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Abstract: Background subtraction based on change detection is the first step in many video surveillance systems, an effective
background subtraction algorithm should distinguish foreground from the background sensitively, and adapt to the variation of
background scenes robustly. In this study, the authors propose a robust background subtraction algorithm which takes
advantages of local texture features represented by an extended scale invariant local binary pattern and colour intensities to
characterise pixel representations. Local texture features achieve good tolerance against illumination variations in rich texture
regions but not so efficiently on uniform regions, so a photometric invariant colour measurement is proposed to overcome its
limitation. Both quantitative and qualitative evaluations carried out on a well-known change detection dataset are provided to

demonstrate the effectiveness of the proposed algorithm.

1 Introduction

Many high-level computer vision applications such as object
tracking, video surveillance and activity recognition rely on a
pixel-level segmentation of scenes into foreground and
background. This task is often referred to as background
subtraction and its performance has a huge effect on the
performance of these applications.

Generally speaking, a complete background subtraction process
has four components: (i) model initialisation, which regards the
initialisation process; (i) model representation, which describes
what kind of model to be used to represent the background model;
(iii) model update, which concerns the update mechanism used for
adapting the model to the changes of the scene over time; (iv)
foreground detection, which consists of comparing the current
frame with the background frame to label pixels as foreground or
background. The background subtraction process needs to deal
with many challenging situations such as illumination variations,
dynamic backgrounds, camera jitter, bad weather, noise and
shadows. Over the recent past, a multitude of algorithms for
background subtraction have been developed, mentioning all of
them would go beyond the scope of this article, excellent survey
papers can be found in [1, 2]. Most of background subtraction
algorithms mainly manifest in two aspects, the first one is to take
more advanced probabilistic models to represent the background
[3-7], the other one is to employ a more powerful feature
descriptor [8-10] or combine different features together [11-14].
As we know, colour features are the most widely used features in
background subtraction, but they present several limitations when
shadows, camouflage and illumination variations occurrence,
texture features have been developed to deal with these situations.

In this paper, we propose a single model, single update scheme,
spatio-temporal-based background subtraction algorithm. The key
aspects of our method are as follows:

i. We propose a new texture feature called extended scale
invariant local binary pattern (ESILBP) which derive from
scale invariant local ternary patterns [15] (SILTP), comparing
with traditional texture features [like local binary pattern
(LBP) [8], SILTP [15], local binary similarity patterns (LBSP)
[91], the texture representation of ESILBP is more powerful.
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ii. A photometric invariant colour measurements is proposed to
overcome illumination variations.

iii. A combination of ESILBP and colour features are embedded
into the background subtraction framework, both the colour
features and ESILBP features have their own merits and
demerits, they can compensate each other for better
performance.

iv. A model update mechanism derived from the ViBe [16]
algorithm is used for adapting the model to the changes of the
scene over time.

The recently published Change Detection dataset [17, 18]
provides realistic large-scale videos with accurate hand-labelled
ground-truth, giving a balanced coverage of the range of challenges
present in the real world. Extensive experiments evaluated on the
dataset demonstrate that our method compared favourably to the
recent state-of-the-art background subtraction methods.

The rest of this paper is organised as follows. Section 2 gives an
overview of the related background subtraction algorithms. Section
3 introduces the proposed texture feature (ESILBP) and
photometric invariant colour measurements. Section 4 describes
the framework for background subtraction. Experimental results on
the Change Detection dataset [17, 18] are reported in Section 5.
Finally, conclusions are given in Section 6.

2 Related work

The simplest and earliest algorithms used for background
subtraction are based on such idea: when using stationary cameras,
the background can be modelled by the observed intensity of every
independent pixel, disparities between the current frame and
background reference frame are usually indicative of foreground
objects. However, due to the complex nature of read-world scenes,
finding a good background frame is usually impossible.

Over the recent past, improved adaptive algorithms which used
pixel-wise intensity to create background models have been made,
such as the ones based on probability density estimation (Gaussian
mixture models [4, 5]), they model dynamic background elements
at individual pixel locations using a mixture of Gaussian
probability density functions. A common problem of this kind of
method is to find the balance between the model stability and the
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speed of the model adapts to the changing background. Recently,
more flexible and adaptive variations of GMM [6, 7] were
proposed to improve the update speed and the model stability.

However, the Gaussian assumption for the pixel intensity
distribution is not always true in practical applications. To deal
with this limitation, a non-parametric approach based on kernel
density Estimation (KDE) was proposed in [3], which builds a
statistical representation of the scene background by estimating the
probability density function directly from the data without any
prior assumptions. The KDE method is able to establish the
probability density function of arbitrary shape to approximate the
distribution of the actual pixel intensity, but it requires more
storage spaces and most of them update their models in a first-in-
first-out (FIFO) strategy, thus are unable to model both short-term
and long-term periodic events.

The Codebook method [19] presented an alternative approach
to solve the above-mentioned problems. Each pixel is represented
by a codebook, each codebook consists of codewords which
contain colours transformed by the innovative colour distortion
metric. During the detection phase, if the current pixel is similar
with one of the codewords, it is classified as a background pixel;
otherwise, it will be considered as a foreground pixel. The
Codebook method is believed to be able to capture background
variations over a long period of time thus it can deal with periodic
variations, however, it ignores the spatial information around pixel,
it cannot capture complex spatio-temporal distributions of
background.

The algorithms presented in [20, 21] implement a background
subtraction based on neural network, each pixel is modelled with a
neuronal map of weight vectors. The closest weight vector with the
input pixel is updated over time. Such adaptive model can handle
scenes containing moving backgrounds, gradual illumination
variations and camouflage. However, they require a training period
depending on the present time of the foreground objects in the
sequences.

The first non-deterministic background subtraction algorithm
called ViBe was proposed in [16] and have shown to outperform
many existing algorithms. The ViBe is the first algorithm that uses
a stochastic maintenance strategy to integrate new information into
the model. If the incoming pixel is classified as background, it has
the probability to be inserted into the background sample model at
the corresponding location, while many other algorithms just
replaced the oldest samples with the new sample. The authors
showed that the stochastic strategy ensures the expected lifespan of
each sample decays exponentially, due to its simplicity and
effectiveness, we use a similar model update strategy in our
algorithm.

All the above-mentioned background subtraction algorithms are
based on colour features; in [8], Heikkila e al. developed a novel
and powerful approach based on texture features represented by
LBP to capture background statistics. Each pixel is modelled as a
group of LBP histograms calculated over the neighbourhoods.
Their method has shown excellent performance because of its
computational simplicity and tolerance against illumination
changes. However, these features are computed based on the
comparison of the centre pixel with the neighbouring pixels,
changes cannot be detected in sufficiently large uniform regions or
if the intensity of the centre pixel remains larger than neighbouring
pixel after a change in a scene. An improved version of LBP called
SILTP was proposed in [15], which is more effective in dealing
with illumination variations and shadows in scenes. Despite these
advancements, they perform poorly in flat areas and result in some
‘holes’ in objects. Recently, LBSP was proposed in [9, 22], based
on the absolute difference, demonstrated to surpass traditional
colour comparisons via Hamming distance thresholding.

Some authors also proposed to use multiple features to improve
the robustness of the background model; the idea is to add other
features to the colour feature. The most common way is to add
texture features to be more robust to the illumination variations and
shadows. In [14], Yao et al. proposed a multi-layer background
subtraction based on colour feature and LBP feature, producing
satisfactory results in a large variety of scenes. More recently, St-
Charles and Bilodeau [9] performed the background subtraction by
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integrating the colour feature and the LBSP feature, showing the
state-of-the-art performance.

3 Texture and colour features

In this section, we will introduce the proposed texture feature
called ESILBP and photometric invariant colour measurements.

3.1 Texture description with ESILBP

The original LBP was proved to be a powerful local feature
descriptor [8]. It labels the pixels in an image block by
thresholding the neighbourhood of each pixel with the centre pixel
and gets the results as a binary number. Let a pixel ¢ be in a certain
location, the coordinate of the pixel is (x.y.), there are N
neighbouring pixels spaced on a circle of radius R. The LBP
operator applied to c(x., y.) can be expressed as

N-1
LBPy r(c) = Y S(gi — 82 (1)
i=0

where g. is the grey value of centre pixel ¢, g; is the grey value of
its NV neighbouring pixels spaced on a circle of radius R and S is a
thresholding function which is defined as

1, ifx>0;

0, otherwise.

S(x) = [ @

The encoding is shown in Fig. 1 (first row). However, the LBP
operator is not robust to image noise; a little change of the central
pixel value will cause a great effect on the resulting code. To deal
with this problem, Tan and Triggs [23] proposed a local ternary
pattern (LTP) operator which is more robust by adding a small
offset value for comparison

1, ifx>T;
Sx)=1{-1, ifx<T; 3)
0, otherwise.

where T is the fixed threshold used to add robustness. An example
is shown in the second row of Fig. 1 with T = 5. However, adding
a small offset value for comparison is not invariant under scale
transform of intensity values by a multiplying constant. Suppose all
pixel values are multiplied by 2, the LTP descriptor cannot keep its
invariance against scale transform. To solve this problem, Liao et
al. [15] proposed a SILTP operator. Given the centre pixel
¢ = (X, Y,.), the SILTP operator can be expressed as

N-1
SILTPY r(c) = @ sl 1)) “4)
k=0

where I, is the grey value of the centre pixel ¢ = (x,, y,.), I; is the
grey value of its N neighbouring pixels spaced on a circle of radius
R, @ denotes concatenation operator of binary strings, 7 is a scale
factor affecting the tolerant range and s, is defined as

01, ifly>{+70)l,;
s(I.,I,) =110, if I, < (1 —1)l; 5)

00, otherwise.

A SILTP encoding example is shown in Fig. 1 (third row, with
scale factor 7 = (0.1). The most important properties of SILTP are
its tolerance against illumination variations and local image noise
within a range. However, we should also notice that the SILTP
operator presented in [15] only used half of its eight
neighbourhoods with four neighbouring pixels information, which
might result in loss of the texture information. In this paper, we
propose an ESILBP operator by taking more spatial information
into consideration, as illustrated in Fig. 2. This pattern is calculated
on a 5 X 5 neighbourhood region, we use the same computational
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Fig. 1 Examples of different LBP encoding. First row: LBP. Second row: LTP. Third row: SILTP

expression as (4) and (5), but we set the parameters N = 8 and
7=0.3. For example, in Fig. 2, we get the ESILBP operator:
1000000001100101, the length is 16 bits.

There are three advantages of the ESILBP texture feature. First,
it is computationally efficient, which only need one more
comparison than LBP for each neighbouring pixel. Second, it is
robust to local image noise and illumination variations by
introducing a scale factor. Finally, the ESILBP can represent more
texture information compared to LBP and SILTP, although the
computational complexity is increased compared with SILTP (8
bits) due to the increased operator length, we will demonstrate that
we can get better performance while meeting real-time
requirements.

3.2 Photometric invariant colour measurement

Although the texture features can work well in many scenes, the
colour features also play a very important role in some scenes with
less texture information. As illustrated in Fig. 3, we can see that
only relying on the ESILBP feature comparisons can sometimes
fail on the uniform and flat regions. This is because the wall as
background and clothes as foreground have the same texture
information, simply relying on texture feature is difficult to
distinguish. To handle these situations, we proposed to use ESILBP
features in addition to colour features to create our background
model.
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Since the RGB colour representation is sensitive to illumination
variations, many background subtraction methods exploit the
normalised RGB colour representation to deal with this problem,
however, they do not work well in the dark regions. In our
experiment, we observed how pixel values change over time under
illumination variations using a colour panel, we found that the
pixel values changes are mostly distributed in the axis going
towards the origin colour point (0,0,0) [14, 19]. Based on the
observation, we compare the colour difference using the relative
angle with respect to the origin colour point and the change range
of their brightness.

As depicted in Fig. 4, for an input pixel I'(p) and a background

model pixel I;~'(p), the colour distance is defined as

Dist(l;™ (p), I'(p)) = max (Da(li”'(p), I'(p)),

-1 3 (6)
DU\ (P 1'(p)))

where D,(I;”'(p), I'(p)) denotes the relative angle of I'(p) and

17 '(p), and Dg(I”'(p), I'(p))) is the range within which we allow
the colour changes to vary. The D, is defined as

DA(I/t;_l(p),It(p)) =1-= e—max(t)ﬁ—ﬂn) (7)
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Fig. 3 Dipical failure case when only ESILBP features are used for change
detection on CDNet dataset

(a) Background image, (b) 812nd frame image from the office sequence, (¢) Ground-
truth, (d) Foreground detection result based on ESILBP features

where 6 is the angle between two RGB vectors I}~ ' and I'. 6, is the
largest angle between the RGB vector of I' and the noise RGB
vector of I, and we empirically set it to 3". The Dy is defined as
0 if?s.k<lt<ih.k;

Dr(li " Iy =17
1, otherwise.

®)

where T,;= min (A", 1) (1 €[04,0.7]), and I,;= max
G 1Y e 1,1.2)). I, represents the potentially darkest

‘shadow’ value that the pixel can take, and IAh‘k represents the
brightest ‘highlight’ colour value that the pixel can take.

4 Background modelling

In this section, we employ ESILBP features and colour features to
the statistical model of background and give a detail description of
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Fig. 4 Photometric invariant colour model

the framework for background subtraction, including background
model representation, background model initialisation, foreground
detection and background model maintenance. Fig. 5 provides a
flowchart of the proposed background subtraction algorithm.

4.1 Background model representation

Most of the background subtraction algorithms rely on probability
density functions [4, 7] or statistical parameters [3, 24] of the
background generation process. In fact, the choice of a particular
probability density function inevitably introduces a bias towards
the real probability density function. The innovative mechanism
presented in ViBe [16] indicated that the observed pixel samples
would have a higher probability to appear again, it relies on the
collection and maintenance of background model samples using a
random approach.

In this paper, we adopt a sample consensus background
modelling approach similar to ViBe. The ViBe is a pixel-based
flexible and lightweight method; it has shown excellent
performance to handle dynamic backgrounds and gradual
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Fig. 5 Flow chart of the proposed background subtraction algorithm

illumination changes. However, the original ViBe only takes colour
feature into consideration, in our method, we try to integrate the
ESILBP features and colour features to characterise pixel
representations. That is to say, we use the colour-texture combined
features to replace the single colour features in the original ViBe
method. For each pixel p(x,y), its background model B(p) contains
a set of N recent background samples

B(p) = {¢.(p), (D), d(D), ... PN (D)} ©

where ¢;(p) = {I{p), ESILBP(p)} is the previously observed
background samples and each containing a colour feature /;(p) and
an ESILBP feature ESILBP;(p).

4.2 Background model initialisation

Many popular background subtraction algorithms described in the
literature such as [3, 19] need a sequence of frames to initialise
models. But one may wish to segment the foreground in short
initialisation sequence or even from the second frame on.
Furthermore, many applications require the ability to refresh or re-
initialise the background model in the presence of sudden lighting
changes. A more convenient solution is to initialise the background
model from a single frame.

Since no temporal information is contained in a single frame, it
seems to be no other choice than to take values from the spatial
neighbourhood. We make the assumption that the neighbouring
pixels share a similar temporal distribution. Suppose that we have a
pixel p(x,y) in the initialised image, then the background model
B(p) is initialised by random selecting the feature values from the
neighbourhood of p for N times

B(p) = {¢(p)Ip € V(p)} (10)

where //(p) is the neighbouring pixel of p and the probability of
choosing p follows a Gaussian distribution. In our experiments, a
7 x 7 neighbourhood region has proved to be a good choice.

For example, as shown in Fig. 5, suppose the current input
frame 7/ is the first frame, the background model is constructed as
follows: first, the colour feature map I, and ESILBP feature map
Igsy gp are extracted from current frame, then, for a pixel p(x,y) in
the model, randomly select a position p(x,y) in its 7X7
neighbourhood region, get the colour feature and ESILBP feature
of p(x,y) from I (X, ¥) and Igsy gp(X, V), take these values as the
colour feature and ESILBP feature of p(x, y), repeat the process N
times for all pixel, we get the final initialised background model.

The number of background samples per pixel model has
recommended to take the value of N =20 in [16]. In fact, N
controls the balance of sensitivity and precision of the model, using
more background samples lead to higher precise but lower
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sensitive, and vice-versa. Due to the larger representation space
induced by the texture feature ESILBP, we have to raise the value
of N to keep more background samples in the model. We determine
this value based on the 2014 CDnet dataset [18], as we can see in
Fig. 6, the overall F-measure score tends to get maximum when N
reaches the value of 80, we determined to set N = 50 in this paper,
although N = 80 is preferred for better precision, larger N value
increases memory and computational complexity, but with few
performance improvement.

4.3 Foreground detection

In foreground detection procedure, let us denote the input frame at
time ¢ as I', to classify a pixel p'(x, y) as foreground or background,
we will need to calculate the number of matches between the input
pixel p'(x,y) and its background model B(p). This procedure is
presented in the following equation:

M(p'(x, y)) = #{ildist(p'(x, y). ¢(p)) < T,i € [ILLNT} (1)

where M(p'(x,y)) is the number of matches, dist(p'(x,y), $,(p))
calculated the distance between p'(x, y) with its background model
samples. We should notice that the input pixel p‘(x,y) contains
colour feature I'(p) and ESILBP feature ESILBP(p), we need to
get the distances in two different ways.

First, to calculate the colour similarity, L1 or L2 distance are the
most commonly used metric due to their simplicity and efficiency
[16, 22], however, they perform poorly under illumination
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Fig. 7 Calculate the number of matches between the input pixel and its background model. To find a match, both the colour feature and ESILBP feature must
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Input : pixel p(z,y)
Output : the FG/BG label of p(z, y)

1:  colorDist =0, textureDist =0, nMatches=0,71=0
2:  while nMathes < #,;n && i < N

3: color Dist = Dist(I;(p), I'(p))

4. if color Dist > Ty

5: goto failedMatch;

6: for c = 1 : nChannels

7: textureDist += ESILBP!(p) ® ESILBP, .(p)
8: if textureDist > nChannels - Tyeq.

9: goto failedMatch;

10: nMatches++;

11: failedMatch:

12: i++;

13: if nMatches < #min

14: p(z,y) is foreground;

15: else

16: p(z,y) is background;

Fig. 8 Algorithm 1: foreground detection

variation or shadow scenes. In this paper, a photometric invariant
colour measurement was proposed in Section 3.2 to measure the
colour similarity, so we get the colour distance with (6), if the
result is less than the pre-defined threshold 7’4, a colour match was
found. Then, to calculate the similarity between ESILBPs, we
should make a measuring strategy that is different from colours as
ESILBPs are binary strings described texture feature. The
Hamming distance is adapted to compare the similarity, we can use
the XOR operator to get the distance effectively. For example,
there are two ESILBPs: 01101011 01010010 and 01101010
00010110, the distance is 3. If the distance is less than Tgeg, a
ESILBP match was found. To consider input pixel matches with a
background sample, both the colour feature and ESILBP feature
must be successfully matched. Fig. 7 displays the process of
finding a match. So (11) can be rewritten as follows:
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M(p'(x,y)) = #{ildist('(p), I(p)) < Tx  &&

dist(ESILBP(p), ESILBP,(p)) < Tueswri € [1, N1}
(12)

After we obtained the number of matches, the label of pixel
P'(x, ) is classified as follows:

1, itM@pP'(x,y)) < #.
Sp) = (e (13)
0, otherwise.

where S'(p) is the output segmentation map and 1 means
foreground and 0 means background. #,,;, is the minimum number
of matches required for a pixel. In this paper, we set #,;,, = 2 to get
a reasonable trade-off between computational complexity and noise
resistance as demonstrated in [16].

The pseudocode of foreground detection procedure is shown in
Algorithm 1 (see Fig. 8).

4.4 Background model maintenance

Many background model update strategies have been summarised
in [2], most of them use FIFO strategy to update their model, but
there is no evidence showing that this is optimal. ViBe proposed a
conservative, stochastic update strategy. In this paper, we update
the model with a similar strategy, it contains two steps: first, when
a pixel p(x, y) in the current frame I'(p) is classified as background,
it has a 1/¢ probability to replace a randomly picked background
sample in B(p), where ¢ is a time subsampling factor as described
in [16]. Then, p(x,y), one of the neighbours of p(x,y) in 3 X3
region also has the same probability (1/¢) to replace one of its
background samples by the features of p(x, y).

The pseudocode of background update is shown in Algorithm 2
(see Fig. 9).

The fact that background samples are replaced randomly
instead of replacing the oldest one guarantee that a solid history of
long-term and short-term background representation can be
remained in our model. This updating strategy cancels the time
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window concept and each result of background subtraction is
different, combining with a conservative updating strategy, new
samples can be incorporated into the background model only if
they are classified as background, thus preventing static foreground
objects from being absorbed into the background model too fast.

A problem caused by conservative updating strategy is ghosting
effect, which is commonly defined as falsely classified background
pixel regions due to the removal of scene objects, e.g. static objects
that suddenly start moving. A popular method to deal with this
situation is called ‘detection support map (M(p)) [25]” which saves
the number of times that a pixel has been consecutive classified as
foreground, if the value of p(x,y) in M(p) exceed a given
threshold, then p(x,y) is inserted into the background model,
however this method would add parameters and increase the
computational complexity.

In our method, the second update step named spatial diffusion
allows ghost regions to be automatically absorbed into the
background model as time goes by. As neighbouring background
pixels share similar spatial distribution, according to this updating
strategy, background models hidden by the removed object will be
updated with neighbouring pixel samples from time to time. It
allows a spatial diffusion of information regarding the background
evolution that relies on samples exclusively classified as
background.

Moreover, the ‘spatial diffusion’ step improves the tolerance of
the model to the limited camera motion and enhances the spatial
coherence. Besides, the ESILBP features prevent the spread of
samples across object boundaries. Even if a sample is wrongfully
diffusion from one background model to another, the odds that
might be matched are much lower due to the use of ESILBP
features.

5 Experimental results
5.1 Evaluation datasets

We evaluate our method on the CDnet dataset provided for the
Change Detection Challenge [17, 18]. The goal of the Change
Detection Challenge is to allow for performance evaluation of
recent and future background subtraction methods. The CDnet
2012 dataset consists of 31 videos from realistic scenarios with
nearly 90,000 frames. These videos are grouped into six categories
namely: baseline, camera jitter, dynamic background, intermittent
object motion, shadow and thermal. Accurate human annotated
ground-truth is available for all videos and is used for performance
evaluation, thus, an exhaustive competitive comparison is possible
on different methods. This dataset was also updated in year 2014,
adding 22 videos with nearly 70,000 frames in five new categories:
bad weather, low framerate, night videos, pan-tilt-zoom and
turbulence [18]. To our knowledge this is the most complete
dataset for background subtraction; a complete overview of the
dataset is depicted in Table 1.

5.2 Evaluation metrics

In order to compare the methods, a total of seven different metrics
have been defined to evaluate the performance of different
methods. Let TP stands for the true positives and holds the number
of pixels correctly labelled as foreground, TN stands for the true
negatives and holds the number of pixels correctly labelled as
background, FP stands for the false positives and holds the number
of pixels incorrectly labelled as foreground, FN stands for the false
negatives and holds the number of pixels incorrectly labelled as
background. According to [17], these metrics are defined as
follows:

« Recall (Re) = (TP/(TP + FN))

» Specificity (Sp) = (TN/(TN + FP))

« False positive rate (FPR) = (FP/(FP + TN))
 False negative rate (FNR) = (FN/(TP + FN))

* Percentage of wrong classifications
100 - ((FN + FP)/(TP + FN + FP + TN))

 Precision (Pr) = (TP/(TP + FP))

(PWC) =
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Input : the label of pixel p(z, y)

1:  if p(x,y) is background

2: if rand() % ¢ == 0

3: update B(p) with the features of p(z, y);
4: if rand() % ¢ == 0

5: update B(p) with the features of p(x,y);
6: else

7. do nothing;

Fig. 9 Algorithm 2: background update

Table 1 Overview of CDnet 2012 and 2014 dataset

Category Videos  Dataset Total number of pictures
baseline 4 2012 and 2014 6049
camerad 4 2012 and 2014 6420
dynamic 6 2012 and 2014 18,871
intermittent 6 2012 and 2014 18,650
shadow 6 2012 and 2014 16,949
thermal 5 2012 and 2014 21,100
badWeather 4 2014 20,900
lowFramerate 4 2014 9400
nightVideos 6 2014 16,609
PTZ 4 2014 8630
turbulence 4 2014 15,700
total 31+22 — 88,039 +71,239

e F-measure (FM)=2-((Re- Pr)/(Re + Pr))

The sum of all pixels in every category is used to calculate
these metrics and the overall category is computed based on the
mean of each category. For PWC, FNR and FPR metrics, lower
values indicate higher accuracy, while for Re, Sp, Pr and FM
metrics, higher values indicate better performance. During these
metrics, we are especially interested in the F-measure, which is
commonly accepted as a good indicator of the overall performance
of background subtraction methods. It was found to be closely
correlated with the method ranks used on the website [17], the
better background subtraction methods usually have higher F-
measure scores than the worse performing methods.

5.3 Parameters

Our method consists of few parameters; we can obtain optimal
performance by adjusting parameters in different scenarios.
However, we used a universal parameter set for all videos to
respect the Change Detection Challenge [17, 18] competition rules:

e T, =0.2: colour distance threshold used in (6) to determine if
an input pixel matches the background sample.

o Tgesc = 2: texture descriptor threshold used to determine if an
input pixel matches the background sample based on the
Hamming distance.

e N = 50: number of samples stored in the background model for
each pixel.

e #,, = 2: minimum number of samples that match background
model to label an pixel as background.

¢ 1=0.5,n = 1.2: parameters used in (8).

* ¢ =16: time sampling factor used to update the background
model.

* 7=0.3: scale factor used to calculate ESILBP features in (5).

In our proposed method, the segmentation decision is made
independently for each pixel, thus the segmentation results can
benefit from regularisation step, which is done using median
filtering. It combines information from neighbouring pixels and
assigns homogeneous labels on uniform regions. In this paper, we
use a uniform 7 X 7 median filter for all evaluated methods.
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Table 2 Complete results obtained with the proposed method on the CDnet 2012 and 2014 dataset

Category Recall Specificity FPR FNR PWC Precision F-measure
baseline 0.9223 0.9984 0.0016 0.0773 0.4583 0.9596 0.9403
cameraJ 0.7122 0.9925 0.0074 0.2878 1.9228 0.8465 0.7703
dynamic 0.8179 0.9856 0.0144 0.1821 1.5902 0.6201 0.6216
intermittent 0.6327 0.9668 0.0332 0.3673 5.9732 0.6868 0.6238
shadow 0.9110 0.9922 0.0077 0.0890 1.1018 0.8621 0.8220
thermal 0.7209 0.9958 0.0042 0.2791 1.6658 0.9007 0.7824
Overall (2012) 0.7862 0.9886 0.0114 0.2138 2.1187 0.8125 0.7701
badWeather 0.4562 0.9996 0.0004 0.5438 0.9199 0.9312 0.5934
lowFramerate 0.7200 0.9946 0.0054 0.2800 1.2978 0.6629 0.6561
nightVideos 0.6110 0.9801 0.0213 0.3669 2.941 0.4627 0.4821
PTZ 0.6420 0.8111 0.1889 0.3579 19.1242 0.0413 0.6698
turbulence 0.8161 0.9962 0.0038 0.1839 0.4812 0.6602 0.6699
Overall (2014) 0.7249 0.9734 0.0271 0.2752 3.3871 0.6930 0.6452
Table 3 Per-category F-measure comparisons between hybrid methods on the CDnet 2012 dataset

Method Baseline Camerad Dynamic Intermittent Shadow Thermal Overall
multi-layer [14] 0.9004 0.7311 0.6278 0.4816 0.8099 0.6331 0.6993
LOBSTER [9] 0.9320 0.7462 0.5664 0.5940 0.8696 0.7803 0.7481
ESILBP 0.9403 0.7703 0.6216 0.6238 0.8820 0.7824 0.7701

5.4 Performance evaluation

First, we present the detail performance evaluation results of our
method in Table 2. Using the evaluation framework of the CDnet
dataset [17, 18], seven metric scores are reported, including recall,
specificity, FPR, FNR, PWC, precision and F-measure. We can see
from Table 2 that our method performs well on the CDnet 2012
dataset with a overall F-measure of 0.7701. In the baseline
category, both the recall and precision metric scores exceed 0.9,
and the F-measure gets a 0.94 high score. As demonstrated in [26],
if a method with a F-measure above 0.94 and a PWC below 0.9,
then the segmentation results may be considered almost as good as
the ground-truth, since a simple dilation (or erosion) of one (or
two) pixel of the ground-truth may result in the F-measure drop
from 1.0 to about 0.94. This again shows the efficiency of our
method. We also see that the shadow category is well handled by
our method, this category mainly focuses with the challenges like
illumination and camouflage, benefit from the combination of
photometric invariant colour measurements and the texture feature
ESILBP, the recall metric score exceed 0.9 and the F-measure is
above 0.8. The same can be said for the thermal category, which
contains numerous camouflage problems. As for the camera jitter
category, although many sequences contain camera vibration, with
the sample consensus background modelling approach, the
precision is above 0.8, the recall and F-measure are all above 0.7.
However, we also notice that these categories like dynamic
background and intermittent pose a great challenge, with a F-
measure about 0.6. The dynamic background category contains
many complex background motion and changes in illumination, the
intermittent category mostly contains sequences with abandoned
objects and static objects suddenly start moving, it mainly focuses
on static object detection, both of these categories are very difficult
for most of the background subtraction methods. We can also see
from Table 2 that the overall F-measure score 0.6452 of our
method evaluated on the CDnet 2014 dataset is much lower than
the score 0.7701 obtained on the CDnet 2012 dataset, as stated
earlier, the 2014 dataset is much complex than 2012 dataset which
mainly deals with traditional challenges of background subtraction.
These new categories are much harder to deal with, including
videos captured under outside snowy conditions, low frame rate
videos with wavering global lighting conditions, urban traffic
surveillance videos captured at night with glare effect caused by
car headlights, videos obtained with pan-tilt-zoom cameras and
long distance thermal surveillance videos with air turbulence under
high temperature environments. The results show that only
lowFramerate, PTZ and turbulence seem to result in acceptable
performance with F-measure >0.65, both nigheVideos and
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badWeather, a more sophisticated, high-level background
subtraction method would result in better performance, this is our
future goal.

Second, we compare our algorithm with the following state-of-
the-art classical algorithms: GMM [4], multi-layer [14], KDE [3],
SOBS [20], ViBe [16] and LOBSTER [9]. Among them, GMM,
KDE, SOBS and ViBe are pixel-level methods, SILTP is the
region-level method. Multi-layer, LOBSTER and our method are
hybrid methods. We first give a detail per-category F-measure
comparisons between multi-layer, LOBSTER and our method on
the CDnet 2012 dataset, we choose CDnet 2012 instead of CDnet
2014, as we could not find the source code of multi-layer but we
found its evaluation results on CDnet 2012 dataset from [17]. Both
of these methods integrate the colour information and texture
information to build the background model, the multi-layer
combine the colour features and the LBP features to model the
background model, the LOBSTER maps the LBSP texture features
and colour features into the background subtraction framework.
The comparison results are shown in Table 3, we can see that our
method gets the highest F-measure score in five out of six
categories, and the overall F-measure score of our method achieves
a 10.1% improvement compared with the multi-layer and 2.94%
improvement compared with the LOBSTER. We also notice that in
the dynamic background category, the multi-layer performs a little
better than ours, this may be due to intrinsic noise sensitivity of
texture features, as the ESILBP considers more spatial texture
information and takes 16 bits to represent the texture feature
compared with 8 bits of LBP. Next, we present in Table 4 the
quantitative comparison results evaluated on the CDnet 2014
dataset, the results of other methods are from the website
www.changedetection.net, for a specific metric, if the method
obtains the best score on it, the corresponding value is highlighted
in bold. We can see that the SOBS gets the best recall and FNR
performance, LOBSTER gets the lowest FPR score (the lower, the
better), while our method performs best on the other three metrics,
the PWC, precision and F-measure, especially the F-measure is
much higher than all other methods.

Finally, we present some qualitative comparisons between these
methods under different challenging situations [27]. Fig. 10 shows
the comparison results between GMM, ViBe and our method on
the CDnet 2012 dataset. The first column is the input frame from
difference sequences, the second column is the corresponding
ground-truth, the third column is the segmentation results of our
method, the fourth column represents the segmentation results of
ViBe [16] and the last column shows the segmentation results of
GMM [4]. As we can see, in highway sequence, our method almost
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Table 4 Comparison of the results on the CDnet 2014 dataset by different methods

Method Recall Specificity FNR PWC Precision F-measure
SILTP [15] 0.5173 0.9581 0.0418 0.4827 5.5643 0.5021 0.4278
GMM Zivkovic [4] 0.6604 0.9725 0.0275 0.3396 3.9953 0.5973 0.5566
KDE Elgammal [3] 0.7375 0.9519 0.0481 0.2625 5.6262 0.5811 0.5688
viBe [16] 0.6147 0.9735 0.0265 0.3853 3.8616 0.6601 0.5755
SOBS [20] 0.7621 0.9547 0.0453 0.2379 5.1498 0.6091 0.5961
LOBSTER [9] 0.6836 0.9770 0.0230 0.3164 3.4310 0.6867 0.6230
ESILBP 0.7249 0.9734 0.0271 0.2752 3.3871 0.6930 0.6452
Input frame
Highway
No. 815
PETS2006
No. 986
Fountain01
No. 1125
Fall
No. 1907

Fig. 10 Qualitative performance comparison for various sequences of the CDnet 2012 dataset
(a) Ground-truth, (b) Segmentation results of our method, (¢) Segmentation results of ViBe, (d) Segmentation results of GMM

perfectly extracts the moving cars. In the shadowed PETS2006
sequence, one can notice that the GMM and ViBe approaches are
susceptible to shadows, whereas our method is visibly better. This
is attributed to the complete usage of photometric invariant colour
measurement and ESILBP features. In fountain01 sequence, where
water rippling and waving trees occurs, our approach mitigates
both of the challenges in a better way than others. In the case of
dynamic background fall sequence, a significant improvement in
the segmentation result can be observed for our method over
others, especially compared to GMM, where many noisy
background pixels are classified in clusters. We also compare the
segmentation results of GMM, LOBSTER and our method on the
CDnet 2014 dataset, which contains more challenging situations
compared with CDnet 2012 dataset; the results are shown in
Fig. 11. The first column is the input frame from difference
sequences, the second column is the corresponding ground-truth,
the third column is the segmentation results of our method, the
fourth column represents the segmentation results of LOBSTER
[9] and the last column shows the segmentation results of GMM
[4]. In foreground aperture challenge (the snowfall sequence),
which is to segment a moving object in a uniform coloured regions,
our method extracts the complete object than the other methods,
where many false negatives are detected. In FluidHighway
sequence, which is taken from urban traffic monitoring at night,
our method handles the glare effect from car headlights better than
others. In ContinusPan sequence from PTZ category, although the
camera is not static, the overall performance of our method is also
better than LOBSTER and GMM. In turbulence sequence, we
observe that our method captures less of background turbulence
and segments moving objects perfectly, this again demonstrates the
effectiveness of our method.
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5.5 Processing speed and memory usage

Background subtraction is often the first stage of many computer
vision applications, processing speed and memory requirements are
critical information for researches to be considered before choosing
which method to implement. To achieve real-time performance, the
background subtraction methods must be fast, light and efficient. In
this section, we give a detailed analysis of the time and space
complexity of our method. To do so, our method has been
implemented in C++ and use the OpenCV [28] image processing
library. All the experiments are carried out on a 4.0 Ghz Intel Core-
i7 6700K with 32 GB RAM and Ubuntu 14.04 operating system.
As the sequences do not have the same size, we reported the
number of FPS over different frame size in Table 5 and we can see
the results show the real-time performance. Since our method
operates at the pixel level, it has the potential to achieve much
higher FPS for hardware implementation or parallel
implementation.

Another key information is the memory usage of our method.
Consider a colour image / with the size of W X H, assuming that
the background model samples for each pixel are N, then the space
complexity of our method is O(NWH). Each background sample
requires three bytes of memory to store the colour information and
six bytes of memory to store the ESILBP information. For a colour
sequence with a frame size of 720x 576 (e.g.: PETS2006
sequence), if the number of background samples is set to 50, we
can calculate the memory requirements of our method would be
around 180 MB. For embedded platform, decrease the number of
background samples can dramatically reduce the memory usage.
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Input frame

Snowfall
No. 2835

FluidHighway
No. 828

ContinusPan
No. 916

Turbulence3
No. 947

Fig. 11 Qualitative performance comparison for various sequences of the CDnet 2014 dataset
(a) Ground-truth, (b) Segmentation results of our method, (¢) Segmentation results of LOBSTER, (d) Segmentation results of GMM

Table 5 ESILBP processing speed in terms of frame per
seconds (FPS)

Sequence Frame size FPS
highway 320 x 240 97
pedestrians 360 x 240 89
port_0_17fps 640 x 430 28
blizzard 720 x 480 25
PETS2006 720 % 576 19

6 Conclusion

In this paper, we present a hybrid background subtraction
algorithm which combines texture features and colour features.
First, a new texture feature called ESILBP is proposed to work
against illumination variations and shadows. Second, to overcome
the limits of texture features on uniform regions, a photometric
invariant colour measurement is proposed. The colour feature and
ESILBP feature can compensate each other to achieve better
performance. Experiments evaluated on the CDnet2012 and 2014
dataset show that our algorithm outperforms many recent state-of-
the-art background subtraction algorithms in the metric of F-
measure scores. In our future work, we will integrate our pixel
representations with more complex feedback model update
strategy. Also, region-level or object-level analyses could be used
to improve the foreground consistency, more sophisticated post-
processing operations like Markov random field could also help
refining our segmentation result.
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