J. Parallel Distrib. Comput. 111 (2018) 104-114

journal homepage: www.elsevier.com/locate/jpdc

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

PARALLELAND
DISTRIBUTED
COMPUTING

Efficient optimization approach for fast GPU computation of Zernike

moments
Yubo Xuan®P, Dayu Li “*, Wei Han ®*

2 College of Communication Engineering, Jilin University, Changchun, Jilin, 130012, China

b College of Physics, Jilin University, Changchun, Jilin, 130012, China

@ CrossMark

¢ State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin,

130033, China

HIGHLIGHTS

e The proposed approach significantly reduces computational time of ZMs on a GPU.
e The proposed approach supports the expansion of computation ZMs on multi-GPU.

e Eliminating huge conditional instructions after the image re-layout.

ARTICLE INFO ABSTRACT

Article history:

Received 17 September 2016
Received in revised form 8 June 2017
Accepted 30 July 2017

Available online 9 August 2017

Keywords:
Zernike moments

Our study focuses on accelerating the computation of Zernike moments on graphics processing units
(GPUs). There are two ideas to achieve the goal. First is to implement a novel re-layout that involves
reordering the image pixels and addressing the diagonal pixels in advance, so that computations of all
pixels are allocated to an octant effectively. Second is to the leverage the constant memory to store
precomputed values used across GPU threads. An in-depth study has been carried out to evaluate the
performance in each case and to compare against GPU implementation of other algorithms and to discuss
the bottleneck. The result shows that our approach is effective and achieves significant performance

GPU improvement compared to other GPU state-of-the-art implementations. Furthermore, our approach is

Reordering image pixels
Addressing diagonal in advance

suited for allocating the data flow into multiple GPUs.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Zernike moments (ZMs) are the mapping of an image onto
a set of orthogonal Zernike polynomials. Among all orthogonal
moments, they are the best image descriptors because of their
unique characteristics, such as minimum information redun-
dancy and invariance to image rotation and scaling [36]. They
are used in numerous applications including pattern or object
recognition [1,3,10,27,34,35], image reconstruction [31,41], shape
matching [16,25], image watermarking [7,15], and image retrieval
[19,32,40].

Unfortunately, their computation is very expensive owing to
the high complexity of the definition. On the other hand, high-
order moments are computationally slow and suffer from er-
rors. Thus real applications like computer vision require a quick
response and demand the computation of features at real-time.

* Corresponding authors.
E-mail addresses: lidayu@ciomp.ac.cn (D. Li), 21505211@qq.com (W. Han).

http://dx.doi.org/10.1016/j.jpdc.2017.07.008
0743-7315/© 2017 Elsevier Inc. All rights reserved.

Several algorithms have been proposed to accelerate the compu-
tation of ZMs.

(1) Mukundan and Gu both introduced fast algorithms,
namely square-to-circular transformation method to compute
ZMs [11,24]. However, their proposed algorithms have limitations.
In the case of the contour integration method, it is applicable only
for binary images and requires off-line analysis to extract the image
boundary points. The accuracy of ZMs will be compromised when
the square-to-circular transformation method is used.

(2) Because the factorial terms in the radial polynomials take
most of the computational time to derive the ZMs, researchers have
tried to remove the factorials by introducing a recurrence relation-
ship. Prata [28] and Kintner [17] proposed a recurrence relation for
the radial polynomials of ZMs. It is applicable in cases when ZMs
with selected fixed repetition m and order n are required as pattern
features. Chong [2] proposed the g-recursive method which uses
Zernike radial polynomials of fixed order n with high repetition
m to derive a polynomial of low repetition m. These methods do
not use any factorial functions, which in turn substantially reduces

http://dx.doi.org/10.1016/j.jpdc.2017.07.008
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2017.07.008&domain=pdf
mailto:lidayu@ciomp.ac.cn
mailto:21505211@qq.com
http://dx.doi.org/10.1016/j.jpdc.2017.07.008

Y. Xuan et al. / J. Parallel Distrib. Comput. 111 (2018) 104-114 105

the computational time to derive the ZMs. Among these iteration
methods, the Kintner’s and g-recursive methods show the best
performance.

(3) Hwang proposed a fast computation algorithm that is based
on the symmetry of Zernike polynomials [13,14]. It reduces the
computational complexity in the generation of Zernike polynomi-
als or aid in obtaining ZMs by projection of the Zernike polynomials
onto the image functions. The Zernike polynomials are generated
by computing only one of their octant. Therefore, the computa-
tional time for this algorithm is approximately one-eighth of the
baseline computing method [see Section 4.1].

(4) For real-time implementation of some fixed-sized images,
Zernike polynomials are computed in advance and stored in a set of
lookup tables [12,16]. Thereafter, ZMs are computed by projecting
the image patched onto the pre-computed Zernike polynomials.
The entire process works in real-time, but this scenario is valid only
for computing fixed images of ZMs. When computing a set of ZMs,
the symmetry method can be mixed with other fast methods such
as Kintner’s or Chong’s method, and the combined method was
shown to have the best performance on computational time [6,33].

(5) The aforementioned optimization only extensively focused
on the algorithm that was applied to reduce the CPU execution
time. Graphics processing units (GPUs) are becoming increasingly
helpful to parallel data applications over the last few years, because
the architecture is composed of large amounts of simple processing
units [5,18,23]. The following studies confirm acceleration power
of GPUs in ZMs with a high degree of data parallelism. The compu-
tation of ZMs by definition on GPUs has achieved observable higher
speeds as compared to all algorithms in the CPU. Ujaldon [39]
carried out an in-depth research on implementation of ZMs on
a GPU. The results on a commodity PC showed up to 5x faster
execution times on a Geforce 8800 GTX against that on a Pentium
4CPU. Toharia [38] presented an analysis of a multi-GPU, multi-
CPU environment. The analysis was performed on a shot boundary
detection application based on ZMs. Martin-Requena [22] executed
ZMs of 1 megapixel images on many-cores and clusters of GPUs to
attain gains of up to three orders of magnitude when compared
with execution on multi-core CPUs of similar age. Meanwhile,
utilization of Hwang’s symmetric algorithm has been done, but its
performance has not improved compared to the baseline imple-
mentation on a single GPU [see Table 6 first three columns].

In this study, efforts are made to further accelerate the com-
putation of ZMs over the existing GPU implementation. First, the
difficulties of implementing the symmetric method are analyzed.
Then, two approaches are presented: (1) a novel re-layout that
involves reordering the image pixels and addressing the diagonal
pixels in advance, and (2) storing pre-computed factorial terms
using lookup tables in the constant memory. An in-depth study
is carried out to evaluate the performance and bottlenecks. Fur-
thermore, our scheme supports the expansion on multi-GPU via
a simple partitioning mechanism. As a result, our implementation
over either different generations of GPUs or multi-GPUs achieves
higher performance than the state-of-the-art implementations.

The rest of the paper is organized as follows. The next section
describes ZMs and introduces their properties. Section 3 introduces
the CUDA programming model and the implementation of ZMs by
definition on GPU. In Section 4, we describe a symmetric algorithm
and discuss the related problems when porting it to GPUs. Sub-
sequently, we designed a parallel computational approach based
on our proposed solution, which is implemented on GPUs to ac-
celerate the computation of ZMs. The experimental results and
bottlenecks are discussed in Section 5. Finally, conclusions are
given in the last section.

2. ZMs and their properties

The use of ZMs in image analysis was pioneered by Teague [36].
ZMs are features extracted by projecting the input image on a com-
plex set of Zernike polynomials. A Zernike polynomial V;,, (x, y) is
defined within a unit circle in a complex domain [43], and it can be
written in polar form by Euler’s formula:

Vim (X, ¥) = Rum (0) cos (mB) + jRym (0) sin (m0) , (1

where

j=vV-1.¥+y"<1,p=yx2+y*0 =tan" (X) (2)
X

and Rp m (p) is the Zernike radial polynomial defined as

(n—s)! 5
Rum (P) = 3 (=1 ey (=D PO
s=0 S!(nzm _s)!(nzm _5)!

In Eq. (3), order n is a non-negative integer and repetition m
is an integer satisfying n — |m| = (even) and |m| < n.sis an
integer variable ranging from O to ("‘T‘m‘). The Zernike polynomials

are orthogonal and satisfy the following equation:

2 1
/ / Vim (0, 0) V pq (0, 0) pdpdd
0 0

b
——— ifn=p,m=
Y p-m=4q (4)
0 otherwise.
This means that there is no redundancy of information between
the moments with different orders and repetitions.
ZMs of order n and repetition m are defined by

1
nt / / £ Gy Vi, (x,) dady
b4 242 <1
1
nt / f Run (0) If (X,) cos (m8)
T 24y2<1
—Jf (x,y) sin (m6)] dxdy. (5)

The symbol * denotes a complex conjugate. ZMs are the pro-
jection of the image function f(x, y) onto those orthogonal Zernike
polynomials . The procedure for computing ZMs can be understood
as the inner product between the image function f (x, y) and the
Zernike polynomial. Note that Ry, (p) = Rnp—my (0), and Z, _, =
Z,.Hence, only Z, ,, (m > 0) is considered as the feature. The total
number of ZMs can be computed by

Zym =

Max

Naceumut = ;ng +1}, (6)

where |u] is the integer part of u. Table 1 lists the ZMs of a few
selected maximal orders. Obviously, they provide a large number
of image features.

The fundamental property of ZMs is their rotational invariance.
If an image is rotated by an angle 6, the moments of the original
image Z, and the rotated image Z,,, can be written as

Zy = Zame ™. o
We have

1Z| = |Zame ™| = 1Zyml . and ®)

Pnm = $am — 6, 9)

where |Z,,| and ¢, represent the magnitude and phase, respec-
tively. Its derivation process could be found in [35]. The magnitude

106 Y. Xuan et al. /. Parallel Distrib. Comput. 111 (2018) 104-114

Table 1
List of ZMs of different maximal orders.

Order Moments No. of moments Accumulative No.
0 Zoo 1 1
1 Zu 1 2
2 230,22 2 4
9 Z91, Zo3, 5 30
295, Z97, Zog
10 Z10.0, Z10.2Z10.,4» 6 36
Z10.6Z10.8, Z10.10
n Z11.1, 2113, Z115, 6 42
Zi7,Z11.9 Zin
15 Z15.1,Z15.3, Z15.5, 8 72
Z15,7,Z215,9, 215,11,
Z15.13, Z15,15

remains unchanged while the phase would change with image ro-
tation. A simple experiment was conducted to verify this property.
We first take an image of 128 x 128 pixels, and it is rotated by
45° and 90°. The ZMs for n = 5 and m = 1 is calculated. The real
part and imaginary part of the ZMs change after the image rotation,
but the ZM magnitude is a constant [see Fig. 1].

Thus, the magnitude of the ZMs can be considered as a ro-
tational invariant feature of the image. These moment invariant
are opted in many analysis and pattern recognition applications
[10,16,35]. The choice of the maximal order value nq or some
single ZMs will depend on the size of the given image and also on
the solution required. It can be observed that the phase of ZMs is
computed from the iris images of the same subject [3]. Both the
phase and magnitude of the ZMs are utilized in image recognition
and retrieval [32,34]. Note that the moments Zyg and Z;; are not
included in the feature construction. These moments are modified
to known values during the normalization procedure. For example,
Zoo is a real constant and represents the average intensity of an
input image. It is used to scale a watermark image to a standard
size [15] or to denote a feature by using % [12].

As Zernike 1-D radial polynomials [see Eq. (3)] contain many
factorial terms, they occupy most of the computational time in
radial polynomials.

Kintner [17] used polynomials of varying low-order n with a
fixed repetition m to compute the radial polynomials. The recur-
rence relation is

(K2p? 4 K3) Rn—2).m () + KaRin—sy.m (p)

K; ’
where the coefficients K, K3, K3, and K, are defined as

m+my(n—m)y(n—2)
2
Kz=-m*@n—1)—-nn—-1)n-2),
nn+m—-—2)y(n—m-—2)
5 .

Chong [2] proposed another relation called the g-recursive method
which is defined as

Rym (0) = (10)

K =

K =2n(n—1)(n—2),

Ky =

H
Rn,m (/0) = HlR n(m+4) (IO) + (HZ + ;;) Rn(m+2) (p) s (]1)

where

U TUEE N

+H3(n+m~|—6)(n—m—4)

8
_Hs(n+m+4)mn-m-2)

H, =
4(m+3)

1

+ (m+2),

Horizontal oval Vertical oval

-45 degree oval

¢

Z=0.0053063 7=-0.0043257 7=0.011546
+0.011546i +0.012003i -0.0053063i
|Z] =0.012707 |Z] = 0.012759 |Z] =0.012707
$=65.3173 $=109.8184 ¢ =-24.6827

Fig. 1. Example of rotational invariance of ZM.

GPU
Block(0,0) Block(1,0)
Shared Memory Shared Memory
Registers J Registers Registers I I Registers J
#7[i I ' {
Thread(0,0) Thread(1,0) Thread(0,0) Thread(1,0)
H f f
(O - Constant Memory
S
T
. Global Memory

Fig. 2. The CUDA programming model.

_ Am42)(m+1)
(n+m+2)(n—m)’
Because recurrence relations are adopted, these methods re-
quire computation of extra ZMs even if only a single ZM is required.
These methods focus only on computing Zernike radial polynomi-
als and do not attempt to reduce the computational complexity.
Slowdown in speed is caused not only by the factorial terms
in the radial polynomials, but also by the evaluation of N? image
points of the Zernike polynomials. Furthermore, time is taken by
the trigonometric functions, cos(mé) and sin(mf), where m =
0, 1,..., Nng. If both image size N and order n are large, compu-
tations involved are significantly large as well.

3. Computing ZMs by baseline method on GPU
3.1. GPU architecture overview

A GPU is actually an array of streaming multiprocessors (SMs),
each of which has many streaming processors (SP). Massive GPU
hardware parallelism is achieved through replication of a common
SM architecture. Each SP can execute exactly the same instruc-
tion on different data, making it similar to a single instruction
multiple thread (SIMT) processor. In 2007, NVIDIA released the
Compute Unified Device Architecture (CUDA) GPU programming
toolkit [26]. After the release of CUDA, programmers have achieved
parallel algorithms through C-like language without the need for
any complex graphics programming. Owing to its programmabil-
ity, GPU can be seen as a device capable of executing a very large
number of threads in parallel.

In the CUDA model [see Fig. 2], a host CPU code can launch GPU
kernels by calling device functions that execute on the GPU. As the
GPU uses a different instruction sets from the host CPU, the CUDA

Y. Xuan et al. / J. Parallel Distrib. Comput. 111 (2018) 104-114 107

Table 2

CUDA memory types and characteristics.
Memory Location Access Scope
Register On-chip Read/write One thread
Shared On-chip Read/write All threads in a block
Global Off-chip Read/write All threads + host
Constant Off-chip Read All threads + host

compilation flow compiles CPU and GPU codes using different
compilers targeting different instruction sets. When a GPU kernel
is executed by multiple equally-sharp blocks (a block may contain
up to 1024 threads), the total number of threads is equal to the
number of threads per block times the number of blocks. These
threads are mapped onto a hierarchy of hardware resources. Blocks
of threads are executed within SMs. The minimum scheduled unit
in the SM is the warp, which is 32 threads on the current NVIDIA
GPUs. Active threads within a warp run in lock-step within the
GPU.

The most significant difference between CPUs and GPUs resides
in the memory subsystem. GPUs typically feature a wide memory
bus to feed a large number of parallel threads. Table 2 summarizes
the characteristics of various CUDA memory spaces. CUDA has both
on-chip and off-chip memories. The off-line global memory can be
accessed by all SMs across the GPU. It is measured in gigabytes (GB)
of memory, which is by far the largest, most commonly used, and
slowest memory storage on the GPU. Hence, in general we should
reduce the global memory access or use coalesced memory access
patterns [9]. The constant memory is a limited off-chip memory
space (64KB for GeForce9800GX2 and TeslaK40); it is an excellent
way of storing and broadcasting read-only data to all threads. The
fastest and most scalable is the highly desirable on-chip memory.
These are limited memory stores measured in kilobytes (KB) of
storage. A set of threads in the same block can cooperate with one
another by sharing data through the shared memory. Two threads
from two different blocks can share data, but the speed is much
slower because the global memory is placed off-chip. Registers are
on-chip resources that are equally divided across active threads.

Though GPUs offer very high computing power at relatively low
cost, designing efficient algorithms for the GPUs normally requires
additional time and effort, even for experienced programmers.
Research has shown that taking advantage of memory spaces can
be the key limiting factor in terms of overall cost [8,30]. Applica-
tion acceleration is highly dependent on being able to utilize the
memory subsystem effectively so that all execution units remain
busy.

3.2. Baseline implementation on GPU

In this section, we describe a baseline implementation which
denotes the computation of ZMs by the definitions on GPU. As
Zernike polynomial are defined within a unit circle, the coordinates
of the image must be normalized into [—1, 1] by a mapping trans-
form, in which case the pixels located outside the circle are not
involved in the calculation. Fig. 3 illustrates an inscribed circle of
mapping transform. The number within each grid represents the
index of the thread. Accordingly, the discrete form of the ZMs of an
image of size N x N is described as

N—1N-1

1
Zom = (";V) DY Ty Vi . y) (12)
i=0 k=0
N—-1N-1
= (n;\ll) ;,;f (%, ¥) Ram () [cos (m@) — jsin (mB)].

(13)

N-1 1Ay
0012345677' 01 67
8 o l10]11]12]13]14]15 8 N5
16]17]18]19]20] 21 [22 23 /

24125(26(27|28(29 30|31
32133(34|35|36|37|3839

4041 |42 (43|44 45|46 |47 \
48149 |50 |51 [52|53 |54 |55 4 55
N_l 56 | 57|58 [59|60|61|62]63 56 57\ 2|63
ky -1

Fig. 3. Mapping transform of an inscribed circle for normalization.

FUNCTION radial polynomial(p, n, m) kernell
radial=0
for s=0 to ?
(n—s)!
n+ |m| _ n— |m| _
! () s) ! (5 s) !

radial=radial+ c X p"~2s

end for return radial

FUNCTION Zernike moment map(n,m)
tid=get_thread id()

c=(-1)s
s

i=tid%N k=tid/N
x=2(i-N2+0.5)N y=2(k-N/2+0.5)/N
p=q/x%+y?
Ifp<si1
= y
0 = arctan (X)

radial=radial polynomial(p, n, m)

vr = radial X cos(m0) vi = radial x sin(m6)
zr_map[tid[=f(x,y) Xvr zi_map[tid]=f(x,y) Xvi
endif returnzr map,zi map
Function sum_zemike moment map(zr_map,zi_map)
tid=get thread id
kernel2
zr=sum(zr_map[tid]) zi=sum(zi_map[tid])

(n+1) (zr + jzi)
AN

return

Fig. 4. Pseudocode for computing ZMs by baseline method.

The normalization factor Ay must be the number of pixels
located in the unit circle by the mapping transform. Here i = tid%
N, and k = tid/N, where tid is the index of the thread, and

i N
X = w! (14)
N
2(k—5+05)
V= (15)

We use a conditional instruction (0 < 1) that describes the
image properties of the inside unit circle. Hence, the pixels out-
side the unit circle are excluded from the computational domain
established for ZMs.

The procedure to calculate a single Z,,,, applying the formulas in
Egs. (13)-(15), is divided into two GPU kernels as shown in Fig. 4.
Kernel 1 is assigned to N x N threads as an input N x N image,
the indexes of threads traverse the image. Under the condition
o < 1, the radial polynomials R, (o) is calculated using Eq. (3).
The real and imaginary parts of the Zernike polynomials (vr and vi)
are obtained from Ry, (p) cos (mf) and Ry, () sin (m0) .

Subsequently the real and imaginary parts of the ZM maps
(zr_map and zi_map) are derived through image times vr and vi,

108 Y. Xuan et al. /. Parallel Distrib. Comput. 111 (2018) 104-114

Table 3
Polar coordinates and gray values of point P; (i =1, 2, ..., 8) in Fig. 5.
Index of octant Point Radial0 < p <1 Polarangle0 <6 <n /4 Gray value of pixel
1 P] P 6 h]
2 Py P 50 h
3 Py o 7+90 hs
4 P4 P T —6 h4
5 Ps o 746 hs
6 Ps P 9 hg
7 Py o Z+o h,
8 Pg P 2r — 6 hg
respectively. The task of kernel 2 is to generate ZMs by parallel A
reduction of the ZM map. mw 1 g
/{_’y; 9|, D~ hy hy
. P. P,
4. Implementation of the proposed approach on GPU VI ,,/ ' ‘ s o)
[G| -1 1
4.1. Symmetric algorithm for computation of ZMs -1 1" 71
\ e P XN hs hg
\ (-x,-) E}Xﬁ'}’)/ i

There are eight points in different octants of a unit circle, and the
coordinates of the point P; in the first octant are (x, y) [see Fig. 5(a)].
The eight points P; are symmetric with respect to the x-axis, y-axis,
origin, and liney = x. h; (i= 1, 2, ..., 8) is the gray value of the
image at point P; [see Fig. 5(b)]. The polar radii at points P; are the
same, i.e., p. If 0 is the polar angle of point P; in the first octant, the
angles of other symmetric points can be easily expressed in terms
of 6 and n , as shown in Table 3.

By the symmetry characteristic, ZM can be obtained with an
octant of the Zernike polynomials:

Nz

Rum (0) [gh (%, ¥) — gl (x.)] (16)

N—1
n+1
Lo =
nm AN Z
i=N k=0
2
where gJ (x,y) and g,”n (x,y) are respectively the variants of
f (x,y)cos (mf) and f (x,y) sin (mP) in the first octant (0 < y <
x < 1) of a unit circle in Eq. (13). They are further divided into four
cases as shown below.

gn (X%, y)

[h1 4+ hy + hs + hy + hs 4 hg + h; + hg] cos (m6) ,
m = 4k

[h1 — hy — hs + hg] cos (m6)
+ [hy — hs — hg + hy7]sin(mf), m=4k+ 1

[h1 — hy — h3 + hy + hs — hs — h7 + hg] cos (mf) ,
m=4k+2

[hl —h4 —h5 +hg]COS (m9)

+ [—hy + h3 + hg — h7]sin(mf), m =4k + 3
i (17)
Em (X, ¥)
[y — hy + h3 — hy + hs — he + h; — hg] sin (m6) ,
m = 4k
[h1+h4—h5 —hg]Sll‘l(mQ)
+ [hy + hs — hg — hy]cos (mB), m =4k + 1

[h1 + hy — h3 — hy + hs + hg — h; — hg] sin (mB) ,
m=4k + 2

[h] +h4 — h5 — hs]SiI'l (m0)
+ [—ha — h3 + hg + h7] cos (m0) ,

The detailed explanation is found in [14]. Eq. (16) only requires
the computation of p in the first octant. This means that the
number of pixels involved in the computation of the Zernike radial
polynomials Ry, (p) can be reduced to one-eighth. Furthermore
the pixels of an image in a unit circle are added to Eq. (17). The
total number of necessary multiplications is markedly reduced.
This results in a successful improvement in computational time.
g, (x,y)and g,iT1 (x,y) are called octant images in this study.

m = 4k + 3.

VA Pe P; he
O | o
T W

v -1

(a) Form in Cartesian coordinates. (b) Form in polar coordinates.

Fig. 5. Symmetry points corresponding to P;.

4.2. Optimization strategy

Hwang [14] reported nearly 8 x factor gain by using the above
symmetry algorithm against the baseline implementation in a CPU.
Martin-Requena [22] attempted to optimize the computation of
ZMs by a symmetry algorithm on a GPU. However, moving the
high-performance algorithm to the GPU is very challenging owing
to the complexity of the GPU hardware. The experimental results
are shown in the first three columns of Table 6 (see Section 5.2).
According to the results, the symmetry method is not competitive
at all. The authors analyzed the reasons for the low performance
as follows: the implementation requires conditional statements to
be placed within the innermost loop of the computation, and this
generates a huge numbers of warp divergences in CUDA, which
results in poor occupancy for the streaming processors.

Moreover, the valid thread ratio limits the performance of the
symmetry method on GPU in our view point. The total index of
threads in an N x N image for the baseline implementation is
N x N; the valid area mapping the image to parallel threads is
the green area as shown in Fig. 6(a). The outer region of the
unit circle is rejected using the conditional instructions,0 < 1.
Correspondingly, the valid thread ratio of computing ZMs is 78.5%.

The total index of threads in an N x N image for the symmetry
method is ¥ The valid area mapping the image to parallel
threads is a quadrant as shown in Fig. 6(b). Only an octant is
required , therefore the valid thread ratio is merely 39.25%.

To eliminate the above factors limiting the performance of the
symmetry method, we proposed a new method, which involves re-
ordering the image and addressing the diagonal pixels in advance.
A2Dimage of size N x N is converted into 8 one-dimensional image
information.

4.2.1. Symmetric algorithm is ported to GPU efficiently by re-layout
We present a novel data re-layout to exploit the symmetry
of ZMs. An 8 x 8 image illustrates a symmetric characteristic
as shown in Fig. 7. The pixels placed in the diagonal have three
symmetric partners, where as the remaining ones have seven.

Y. Xuan et al. / J. Parallel Distrib. Comput. 111 (2018) 104-114 109

78. 5%

(a) Baseline. (b) Symmetric algorithm.

Fig. 6. Valid thread ratio in computing ZMs. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

| 73 56

Fig. 7. Two types of symmetric pixels.

Hence, the diagonal pixels must be considered separately. A com-
mon reorder needs to address two types of symmetric pixels using
conditional instructions. A better scenario is presented to address
symmetric pixels without conditional instructions.

An 8 x 8 image is shown in Fig. 8(a). The numbers (0...63) within
each grid represent the addresses of pixels. The pixels placed in
the first octant are loaded into a one-dimensional array h; [see
Fig. 8(c)] following the direction of arrows as shown in Fig. 8(b).
Expressions [h1(0). .. h1(7)] within the grids of h; are pixel values
corresponding to the addresses [28,29,30,31,21,22,23,14]. To en-
sure that the array h,, after reordering the pixels in the second
octant, still has the symmetric relationship with array h;, the
pixels in the second octants must be loaded following the ad-
dresses [28,20,12,4,21,13,5,14] sequentially. The loaded sequences
in the other six octants follow the addresses below the arrays
hs — hg.

In this case, the diagonal pixels are loaded repetitively. If we
ignore the duplicate pixels, the computational result will be wrong.
However, judging the duplicate pixels entails additional overhead.
To eliminate the effect of repetitive computations, we design an
ingenious scheme: the pixel values on the diagonal in arrays h2, h3,
h6, and h7 are set as zero in advance. Finally, the diagonal pixels
are loaded only once, but we ensure that the dimension of all 8
arrays is the same by addressing the diagonals in advance. The
image pixels are reordered into eight one-dimensional arrays as
shown in Fig. 8(c). If we pay attention to every column, the same
indices in the arrays are exactly the correct symmetric points after
re-layout. We can take advantage of the same index in the arrays to
perform parallel computation using Eqs. (16) and (17) (see Fig. 9).

After datare-layout of the image, the limiting factors mentioned
before are eliminated. First, the image pixels are reordered once to
avoid wrong repetitive summations. Then, the image data are con-
verted into 8 one-dimensional image information after combining
the reordered data with addressing the diagonal in advance. This

a C hfum0)] B @] 16 ©0)
" 0 28 29 30 31 21 22 23 14
1 S s - hZ‘ 0 }hz(l)hz(Z 0 hz(s)’hz(é)| 0 ‘
8 DU 10 11]12 13 4 15 o0 4o
W6 17 19020 2722 231 hB‘ 0 ‘;5(1)‘@(2) 0 ”3(51"3(6)| 0]
24 25 126 27 2¢ 129 30 [Y
32 33 |34 35 3¢ 37 38 8 h4‘h ﬂ h }h(q i
v |10 a1 paiaa g 6 a7 27 524 18
18 |48 50 51 |52 53| B¢ 55 hs hs(O)is(l) i (2]) j ’hs j
56" 57 |58 IOOMBON 61 | 62 53 35 34 33 32 a2 4
VI VI he‘ o [[#CHB) o o)k 6)| o]

43 51 59 42 50 58 49

Ol o }c}6fe]

b 44 52 60 45 53 61 54

\ 0o) OR

38 39 45 46 47 54

p‘(i.l&‘ﬂ,/lo‘ﬂ,b'/i0.53‘0.73’0.95|0.88‘
28 29 30 31 21 22 23 14

] ‘ 45° 18.4°’11.3° 45° ‘30,9“’23.2‘{ 45°‘

28 29 30 31 21 22 23 14

Fig. 8. Re-layout of an8 x 8 image and coordinates p, 6 in the first octant. (a) Same
colors are pixels symmetric to each other (b) Loaded sequences in first octants (c)
Images data are reordered into 8 arrays (d) p and 6 in the first octant are stored into
2 arrays. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

ensures that the same index of the 8 arrays is naturally symmetric
points, so that we do not need any conditional instruction to
extract symmetric points in the subsequent calculation. Moreover,
the uncalled pixels placed outside the circle [such as 0, 1, 8 in
Fig. 8(a)] are avoided.

The reordering sequence is the key to reordering image data.
However, reordering is performed in a non-coalesced fashion;
hence, it is time consuming (see Section 5.1). Nevertheless, it is
executed only once for an image even if just one set of ZMs is
obtained. The experiments in Section 5 prove that the cost is
worthwhile as compared with the baseline implementation.

4.2.2. Optimization of Zernike radial polynomials

There are massive factorial terms in radial polynomials [see
Eq. (3)]. We pre-calculate the value of the factorial function re-
quired for computing Eq. (3). The factorial values are stored in the
constant memory to ensure fast access from threads. By simply
storing the factorial values in the constant memory, we also avoid
factorial computations. A high order can lead to more computa-
tional time; thus, we save more time via stored factorial values.

4.3. Implementation of the optimization strategy

First, we pre-calculated the value of the factorial required for
computing Eq. (3). In our experiments, the maximum order for
the ZMs is 34; thus, there are 34 values (0!, 1!, 2!, ..., 34!) in the
constant memory.

Second, substituting the values of the address index of the
loaded image in the first octant into Eqgs. (14) and (15) results in 2
one-dimensional values of p and 6. It should be noted that the way
of access must correspond to the sequence shown in Fig. 8(b), so
that the coordinates of same index in the two arrays are symmetric
[asin the 8 x8 image shown in Fig. 8(d)]. The required p and 6 were
pre-calculated and stored in the global memory.

Finally, four kernels are implemented for ZM with n order and
m repetition in the GPU.

110 Y. Xuan et al. /. Parallel Distrib. Comput. 111 (2018) 104-114

4
gr gi 3
GPU kernel2

gr gi 2

FUNCTION gr gi 1(m,h1,h2,h3,h4,h5,h6,h7,h8,0)

tid = get_thread_id()

gr[tid] = (h1[tid] - h4[tid] - h5[tid] + h&[tid]) * cos(m *O[tid])
+ (h2[tid] - h3[tid] - h6[tid] + h7[tid]) * sin(m *O[tid])

gi[tid] = (h1[tid] + h4[tid] - h5[tid] — h8[tid]) * sin(m *O[tid])
+ (h2[tid] + h3[tid] - h6[tid] + h7[tid]) * cos(m *6[tid])

return gr, gi

Fig. 9. Schematic of instruction switching in CPU call to GPU kernel.

FUNCTION octant Zemike moment map(n,m, gr, gi,p)
tid = get thread id()

radial = radial polynomial(p[tid],n, m)

zr_map(tid] = radial * gr[tid]

zi_map(tid] = radial * gi[tid]

return zr_map,zi_map

Fig. 10. Pseudocode for computing ZM map.

Kernel 1: Re-layouting of the image

The gray values of the pixels located in the 8 octants are ar-
ranged into h1, h2,..., h8, respectively by the re-layout. The total
number NP of the pixels located in the first octant needs to be pre-
calculated. It is used to define the array size of h1, ..., h8.

Kernel 2: Computing octant images on GPU

The octant images [see Section 4.1] are divided into 4 cases
using Eq. (17). To avoid conditional instruction, we execute the
switch control instruction in CPU and call the corresponding GPU
kernel to obtain the octant images, gr_gi_0, gr_gi_1, gr_gi_2 and
gr_gi_3, where the remainder of repetition m divided by 4is 0, 1, 2
and 3, respectively. Fig. 9 shows the schematic, the switch control
instruction in CPU, and the pseudocode when the remainder of
repetition m divided by 4 is 1. Here, g/, (x,y) and g, (x,y) are
denoted by gr and gi, respectively.

Kernel 3: Computing the ZM map

The ZM map is computed using the octant images and radial
polynomials in Eq. (3). It occupies most of the computational time
of the ZMs .Fig. 10 shows the pseudocode for computing the ZM
map; tid is also the index of a thread . The real and imaginary parts
of the ZM map are denoted by zr_map and zi_map, respectively.
The pseudocode is simple and efficient owing to the data re-layout.
It ensured coalesced memory accesses, while avoiding the use of a
conditional instruction .

Kernel 4: Computing the ZMs

Finally, all the computed values of the ZM map have to be
accumulated in order to obtain a moment. This type of operator
has been thoroughly studied as a parallel reduction for its CUDA
implementation. There are two methods for implementing the
parallel reduction. The method presented by Mark Harris [21] is the
most popular CUDA implementation for parallel reduction. It has
been included as project examples in every CUDA SDK release. The

Table 4
Summary of hardware features for Geforce 9800GX2 and Tesla K40 during our ex-
perimental runs.

Processor GeForce9800GX2 Tesla K40
CUDA cores 256 (128 per GPU) 2880
Processor clock 1500 MHz 745 MHz
Memory bandwidth (GB/sec) 128 (64 per GPU) 288

Memory size (Type) 1 GB(DDR3) 12 GB(DDR5)
Floating-point arithmetic 32 bits 32 bits /64 bits

thrust API, which in fact is also designed by Mark Harris provides a
simple interface that hides all complexities of a reduction, making
it both flexible and easy to use. Though the dynamic memory
allocation of space slows down the thrust implementation, the
difference in execution time between the two methods is just
slight [9,37].

5. Experimental results and discussion

We provide a quantitative analysis of computational time in this
section. To confirm the proposed method which is valid throughout
all generations of GPU, two GPUs from different generations were
used to analyze the performance of the proposed method. First,
in order to unify comparisons with Martin’s strategy as presented
in [22], the NVIDIA GeForce 9800GX2 was selected. It is the first
generation that support CUDA and it includes two GPU chips dis-
tinctively. Because GeForce9800GX2 is a single-precision floating-
point, the maximum order for the ZMs is set as 34 because it is the
limit imposed by the hardware for the calculation of the factorial
numbers that are used within the Zernike polynomials. New gen-
erations of GPUs, which support double-precision floating-point,
can compute ZMs with the order greater than 34.

Moreover, NVIDIA Tesla K40, which is a popular Kepler architec-
ture GPU, was chosen. Table 4 summarizes its hardware features.
We used CUDA 6.5 release for our GPU implementation.

5.1. Reordering cost

As is known to all, to obtain the maximum memory through-
put, the global memory access must be coalesced. Coalescing a
memory access refers to combining multiple memory accesses into
a single transaction. That is, every successive segment memory
can be accessed by a warp (the minimum scheduled unit) in a
single transaction. In addition, the coalesced memory accesses are
sequential and aligned. The proposed reading direction to reorder
animage is in a non-coalesced fashion [see Fig. 7]. To reduce the un-
coalesced computational time, the reordered addresses (h; — hg)
are pre-stored in the global memory, which can be searched to
avoid complex executions from traversing data to extract sym-
metric points using conditional statements. This form of lookup
table gains a slight improvement against direct image reordering
as shown in Table 5.

However, there is a trade-off: we adopt an un-coalesced re-
ordering of the image only once, but we eliminate conditional
instruction and achieve memory coalescing sufficiently in the sub-
sequent calculation. It is emphasized that fixed image reordering
is executed only once and all our experimental results include a
reordering time.

5.2. Computation of ZMs on GetForce9800 GX2

The proposed approach mainly focuses on the optimization of
the Zernike radial polynomials and the efficient implementation
of the symmetric algorithm. To examine the implementation of
symmetric algorithm in detail, we computed Zy, on different image
sizes by only using our symmetric method through re-layout in the

Y. Xuan et al. / J. Parallel Distrib. Comput. 111 (2018) 104-114 111

Table 5

Time of reordering (in ws) for different image sizes on two GPUs(NVIDIA Geforce 9800GX2 and Tesla K40).

Image size Directly calculated Lookup table

9800 K40 9800 K40
64 x 64 20 20 13 12
128 x 128 42 21 26 15
256 x 256 160 25 117 20
512 x 512 550 57 416 45
1024 x 1024 2340 190 1820 140

Table 6

Execution time (in ms) computing a single ZM, Zyo, for different image sizes on Geforce 9800GX2. A: our symmetric optimization vs. Martin’s baseline; B: our proposed

approach vs. Martin’s baseline.

Image size Martin’s baseline Martin’s symmetric method Our symmetric method(A) Our proposed method(B)
64 0.12 0.20 0.071(1.7x) 0.065(1.8x)
128 0.18 0.28 0.084(2.1x) 0.076(2.3x)
256 0.37 0.58 0.175(2.1x) 0.149(2.5x)
512 1.14 173 0.487(2.3x) 0.393(2.9x)
1024 419 6.69 1.956(2.1x) 1.537(2.7%)
Table 7
Execution time (in ms) for a 256 x 256 image when a single ZM, Z, ,, is computed on Geforce 9800GX2.
Single ZM Martin’s baseline implementation Proposed Proposed vs. Martin's baseline
Zoo 0.37 0.15 2.46%
Zs.2 0.47 0.16 2.93x
Z12.0 0.69 0.18 3.83x
77513 0.71 0.19 3.74x
Table 8

Execution time (in ms) in computing ZMs of all repetitions of a given order for a 1024 x 1024 image on Geforce 9800GX2.
The speed-up is proposed on a single GPU and two GPUs vs. Martin’s baseline.

Set of ZMs for a given order Single GPU Two GPUs
Martin’s baseline Proposed Proposed

Z4 «(3repetitions) 12.89 2.35(5.48 %) 1.35(9.54 %)
Zs «(5repetitions) 25.09 3.02(8.30x) 1.76(14.2x)
Z12..(7 repetitions) 40.97 3.96(10.34x) 2.29(17.9x%)
Z16,(9 repetitions) 60.48 5.18(11.67x) 2.97(20.3x)
Z50.+(11 repetitions) 83.71 6.63(12.62x) 3.81(21.9x%)
Z>4.(13 repetitions) 110.56 8.45(13.08 %) 4.79(23.1x)
Z,3.(15 repetitions) 141.03 10..40(13.56x) 5.91(23.86x)
Z3,(17 repetitions) 175.13 12.74(13.74x) 7.1(24.66 %)

first experiment. The execution time against Martin’s scenario is
shown in Table 6. Our symmetric method for Z,0 provides a speed-
up of approximately 2 x against Martin’s baseline implementation.
We did not compare with Martin’s symmetric method, because
that method does not improve the execution time compared to
the baseline implementation. Thus, the data re-layout is effective
even for Zy o , which is the minimum amount of the computation
in all single ZM calculations. After combining the optimization of
the Zernike radial polynomial, we obtained the execution time of
the proposed approach. It was found that using constant memory
is beneficial.

After comparing the execution time for computing Z; o, we
now illustrate optimized computation of a set of single moments
for a 256 x 256 image using the proposed approach. The typical
scenario was used in Martin’s biomedical application as the vector
of features for classifying images. The performance is shown in
Table 7. The overhead of reordering 256 x 256 image is 0.117 ms.
Although the overhead is a larger proportion in the overall runtime,
the speed-up of the proposed approach against Martin’s baseline
implementation further increases to approximately 3 x.

The next step executes computing for all repetitions of ZMs of
a given order for a 1024 x 1024 image. As the number of CUDA
threads is multiplied with the overhead of re-layout only once,
significant speed-up performances (speed-up of 5.48 minimum to
13.74 maximum) are reported in the columns for a single GPU as
shown in Table 8.

Furthermore, we only need a simple partitioning mechanism to
allocate the data flow into multi-GPUs in terms of the re-layout
scheme. This is because the same index of arrays are naturally
symmetric points in the re-layout arrays. We reordered the image
into the two parts using 2 GPUs as shown in Fig. 11. Thus, the
image data are allocated in 2 GPUs and the number of CUDA
threads reduces to half threads. The execution time obtained by the
partition mechanism is in the columns for two GPUs as shown in
Table 8. The speed-up of the proposed approach against Martin’s
baseline implementation further increases to a 9.54 minimum to
24.66 maximum. The results have demonstrated that the simple
partitioning mechanism avoids introducing conditionals or depen-
dencies, which are harmful for GPU performance. Therefore, our
proposed approach easily supports the expansion of ZM computa-
tions on multi-GPUs merely by simple data partitioning.

5.3. Computation of ZMs on K40

In this part, we carry out ZM computations by varying the
image size from 64 x 64 to 1024 x 1024 on K40, which has 2880
streaming processors. Tables 9 and 10 list the execution time for a
set of single moments and moments of all repetitions of ZMs of a
given order as the image size increases, respectively.

In order to visually and briefly compare two GPUs from different
generations, we plot the execution time of the ZMs, in which the
order nis from 4 to 32 on a 1024 x 1024 image as shown in Fig. 12.

112 Y. Xuan et al. /. Parallel Distrib. Comput. 111 (2018) 104-114

Table 9
Execution time (in us) for a single ZM, Z, ,, for different image sizes on K40.

Single ZMs Baseline on K40 Proposed on K40(Baseline vs. Proposed)
64 128 256 512 1024 64 128 256 512 1024
Zoo 70 78 109 241 448 69(1.01x) 80(1.02x) 86(1.26x) 115(2.1x) 228(2.0x)
Zs.2 80 90 133 305 667 77(1.03x) 85(1.05x) 92(1.44x) 124(2.5%) 255(2.6x)
Z120 93 103 176 447 1090 89(1.04x) 93(1.10x) 99(1.77x) 137(3.3x) 293(3.7x)
Zos 13 98 115 203 533 1505 93(1.05x) 97(1.18x) 104(1.95%) 143(3.7x) 302(5.0x)
Table 10
Execution time (in ms) for computing ZMs of all repetitions of a given order for different image sizes on K40.
Set of ZMs for a given order Baseline on K40 Proposed on K40(Baseline vs. Proposed)
64 128 256 512 1024 64 128 256 512 1024
Z4.,(3repetitions) 021 0.22 0.28 0.59 1.45 0.19(1.1x) 0.20(1.1x) 0.21(1.3x) 0.26(2.3x) 0.42(3.5%)
Zs.(5repetitions) 0.35 0.42 051 1.18 3.16 0.32(1.1x) 0.35(1.2x) 0.35(1.2x) 0.43(2.7x) 0.68(4.6x)
Z15..(7 repetitions) 0.53 0.56 0.84 1.85 5.65 0.49(1.1x) 0.50(1.1x) 0.51(1.6x) 0.62(3.0x) 1.00(5.7 %)
Z16.(9 repetitions) 0.71 0.78 1.23 2.87 9.10 0.66(1.1x) 0.67(1.2x) 0.67(1.8x) 0.80(3.6x) 1.36(6.6x)
Z50.+(11 repetitions) 0.96 1.03 1.71 4.20 13.66 0.83(1.2x) 0.84(1.2x) 0.85(2.0x) 1.03(4.0x) 1.79(7.6x)
Zo4.+(13 repetitions) 1.31 1.30 228 5.84 19.41 1.02(1.2x) 1.03(1.3x) 1.03(2.2x) 1.26(4.6x) 2.27(8.5x%)
Z5s..(15 repetitions) 1.56 1.63 2.99 7.85 26.52 1.29(1.2x) 1.23(1.3x) 121(2.5x) 1.52(5.2x) 2.80(9.4x)
Z37.(17 repetitions) 2.21 2.21 3.79 10.30 35.20 1.40(1.5x) 1.42(1.5x) 1.42(2.7x) 1.79(5.8x) 3.41(10.3x%)
Z34.,(18 repetitions) 1.93 2.55 457 11.69 4020 1.52(1.3x) 1.50(1.7x) 1.53(3.0x) 1.94(6.0x) 3.76(10.7x)
200
hy | (0)[m(0)|4(2)) hy|(0) 1) A2 (3]
@
28 29 30 31 21 22 23 14 g —— 9800 baseline /°
hy hz(l)h:(2) hy hq_(l)hz(z n = 150} —+— 9800 prop‘osed]
8 20 12 4 7 ge —e— K40 baseline
= —+— K40 proposed /
hs| 0 (1) |2(2)l@ hs| 0 |20)m@) Es -
ZEBIOB RS 1810 2 09 52]
3=
D 1f0) (1) 2 8 D O, (1@ @) GPU2 88 //
GPUL 27 26 25 24 18 17 16 09 we sof o 1
s o
hs |1y (0)|As(1) s (2) @ hs [5(0)] 2y (1)} (3)1(3) 5 /
35 34 33 42 41 40 49 o
0 s e g —t
hﬁ h(,(l) 6(2 ;,6(3) hg h((l) k(2 4 8 12 16 20 24 28 32
Order

w
(@3]
W~
w
()]
—
O
Ne
1SS
Do
()]
{a=)
()]
(00]
N
Ne

=5
5
ol
[op
N
HN=
F‘
)
e
= ey
=
I
&]
U
=
Ga=
=
=S

5 53 6
hig |11, (0) iy (1)), (2) s 3) hg [(0) 1 (1) (2) 1, 3).
36 37 38 39 45 46 47 54

Fig. 11. An 8x8 image data partition on 2 GPUs of Geforce 9800GX2.

It is clear that the advanced K40 hardware leads to a reduction
of the overall elapsed times against Geforce 9800GX2. There is
a significant acceleration even for the baseline implementation
on K40. We notice that the proposed approach almost does not
offer an obvious improvement on K40 when the order n is low.
The reason is the basic cost, which includes the data reading and
reordering overhead. The ratio of the basic cost to the overall
runtime greatly increases when the order n is low.

In the end, we implement Kintner’s [17] and Chong’s [2] meth-
ods, which are widely used in accelerating ZMs. Their algorithms
eliminate the factorial operation by recurrence relations. In order
to visually analyze the performance of all the methods on different
image sizes on K40, we draw a bar graph [see Fig. 13], which con-
tains the total running time for computing ZMs for all repetitions
within order 34. Our proposed approach is significantly better than
Kintner's and Chong’s when the size of input image is 512 and
1024. Simultaneously, we also observe that all the methods only
offer slight improvements against the baseline when the size of the

Fig. 12. Execution time of ZMs for a 1024 x 1024 image on two GPUs from different
generations from order 4 to 32.

500 r z ! ! !
Il baseline

400f----...| EEMbaseline | G WG]
[kintner
[lq-recursive

300 F--eee- Il proposed

200

Total execution time(ms)

100

64*64

128*128 256*256 512*5121024*1024
Image size

Fig. 13. Total running time for computing ZMs of all repetitions within order 34 on
different image sizes on K40.

input image is less than 512. The reason can be explained by the
occupancy, which is the ratio of the number of active threads per
multiprocessor to the maximum number of possible active threads.
Alow occupancy always interferes with the ability to hide memory
latency, resulting in performance degradation [4].

There are 45 multiprocessors in K40, and each multiprocessor
at most performs concurrently 2048 threads, corresponding to

Y. Xuan et al. / J. Parallel Distrib. Comput. 111 (2018) 104-114 113

Table 11
Number of threads and occupancy on K40 using our proposed approach for different
images.
Image size Total threads Active threads per multiprocessor ~ Occupancy
64 x 64 4 x 128 128 6.25%
128 x 128 16 x 128 128 6.25%
256 x 256 64 x 128 256 12.5%
512 x 512 256 x 128 768 37.5%
1024 x 1024 1024 x 128 2048 100%

occupancy of 100%. Typically, once an occupancy of 50% has been
reached, additional increases in occupancy do not translate into
improved performance [4]. Therefore, each multiprocessor must
at least perform concurrently 1024 threads if we need to reach
an occupancy larger than of 50%. In our proposed approach, 128
threads per block is used. Hence the number of active threads per
multiprocessor should be a multiple of 128 threads. The occupancy
of the proposed approach on K40 is shown in Table 11. It can
be observed that occupancy is low when the image size is less
than 512. The total number of blocks in a grid is less than the
numbers of multiprocessors, particularly when the images sizes
are 64 or 128; thus, some multiprocessors do not even get a block
resulting in waiting and idle time. In summary, low occupancy
with smaller images becomes the bottleneck of acceleration. On
the other hand, the occupancy of a 512 x 512 image has been
significantly increased and tend to be 50%, while as speed-up of
4.7 x is reached against the baseline. An occupancy of 100% with
a 1024 x 1024 image means that the GPU is kept busy and the
speed-up of 9.1x is obtained.

6. Conclusion

In this study, our work focused on the acceleration of GPU
execution time for computing ZMs. Its major contributions are
(1) efficiently exploiting the symmetry of the ZMs by data re-
layout, which involves reordering of image pixels and addressing
the diagonal pixels in advance and (2) leveraging the constant
memory to store the pre-computed factorial values.

The implemented re-layout maximized the GPU performance:
it coalesced the access to the global memory and avoided huge
thread divergence that extracts symmetric points. The reordering
sequence is the key to image data reordering. Although it is non-
coalesced fashion and requires additional overhead, the overall
obtained speed-up is sufficiently good. In particular, in practice,
one set of ZMs are necessary to descriptimage features. In that case,
the speed-up is multiplied, as a result of which, the execution time
reduces significantly because the re-layout is executed only once.

Our programs run on Geforce 9800GX2. The experimental re-
sults demonstrated that the scheme of data re-layout efficiently
exploited the symmetry of the ZMs. Then, we fully compared our
experiments with the GPU implementation of Martin. The results
indicated that our proposed method is significantly superior to
that of Martin. Hence, our approach is applicable even to low per-
formance computing hardware like Geforce 9800GX2. Moreover,
NVIDIA embedded platforms such as Jetson TK1 have lower cost
and power consumption advantages compared with other desktop
GPU cards. High performance computing application of ZMs in
embedded platforms can also be used for our approach [29,42].

Simultaneously, we carry out the implementation of our pro-
posed approach, baseline, Kintner’s, and g-recursive on K40, which
is a high performance computing hardware. Our proposed method
achieved a higher performance than the above mentioned methods
when the input image size is larger than 256.

We analyzed the bottleneck in the implementation for small
images and found that low occupancy leads to the small improve-
ment. Future work is to research an approach that can recovers
some of the lost performance and wasted resources in small-size

images. That is, concurrent execution of GPU kernels should be
exploited to keep all GPU resources busy. A packing-image strategy
might be extremely useful for increasing occupancy. A similar ap-
proach is mentioned in the new generation NVIDIA GPUs by Hyper-
Q technology, which allows 32 independent, hardware-managed
work queues [20].

Regarding the methodology applied, there are two remarkable
contributions. One is that it is of paramount importance to reorder
the image as one-dimensional array if the image processing area
is fan-shaped or other irregular shapes. The advantage of this
image re-layout is that it effectively eliminates the conditional
statements required when special pixels are extracted. Image re-
ordering also achieves memory coalescing in the subsequent cal-
culations.

Another comment is that computational time can be saved by
exploiting the GPU memory space. The data that can be calculated
in advance are stored in the GPU memory, which can later be
extracted by searching in the form of lookup tables. This largely
increases the computational efficiency. The constant memory stor-
ing strategy is particularly efficient in minimizing the repeated
execution of many highly frequent computations, saving huge
amounts of computational time. In short, it is a strategy that trades
memory space for computation time.

Acknowledgments

This work is supported by the National Natural Science Foun-
dation of China with Grant Numbers of 61405194, 11604327 and
21571080.

The project was supported by the State Key Laboratory of Ap-
plied Optics, Changchun Institute of Optics, Fine Mechanics and
Physics, Chinese Academy of Sciences.

References

[1] A. Bouziane, Y. Chahir, Unified framework for human behaviour recogni-
tion: An approach using 3D Zernike moments, Neurocomputing 100 (2013)
107-116.

[2] C. Chong, P. Raveendran, R. Mukundan, A comparative analysis of algo-
rithms for fast computation of Zernike moments, Pattern Recognit. 36 (2003)
731-742.

[3] Chun-WeiTan, Accurate iris recognition at a distance using stabilized iris
encoding and zernike moments phase features, IEEE Trans. Image Process. 23
(2014) 3962-3972.

[4] CUDA C Best Practices Guide, http://docs.nvidia.com/pdf/CUDA_C_Best_Practi
ces_Guide.pdf.

[5] Gili Dardikman, Video-rate processing in tomographic phase microscopy of
biological cells using CUDA, Opt. Express 24 (2016) 1839-11854.

[6] An-Wen Deng, Stable, fast computiation of high-order Zernike moments using
a recursive method, Pattern Recognit. 56 (2016) 16-25.

[7] S.M. Elshoura, D.B. Megherbi, Analysis of noise sensitivity of Tchebichef and
Zernike moments with application to image watermarking, J. Vis. Commun.
Image Represent 24 (2013) 567-578.

[8] Exploiting Byunghyun Jang, Exploiting memory access patterns to improve
memory performance in data-parallel architectures, IEEE Trans. Parallel Dis-
trib. Syst. 22 (2011) 105-118.

[9] Rob Farber, CUDA Application Design and Development, Morgan Kaufmann,
2011, pp. 111-131, 133-145.

[10] Sajad Farokhi, Near infrared face recognition by combining Zernike moments
and un-decimated discrete wavelet transform, Digit. Signal Process. 31 (2014)
13-27.

http://refhub.elsevier.com/S0743-7315(17)30220-4/sb1
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb1
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb1
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb1
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb1
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb2
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb2
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb2
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb2
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb2
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb3
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb3
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb3
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb3
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb3
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb5
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb5
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb5
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb6
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb6
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb6
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb7
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb7
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb7
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb7
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb7
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb8
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb8
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb8
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb8
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb8
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb9
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb9
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb9
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb10
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb10
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb10
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb10
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb10

114

(1]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]
[27]

[28]

[29]

(30]

(31]
(32]
(33]

(34]

[35]

[36]

Y. Xuan et al. /. Parallel Distrib. Comput. 111 (2018) 104-114

J. Gu, H.Z. Shu, C. Toumoulin, L.M. Luo, A novel algorithm for fast computation
of Zernike moments, Pattern Recognit. 35 (12) (2002) 2905-2911.

S.K. Hwang, Mark Billinghurst, Local descriptor by Zernike Moments for real-
time keypint matching, Congr. Image Signal Process. (2008) 781-785.

S.K. Hwang, W.Y. Kim, A fast and efficient method for computing ART, IEEE
Trans. Image Process. 15 (2006) 112-116.

Hwang, W. Kim, A Novel approach to the fast computation of Zernike mo-
ments, Pattern Recognit. 39 (2006) 2065-2076.

H.S. Kim, H.K. Lee, Invariant image watermark using Zernike moments, IEEE
Trans. Circuits Syst. Video Technol. 13 (2003) 766-775.

W.Y. Kim, Y.S. Kim, A region-based shape descriptor using Zernike moments,
Signal Process., Image Commun. 16 (2000) 95-102.

E.C. Kintner, On the mathematical properties of the Zernike polynomials, Opt.
Acta 8 (23) (1976) 679-680.

Dayu Li, Lifa Hu, Wavefront processor for liquid crystal adaptive optics system
based on graphics processing unit, Opt. Commun. 316 (2014) 211-216.
S.Li,M.-C. Lee, P. Chi-Man, Complex Zernike moments features for shape based
image retrieval, IEEE Trans. Syst. Man Cybern. 39 (2009) 227-237.

Ryan S. Luley, Effective utilization of CUDA Hyper-Q for improved power and
performance efficiency, in: 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops, pp. 1160-1168.

Mark Harris, Optimizing Parallel Reduction in CUDA http://developer.downlo
ad.nvidia.com/assets/cuda/files/reduction.pdf.

Martin-Requena, P. Moscato, M. Ujaldén, Efficient data partitioning for the
GPU computation of moment functions, J. Parallel Distrib. Comput. 74 (2014)
1994-2004.

Jarno Mielikainen, GPU compute unified device architecture (CUDA)-based
parallelization of the RRTMG shortwave rapid radiative transfer model, IEEE
]. Sel. Top. Appl. Earth Obs. Remote Sens. (2016) 921-931.

R. Mukundan, K.R. Ramakrishnan, Fast computation of Legendre and Zernike
moments, Pattern Recognit. 28 (9) (1995) 1433-1442.

M. Novotni, R. Klein, Shape retrieval using 3D Zernike descriptors, Computer
Aided Des. 36 (2004) 1047-1062.

NVidia, CUDA C Programming Guide, http://docs.nvidia.com/cuda/index.html.
G.A. Papakostas, Y.S. Boutalis, D.A. Karras, B.G. Mertzios, A new class of Zernike
moments for computer vision applications, Inform. Sci. 177 (2007) 2802-2819.
A. Prata, W.V.T. Rusch, Algorithm for computation of Zernike polynomials
expansion coe3cients, Appl. Opt. 28 (1989) 749-754.

Xuan Qi, Chen Liu, Stephanie Schuckers, Key-frame analysis for face related
video on GPU-accelerated embedded platform, in: International Conference on
Computational Science and Computational Intelligence, 2016, pp. 682-687.
Paul Rosen, A visual approach to investigating shared and global memory be-
havior of CUDA kernels, in: Eurographics Conference on Visualization, EuroVis
2013, vol. 32, pp. 161-170.

C. Singh, Improved quality of reconstructed images using floating point arith-
metic for moment calculation, Pattern Recognit. 39 (2006) 2047-2064.

C. Singh, Pooja, Improving image retrieval using combined features of Hough
transform and Zernike moments, Opt. Lasers Eng. 49 (2011) 384-1396.
Chandan Singh, Fast and accurate method for high order Zernike moments
computation, Appl. Math. Comput. 218 (2012) 7759-7773.

Chandan Singh, Neerja Mittal, Ekta Walia, Face recognition using zernike and
complex zernike moment features, Pattern Recognit. Image Anal. 21 (2011)
71-81.

C. Singh, E. Walia, Rotation invariant complex Zernike moments features and
their applications to human face and character recognition, IET Comput. Vis.
5(5)(2011) 255-266.

M.R. Teague, Image analysis via the general theory of moments, J. Opt. Soc.
Amer. 70 (8) (1980) 920-930.

(37]
(38]

(39]

[40]

(41]

[42]

(43]

Thrust_Quick_Start_Guide, http://docs.nvidia.com/cuda/pdf/Thrust_Quick_St
art_Guide.pdf.

Toharia, Shot boundary detection using Zernike moments in multi-GPU multi-
CPU architectures,]. Parallel Distrib. Comput. 72 (2012) 1127-1133.

Ujaldon, GPU acceleration of Zernike moments for large-scale images, in: 23rd
IEEE International Parallel and Distributed Processing Symposium, [EEE Com-
puter Society, 2009, pp. 23-29.

A. Wiliem, V.K. Madasu, W. Boles, P. Yarlagadda, A face recognition approach
using Zernike moments for video surveillance, in: Proc. RNSA Security Tech.
Conf. Melbourne, Australia, 28 September 2007, pp. 341-355.

Yongging Xin, Image reconstruction with polar Zernike moments, in: S. Singh,
et al. (Eds.), ICAPR 2005, in: LNCS, vol. 3687, 2005, pp. 394-403.

Kuan-Yu Yeh, Constructing a GPU cluster platform based on multiple NVIDIA
Jetson TKI, in: IEEE International Conference on Bioinformatics and
Biomedicine, 2016, pp. 917-922.

F. Zernike, Beugungstheorie des schneidenverfahrens und seiner verbesserten
form, der phasenkontrastmethode, Physica 1 (1934) 689-704.

Yubo Xuan is a lecturer at College of Communication En-
gineering, Jilin University, China, since 2007. She received
her B.S. degree from Northeast Normal University and the
M.S. degree from Jilin University (China) in 2002 and 2005
respectively. Her current research interests are parallel
computer system and image processing.

Dayu Li is an Associate Professor at State Key Laboratory
of Applied Optics, Changchun Institute of Optics, Fine Me-
chanics and Physics, Chinese Academy of Sciences, China,
since 2010. He received his B.S. degree from Jilin Univer-
sity and the Ph.D. degree from Chinese Academy of Sci-
ences in 2002 and 2007 respectively (China). His current
research interests are GPU high performance computing
and wavefront processor of adaptive optics system.

Wei Han is a Professor at College of Physics, Jilin Univer-
sity, China, since 2001. He received his B.S degree from
Jilin University in 1989 (China) and the Ph.D. degree from
Tomsk Polytechnic University in 1997(Russia). His current
research field includes: application of nanomaterial in
green energy technologies, electronics, control and paral-
lel computer system. He has published about 100 papers
in international referred journals, including Advanced En-
ergy Materials, ACS Nano and Nanoscale.

http://refhub.elsevier.com/S0743-7315(17)30220-4/sb11
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb11
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb11
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb12
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb12
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb12
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb13
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb13
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb13
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb14
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb14
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb14
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb15
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb15
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb15
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb16
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb16
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb16
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb17
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb17
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb17
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb18
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb18
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb18
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb19
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb19
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb19
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb22
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb22
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb22
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb22
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb22
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb23
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb23
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb23
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb23
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb23
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb24
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb24
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb24
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb25
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb25
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb25
http://docs.nvidia.com/cuda/index.html
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb27
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb27
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb27
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb28
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb28
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb28
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb31
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb31
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb31
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb32
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb32
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb32
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb33
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb33
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb33
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb34
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb34
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb34
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb34
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb34
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb35
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb35
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb35
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb35
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb35
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb36
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb36
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb36
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb38
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb38
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb38
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb39
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb39
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb39
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb39
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb39
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb41
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb41
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb41
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb43
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb43
http://refhub.elsevier.com/S0743-7315(17)30220-4/sb43

	Efficient optimization approach for fast GPU computation of Zernike moments
	Introduction
	ZMs and their properties
	Computing ZMs by baseline method on GPU
	GPU architecture overview
	Baseline implementation on GPU

	Implementation of the proposed approach on GPU
	Symmetric algorithm for computation of ZMs
	Optimization strategy
	Symmetric algorithm is ported to GPU efficiently by re-layout
	Optimization of Zernike radial polynomials

	Implementation of the optimization strategy

	Experimental results and discussion
	Reordering cost
	Computation of ZMs on GetForce9800 GX2
	Computation of ZMs on K40

	Conclusion
	Acknowledgments
	References

