0.0060

YDESM (mm) — 0.3 −0.0030 0

ADESM (deg) — −0.04 0.0001 0

BDESM (deg) — −0.08 −0.0002 −0.0006

ðFIGUREÞC5 (λ) — −0.11 0 0

ðFIGUREÞC6 (λ) — 0.09 −0.0001 0

Maximum RMS
wavefront error (λ)

0.2665 1.6389 0.2673 0.2680

Average RMS
wavefront error (λ)

0.1333 1.5591 0.1340 0.1333
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error of the misalignments. So, it is necessary to analyze the
influence of the wavefront testing error on computation model.

We will use the testing error model shown in Eq. (35) to sim-
ulate the correction effect of the model in the presence of wave-
front testing error

EQ-TARGET;temp:intralink-;e035;63;697CAST ¼
�
C5 − 3C12

C6 − 3C13

�
þ
�
εnormrndðμ¼0;σÞ
εnormrndðμ¼0;σÞ

�
; (35)

EQ-TARGET;temp:intralink-;e036;63;660CCOMA ¼
�
C7 − C10 − 4C14

C8 − C11 − 4C15

�
þ
�
εnormrndðμ¼0;σÞ
εnormrndðμ¼0;σÞ

�
: (36)

An error amount εnormrndðμ;σÞ is added to CAST and CCOMA.
εnormrndðμ;σÞ is a random value that follows a normal distribution
(the mean is μ, the standard deviation is σ), and it is used to
simulate random testing error. To compare with the experimental

results without wavefront testing error, we still use the misalign-
ment system shown in Table 3 to perform a large number of
misalignments correction experiments with random error
effects. We use four different combinations of field points to
calculate the misalignments to further verify the effect of the
number of field points on the correction effect of the optical sys-
tem. The four combinations of field points are shown in Table 5
and Fig. 8.

The wavefront testing errors are divided into three levels
according to the magnitude in the error experiment, whose σ
are 0.1, 0.175, and 0.25 λ, respectively. The computation
model is used to correct the misaligned system twice, and
the correction results obtained with four different field combi-
nations are shown in Fig. 9. The different color curves represent
different testing error levels.

It can be seen from Fig. 9 that the robustness of the compu-
tation model is good. For example, when σ ¼ 0.25 λ and the
number of field points for testing is 5, the standard deviation
of the average RMS wavefront error in the field of view is
only 0.019 λ, and the standard deviation of the maximum
RMS wavefront error in the field of view is only 0.00821 λ.

It can also be seen that, in the presence of testing error, if only
two-field points are used for wavefront testing, the correction
results are poor. And an increase in the number of field points
for testing is able to effectively enhance the robustness of the
computation model. Taking the results of the average RMS
wavefront error as an example, the standard deviation of the
three different σ values decreased by 74.3% (σ ¼ 0.1 λ),
77.6% (σ ¼ 0.175 λ), and 70% (σ ¼ 0.25 λ), respectively,
when the field points for testing increase from 2 to 5. It can
also be seen that the standard deviations in the three cases
decreased by 26.8% (σ ¼ 0.1 λ), 20.8% (σ ¼ 0.175 λ), and
27.5% (σ ¼ 0.25 λ), respectively, when the field points for test-
ing increase from 5 to 9. Therefore, when the field points for
testing is more than 5, increasing the field points for testing
to suppress testing error will not receive significant results.
Meanwhile, increasing the field points results in an increase
in testing time, which is also disadvantageous for improving
the correction frequency.

Table 5 Four combinations of field points.

Combination 1 Combination 2 Combination 3 Combination 4

①② ①②⑥ ①②④⑥⑧ ①②③④⑤⑥⑦⑧⑨

Fig. 8 Field points used in wavefront testing.

Fig. 9 The relationship between the standard deviation of (a) XDE, (b) YDE, (c) ADE, (d) BDE,
(e) ðFIGUREÞC5, (f) (ðFIGUREÞC6, (g) maximum RMS wavefront error, and (h) average RMS wavefront
error of 100 trials and the number of field points used for wavefront testing and the error levels.
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The intervals of the three curves of different testing error lev-
els are roughly equal, so the error is basically linearly related to
the standard deviation of the parameters (misalignments, figure
error, and wavefront error) after correction.

3.4 Case3: Monte Carlo Alignment Simulations

The amount of misalignments is random values in actual align-
ment, and their size is closely related to the accuracy of the
coarse alignment. In Secs. 3.2 and 3.3, we discuss the effect
of correcting the model in a particular misaligned state, ignoring
the randomness of the value of misalignments, and the effect of
the magnitude of the misalignments on the effect of the correc-
tion is not analyzed.

In this section, the Monte Carlo alignment simulations are
carried out to discuss the correction effect in different misalign-
ment ranges and different error values, and verify the corrective
ability more generally and objectively.

There are three different misalignment ranges for simulations
as shown in Table 6.

The experimental process is as follows: we generate 100
pairs of pseudorandom misalignment values following a stan-
dard uniform distribution for each range. Each of these mis-
aligned states is introduced in the simulation software Code
V and the wavefront errors can be obtained. As a result, we
have 300 pairs of misalignments for all ranges, which represent
300 misaligned systems. Each of the misaligned systems per-
forms misalignment correction at four different wavefront test-
ing error levels, which are σ ¼ 0, σ ¼ 0.1 λ, σ ¼ 0.175 λ, and
σ ¼ 0.25 λ. Misalignment correction is performed using the
five field points in combination three as shown in Table 5.
Figure 10 shows the results of two iterative corrections
of each misaligned system at different error levels.
ðWFEMAX

rms Þcorrectedi and ðWFEAVE
rms Þcorrectedi are the maximum

and average RMS wavefront errors in the field of view of the

i’th trial after misalignment correction, respectively,
ðWFEMAX

rms Þnomimal and ðWFEAVE
rms Þnomimal are the maximum and

average RMS wavefront errors in the field of view of the i’th
trial in the nominal state, respectively, which are given in
Table 4. ðWFEMAX

rms Þnominal ¼ 0.2665 λ, ðWFEAVE
rms Þnominal ¼

0.1333 λ.
Figure 10 shows the relationship between the root mean

square deviation (RMSD) of the maximum/average RMS wave-
front error and the error levels. The RMSD is defined as

EQ-TARGET;temp:intralink-;e037;326;653RMSD

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

½ðWFE
MAX∕AVE
rms Þcorrectedi −ðWFE

MAX∕AVE
rms Þnominal�2

s
;

(37)

where n is the number of trials, and n ¼ 100; i is the trial
number.

According to the Monte Carlo simulation analysis results, it
can be seen that, in the absence of wavefront testing error, the
correction effects of all of the trials do not deteriorate as the
amount of misalignment increased. After two iterative correc-
tions, the RMSD of the average RMS wavefront error of the
300 trials is on the order of 10−6 λ, and the RMSD of the maxi-
mum RMS wavefront error is on the order of 10−5 λ. It can be
considered that all of the misaligned systems after the correction
have reached the nominal state.

In the presence of wavefront testing error, the magnitude of
the error is closely related to the results of correction. The
RMSD of wavefront error increases with an increase in the
error, and it is roughly linear. The effect of wavefront testing
error on the RMSD of the maximum RMS wavefront error is
more significant than the average RMS wavefront error. It
can also be seen that the magnitude of the error is the main factor
that affects the correction results, while the magnitude of the
misalignments has little effect, which shows that the model
also has good correction capability for systems with large
misalignments.

4 Conclusion
This paper mainly studies the computation method based on the
NAT of misalignments and PM astigmatism figure error param-
eters of two-mirror telescopes. We deduces the expressions of
the aberration field decenter vectors and analyzes third-order
astigmatism and coma aberration field for a misaligned two-mir-
ror telescope with astigmatism figure error on PM. In addition,

Table 6 The range of random misalignments.

XDE and
YDE (mm)

ADE and
BDE (deg) ðFIGUREÞC5∕6

(λ)

Range 1 ½−0.5;0.5� ½−0.02;−0.02� ½−0.05; 0.05�

Range 2 ½−1;1� ½−0.05;0.05� ½−0.1; 0.1�

Range 3 ½−2;2� ½−0.1;0.1� ½0.2;−0.2�

Fig. 10 The relationship between the RMSD of the maximum/average RMSwavefront error and the error
levels for (a) range 1, (b) range 2, and (c) range 3 of random misalignments.
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an R–C telescope is used to carry out alignment simulations with
the computational model.

The simulation experiment without wavefront testing error
shows that the misaligned system can be corrected to be
close to the nominal state after the 1st alignment with wavefront
testing of two-field points.

The simulation experiment with wavefront testing error
shows that an increase in the number of field points for wave-
front testing can effectively improve the robustness of the com-
putation model, but when the number of field points for
wavefront testing is more than 5, significant results will not
be received by simply increasing the field points to suppress
testing error. It also can be found that the wavefront testing
error is essentially linear with the standard deviation of mis-
alignments, figure error, and RMS wavefront error after
correction.

Monte Carlo simulation results show that, in the absence of
wavefront testing error, the correction effect of all the trials does
not deteriorate with an increase in the amount of misalignments.
In the presence of wavefront testing error, the RMSD of the
wavefront error after the correction of the trials increases as
the wavefront testing error increases and they are roughly linear.
The wavefront testing error is the main factor that affects the
RMSD of the wavefront error after correction, while the mag-
nitude of the misalignments has little effect on it.
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