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Abstract: Scene-based wavefront sensing currently uses the periodic-correlation algorithm 
based on fast Fourier transforms. However, when the object scene contains features at the 
field edges, the performance of the algorithm is poor due to the periodicity of fast Fourier 
transforms, called wraparound effect. In this paper, we propose an algorithm based on the 
gradient cross-correlation. Both simulation and experiment results show its dramatic 
effectiveness against the wraparound effect, and a considerable improvement is obtained in 
image resolution with closed loop adaptive optics correction. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction
Adaptive Optics (AO) is a technique that works successfully in many areas, including large 
aperture astronomical telescopes, optical microscopy and laser communications [1–4]. A key 
component of an AO system is the wavefront sensor. Due to the advantages of simple 
geometric setup, high processing speed and low cost, Shack-Hartmann Wavefront Sensor (S-
H WFS) becomes a popular wavefront sensing instrument in AO system [5, 6]. It consists of a 
lenslet array and a camera at the focal plane of the lenslet array. The lenslet array can splits 
the incoming distorted wavefront into many sub-wavefronts for each lenslet, and produces a 
subimage array of the sensing object on the camera. Normally, all of the sub-wavefront 
gradients over the corresponding lenslets are measured, and the whole wavefront is 
reconstructed from those measurements. When the object is a point source, a spot array is 
formed on the camera. The shift between the centroid position of each spot and a 
predetermined reference position, which is measured by centroid algorithm, decide the 
corresponding sub-wavefront gradient. When the object of interest is an extended scene (the 
extended scene discussed in this paper is within the isoplanatic area), the lenslets form small 
images of the observed scene and each of these sub-images will be shifted by a small amount 
just like a point source is. In this case, the centroid algorithm would be invalid, and the 
procedure of measuring the shifts must be substituted by cross-correlation analysis [7, 8]. 

There are many situations where extended source AO is desired, such as the observation 
of the sun during the day [8], imaging conducted along horizontal or slant paths through the 
atmosphere [9], and earth-observation satellites [10]. Poyneer found that the periodic-
correlation algorithm, which employs fast Fourier transforms (FFT), works well in these 
applications in terms of both performance with noise and computational simplicity [9]. In this 
approach, each sub-image is treated as a single period of an infinite periodic signal, and the 
shift between two sub-images is determined from the location of the cross-correlation peak of 
the two sub-images. 

Recently, many improvements have been made for periodic-correlation approach to 
increase its precision. Sidick et al. proposed an iterative approach, the adaptive periodic-
correlation (APC) algorithm [11], which can attain very low errors by using iterations. 
Townson proposed an algorithm based on parameters optimization using centroid algorithm 
for sub-pixel shift determination [12]. Despite all those improvements, the periodic-
correlation approach still has a serious problem: the wraparound effect. Because of the 
periodicity of the sub-images, as one end of the sub-image moves away, it wraps around from 
the other side. For images containing features at the edge, which are common whether in the 
horizontal observation or in the observation of the Earth from space, the non-common image 
content at the edges leads to very poor performance, even when the contrast of the images is 
high. 

In this paper, we proposed a gradient cross-correlation algorithm to solve the wraparound 
effect: calculate the gradient of the sub-images of WFS at first, and then compute the shifts 
with cross-correlation using gradient images. The gradient images not only provides the same 
shift information, but also can minimize or even eliminate the wraparound effect when we use 
them to compute cross-correlation with FFT. For some specific scenes, both digital simulation 
and data from real experiment showed that the use of gradient cross-correlation algorithm can 
effectively remove the wraparound effect. 
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2. Periodic-correlation algorithm

2.1 Description of the periodic-correlation algorithm 

Consider two sub-images formed by two distinct sub-apertures of WFS (They are both N × N 
pixels and N is a power-of-2). One is the reference sub-image, ( , )r x y , which will be used to 

compare with all the other sub-apertures. The other is the test sub-image, ( , )s x y . 

Assume ( ) ( )0 0, ,s x y r x x y y= − − , where the x0 and y0 are not necessarily integer

amounts. The shifts x0 and y0 can be obtained by finding the peak location of the cross-
correlation of the two sub-images. The cross-correlation of the two sub-images is: 

( ) ( )
1 1

*

0 0

, ( , ) ,
N N

i j

C x y r i x j y s i j
− −

= =

= − − (1)

where “*” denotes a complex conjugate. Since this algorithm requires large computation time, 
FFT is used to calculate the cross-correlation: 

( ) ( ) ( )1 *, , , .C x y F R u v S u v−  =   (2)

Where ( ),R u v  and ( ),S u v  are the Fourier transforms of ( , )r x y and ( , )s x y  respectively,

“*” denotes a complex conjugate and F−1 denotes the inverse FFT. According to the Fourier 
shift property 

( ) ( ) ( )0 0, , .j ux vyS u v R u v e− += (3)

Hence the cross-correlation is given by: 

( ) ( ) ( ){ }0 0
21, , .j ux vyC x y F R u v e− +−= (4)

Make ( ) ( ) 2
, ,W u v R u v= , and Eq. (4) can be simplified as: 

0 0( , ) ( , )C x y w x x y y= − − (5)

where ( ),w x y  is the inverse Fourier transforms of ( ),W u v . Assume that the integer location

of the maximum ( ),C x y  is at ( ),x yΔ Δ , then the sub-pixel estimation of the shift x0 is

obtained by parabolic interpolation: 

( ) ( )
( ) ( ) ( )0

0.5 1, 1,
.

1, 1, 2 ,

x y x y

x

x y x y x y

C C
x

C C C

 Δ − Δ − Δ + Δ = Δ +
Δ − Δ + Δ + Δ − Δ Δ

(6)

The estimate of 0y  is obtained in an analogous fashion. 

2.2 Wraparound effect 

Since the cross-correlation of two finite images is computed using FFT, the finite images 
have to be periodically extended with periods which divide N pixels. Calculating the 
correlation of the two sub-images via FFT is exactly a kind of filtering operation, and the 
reference sub-image is treated as a filter template. When the template sub-image moves 
relatively on the periodic extension test sub-image, the part of periodic test sub-image, 
containing periodic extension sections at the edges, is also used for correlation computation. 
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However, this causes serious errors for shifts estimations, especially when the sub-images 
have features at the edges. 

Consider a simplified model: the object scene is a rectangle with bottom linked to the 
edge of the field, as shown in Fig. 1(a). The rectangle is dark corresponding to intensity 0 and 
the background is white corresponding to intensity 1. Note that in this paper we are interested 
in certain kinds of scenes, whose contrast between features and the background is high, and 
the intensity of the background is relatively uniform. This simplified model is the common 
case, especially in daytime horizontal atmosphere adaptive optics, whose sources are 
mountains or buildings. It is selected to simply and clearly explain the wraparound effect and 
show the good performance of the gradient cross-correlation algorithm for this case. 

To illustrate the wraparound effect, we consider a specific scenario: there is only shift 
along y-axis between the test sub-image and the reference sub-image. As shown in Fig. 1(b) 
and 1(c), they are parts of the object scene image shown in Fig. 1(a). They are both N × N 
pixels and N is a power-of-2. The rectangle is longer in the test sub-image than reference sub-
image, which represents test sub-image shifts downward relatively to the reference sub-image 
in the object scene. According to periodic-correlation algorithm, the reference sub-image 
would move through the 3 × 3 periodic extension test sub-image to estimate the shift between 
two images, from the coincidence location with the center test sub-image of the extension 
image as origin. The dynamic range is [-N/2, N/2-1] pixel for x axis direction and [-N/2, N/2-
1] pixel for y axis direction. The cross-correlation between the reference sub-image and the
corresponding section of the periodic extension test sub-image is calculated once the
reference sub-image moves a pixel, where the correlation value is exactly the dot product
summation of the two images. The shift corresponding to the maximal cross-correlation value
is generally chosen as the estimation of the actual shift between two sub-images.

However, for object scenes contains feature at edges such as the Fig. 1(a), the shift 
corresponding to the maximal cross-correlation value cannot necessarily be chosen as the 
estimation of the actual shift anymore. As shown in Fig. 1(d), the black image is the 3 × 3 
periodic extension test sub-image. The red and green images indicate two different locations 
the reference sub-image shift to. The red one coincides with the central test sub-image, and 
the green one represents the coincidence of the rectangle tops between the central test sub-
image and the reference sub-image. On these two locations, the sections of the periodic 
extension test sub-image participating in cross-correlation calculation are shown in Fig. 1(e) 
and 1(f), corresponding to green reference sub-image location and red reference sub-image 
location respectively. It can be seen from Fig. 1(e) that the section contains a small piece of 
the upper extension test sub-image as the red reference sub-image moved away from the 
central test sub-image. Apparently, due to the small piece, the cross-correlation results of 
these two pairs of images are equal and equal to the maximal cross-correlation value, even 
though the shift amount, which the reference sub-image need for moving to the green section 
location, is corresponding to the actual shift between reference and test sub-image, not the red 
section. In this condition, the cross-correlation value can no longer correctly guide the shift 
estimation, and hence the periodic-correlation algorithm cannot apply. 
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Fig. 1. (a) The object scene image. (b) The reference sub-image. It is the part used for 
correlation calculation of the object scene image. (c) A test sub-image indicating y-axis shift 
relative to the reference sub-image which is the lower part of the object scene image. (d) The 
periodic extension test sub-image with the reference sub-image moving on it. The red and 
green sections indicate two different locations the reference sub-image moves to. (e) The 
section of the periodic extension test sub-image located at the green section for cross-
correlation calculation with the reference sub-image. (f) The section of the periodic extension 
test sub-image located at the red section for cross-correlation calculation with the reference 
sub-image. 

3. Gradient cross-correlation algorithm
Gradient information is originally used in image registration to estimate image motion 
[13,14]. The gradient of an image not only provides the same shift information as the original 
image, but also emphasizes the image features. The x-axis direction gradient images 

( ),G xs x y  and ( ),G xr x y  of the images ( ),s x y and ( ),r x y  are defined as Eqs. (7) and (8).

( ) ( ) ( ), 1, , .G xs x y s x y s x y= + − (7)

( ) ( ) ( ), 1, , .G xr x y r x y r x y= + − (8)

The gradient cross-correlation ( ),G xC x y is then calculated by replacing ( ),s x y and

( ),r x y  with ( ),G xs x y and ( ),G xr x y  in Eqs. (1) and (2), where ( ),G xR u v  and ( ),G xS u v  are 

the Fourier transforms of ( ),G xr x y  and ( ),G xs x y  respectively, “*” denotes a complex 

conjugate and F−1 denotes the inverse FFT. 

( ) ( ) ( )
1 1

*

0 0

, , ,
N N

G x G x G x
i j

C x y r i x j y s i j
− −

= =

= − − (9)

( ) ( ) ( )1 *, , , .G x G x G xC x y F R u v S u v−  =   (10)

Again, make ( ) ( ) 2
, ,G x G xW u v R u v= , and Eq. (10) can be simplified as: 

0 0( , ) ( , )G x G xC x y w x x y y= − − (11)

where ( ),G xw x y  is the inverse Fourier transforms of ( ),G xW u v . Similarly, as the gradient 

cross-correlation provides the same shift information, the sub-pixel shift is calculated by 
summing the integer-pixel location value of the maximum of the gradient cross-correlation 
and the sub-pixel interpolation location value around the maximum: 

( ) ( )
( ) ( ) ( )0

0.5 1, 1,
.

1, 1, 2 ,

G x x y G x x y

x

G x x y G x x y G x x y

C C
x

C C C

 Δ − Δ − Δ + Δ = Δ +
Δ − Δ + Δ + Δ − Δ Δ

 (12) 
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The estimate of 0y  is obtained in an analogous fashion. As above, x-axis gradient cross-

correlation algorithm is described. Y-axis and double-axis counterparts are obtained by 
substituting ( ),G xr x y  and ( ),G xs x y  in Eq. (9) for analogous gradient images respectively.

Y-axis gradient images are obtained in an analogous fashion as described in Eq. (7). The
double-axis gradient image is obtained by computing the single-axis gradient of a single-axis
gradient image.

According to the feature of the model object, we employ the y-axis gradient of the sub-
images in Figs. 1(b) and 1(c) to calculate the correlation as shown in Figs. 2(b) and 2(c) 
respectively. The red and green images in Fig. 2(d) have the same location as Fig. 1(d). Since 
the gradients of the sub-images concentrate the features within the fields, the section in Fig. 
2(e) of the periodic extension y-axis gradient test sub-image do not bring features of the upper 
test sub-image to correlation calculation. It can be seen that the correlation value between the 
y-axis gradient reference sub-image and the red section of the y-axis gradient periodic
extension test sub-image is zero, and the maximal cross-correlation value would be obtained
only when the y-axis gradient reference sub-image shift to the green section (where the peak
intensity pixels of two images coincide). Therefore, using gradients of sub-images to estimate
shifts can definitely obtain high-accuracy results, with only the shifts information of the
images delivered. So the wraparound effect is totally avoided.

Fig. 2. (a) The object scene image. (b) The y-axis gradient of the reference sub-image in Fig. 
1(b). The part of the object characterizing the motion is emphasized in the gradient image. (c) 
The y-axis gradient of the test sub-image in Fig. 1(c). (d) The periodic extension y-axis 
gradient of the test sub-image with the y-axis gradient of reference sub-image moving on it. 
The red and green sections indicate two different locations the y-axis gradient reference sub-
image moves to. (e) The section of the periodic extension y-axis gradient test sub-image 
located at the green section for cross-correlation calculation with the y-axis gradient reference 
sub-image. (f) The section of the periodic extension y-axis gradient test sub-image located at 
the red section for cross-correlation calculation with the y-axis gradient reference sub-image. 

4. Numerical simulation
4.1 Simulation of the shifts between two sub-images 

The performance of the gradient cross-correlation algorithm was evaluated using two images. 
These two images simulate two sub-images of two different sub-apertures of SH-WFS. As 
shown in Fig. 3, they were generated in the following way: the object scene image shown in 
Fig. 1(a) is used as the object. The reference sub-image is produced by convolving the object 
with an ideal spot image generated by Fourier optics. Assuming that there is only tip/tilt phase 
across each lenslet, the test sub-image is then produced by convolving a known distorted spot 
image, which is exactly the normalized point spread function of a tip/tilt wavefront. The y-
axis gradient sub-images and original sub-images are used for shifts estimation with periodic-
correlation algorithm respectively. It can be find easily in the lower-left corner of the Fig. 3 
that the top(the blue circle) of the gradient correlation function is exclusive and more 
noticeable than the one(the blue circle) of the original correlation function. 
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Fig. 3. Procedure of the simulation for two sub-apertures shift estimation 

The original and gradient correlation functions of the object scene shown in Fig. 4(a) are 
also calculated, in which the background of the object is fiber beam considering the 
background in practice is not always uniform. The Fig. 4(f) is obtained by employing 
thresholding processing for the y-axis gradient reference sub-image — the pixels with value 
less than 40% of the brightest light intensity are set as zero, to reduce the effect of the uneven 
background in correlation calculation. And it can be obviously found that the characteristics 
(the red circles) of the sub-images in Figs. 4(f) and 4(g) are more noticeable and therefore the 
top(the blue circle) of the gradient correlation function in Fig. 4(i) is also more exclusive by 
comparing with Fig. 4(e). 

Fig. 4. (a) The object scene image with fiber beam background. (b) An original reference sub-
image. (c) An original test sub-image. (d) The 2-D periodic correlation function image of (b) 
and (c). (e) The 3-D periodic correlation function image of (b) and (c). The blue circle stresses 
the top section of the function. (f) The y-axis gradient sub-image of (b) with thresholding 
operation. The red circle stresses the characteristic of the image. (g) The y-axis gradient sub-
image of (c). The red circle stresses the characteristic of the image. (h) The 2-D periodic 
correlation function image of (f) and (g). The red circle stresses the biggest correlation value. 
(i) The 3-D periodic correlation function image of (f) and (g). The blue circle stresses the top
of the function. 
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We processed sets of shifts data of the test sub-image by varying the (peak-to-valley) PV 
values of the tilt wavefront it convolved with, and excellent performance is obtained using the 
gradient cross-correlation algorithm. In Fig. 5, the estimate shifts and estimate errors 
(estimate shift minus theoretical shift) of two algorithms for object without and with fiber 
beam background are shown. As we can see, in both Figs. 5(a) and 5(b) the estimate shifts 
calculated by the gradient cross-correlation algorithm are very close to the theoretical lines, 
with their estimate errors fluctuating around 0 in Figs. 5(c) and 5(d), while the periodic-
correlation algorithm is almost invalid for shift estimation. For the object without 
background, the shifts estimated by periodic-correlation algorithm are all exactly close to 0 
whatever the theoretical shifts are, which confirms the prediction. However, due to the 
participation of the features of the background in the correlation function calculation, the 
estimate shift differences for the object with background between two algorithms is not as big 
as that for the object without background. 

Fig. 5. (a) Comparison of estimate shifts and (c) estimate errors corresponding to the periodic-
correlation algorithm and the gradient cross-correlation algorithm respectively for the object 
scene in Fig. 1(a). (b) Comparison of estimate shifts and (d) estimate errors corresponding to 
the periodic-correlation algorithm and the gradient cross-correlation algorithm respectively for 
the object scene with fiber beam background. 

4.2 Simulation of wavefront reconstruction of S-H WFS 

The performance of the gradient cross-correlation algorithm was also evaluated by wavefront 
reconstruction. The necessary S-H WFS extended scene was generated in the following way: 
a known Zernike wavefront, such as defocus, is used as the distorted wavefront at the pupil 
plane of the lenslet array for simplicity. Each lenslet then images the sub-wavefront in front 
of it as a distorted spot image. Then, a distorted spot image array, as shown in Fig. 6(a), is 
formed, and convolved with an object scene image as shown in Fig. 6(b). This produced an 
extended-scene image array similar to the one obtainable with extended-scene SH-WFS, as 
shown in Fig. 6(c). Each sub-aperture image occupies 28 × 28 pixels and has a field of view 
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(FOV) of 14.9 × 14.9″. The central 16 × 16 pixels are chosen for periodic correlation function 
calculation because in this paper we mainly consider the situation when the atmospheric 
turbulence is not very strong. 

Fig. 6. (a) The simulated distorted spot image array of a Shark-Hartmann sensor. (b) The 
object scene image with fiber beam background used to create an S-H WFS extended-scene 
image array. (c) The S-H WFS extended-scene image array created by convolving (a) with (b). 
The pink pentagram marks the reference sub-aperture. 

As shown in Fig. 7, the added distorted wavefront is a defocus wavefront and its PV value 
is 6λ (λ = 785nm) corresponding to the coefficient of the 4th Zernike mode is 3. Shifts of all 
the sub-apertures in Fig. 6(c) relative to the reference sub-aperture, which is marked by pink 
pentagram, are calculated using the periodic-correlation algorithm and the gradient cross-
correlation algorithm respectively, and Zernike modal wavefront reconstruction is used. We 
set threshold for the reference gradient sub-image to reduce the effect of the uneven 
background in shifts estimation: the pixels with values less than 40% the brightest light 
intensity are set as zero. As we can see, the reconstructed distorted wavefront and coefficients 
in Fig. 8(a), which employing the periodic-correlation algorithm, mainly contains not only the 
defocus but also an error mode (the fifth mode, astigmatism) due to the wraparound effect. 
Besides, those modes in both figures reconstructed with small coefficients derive from the 
reconstruction error. The coefficient error of the defocus and the error mode are 1.94 and 
−1.70 respectively. However, the reconstructed distorted wavefront and coefficients shown in
Fig. 8(b) employing the gradient cross-correlation algorithm mainly contain only the defocus.
The coefficient of this mode is 3.02, much closer to the added value. This shows the
effectiveness of the gradient cross-correlation algorithm for the elimination of the wraparound
effect.

Fig. 7. The added distorted wavefront and its Zernike coefficients. 
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Fig. 8. (a) The reconstructed distorted wavefront employing the periodic-correlation algorithm 
for shifts estimation and its Zernike coefficients. (b) The reconstructed distorted wavefront 
employing the gradient cross-correlation algorithm for shifts estimation and its Zernike 
coefficients. 

5. Experimental validation of the gradient cross-correlation algorithm
We perform a series of experiments in laboratory to verify the theoretical analysis, which can 
be divided into two parts: detection and correction. The optical layout of the experiment is 
shown in Fig. 9. A xenon lamp with fiber, used as the white light source, is zoomed and 
illuminates the object through a pair of lens. The object is a piece of glass with a piece of 
black rectangular paper on it, like the object scene shown in Fig. 1(a). Then the light is 
transmitted and falls on the liquid-crystal-on-silicon(LCOS) device, which acts as a phase 
modulator and wavefront corrector. The modulated light is reflected again by a mirror and 
split into two beams by using a beam splitter (BS), with one beam going to the WFS and the 
other captured by using an EM CCD camera. The two aperture stops S1 and S2 restrict the 
width of the beam and the field of each sub-image captured by the S-H WFS respectively. 
Due to polarization and diffraction of the LCOS, a 700nm-900nm filter F and a polarizer P 
are placed between L1 and L2. The Lens L3 is used as double pass with input at left part and 
output at right part, and these two parts are very close to the center of L3. The included angle 
of the two light beams was within 5°. 

Fig. 9. Optical layout for the object scene wavefront aberration detection and correction. 
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The sub-image array collected by the EM CCD of the S-H WFS is shown in Fig. 10. 
Similar to the simulation in section 4.2, each sub-aperture had 28 × 28 pixels and a FOV of 
14.9 × 14.9″. The central 16 × 16 pixels sub-image is used to compute correlation. We chose 
the 16 × 16 pixels sub-image of the sub-aperture located at center as the reference sub-image, 
and computed the correlation between it and all other sub-images with and without gradient 
operation. As we can see, due to the illumination of the xenon lamp with fiber, the bright 
background of the object scene is not uniform but its contrast is still high. We set threshold 
for the reference gradient sub-image to reduce the effect of the uneven background in shifts 
estimation, the pixels with values less than 40% the brightest light intensity are set as zero. 

Fig. 10. (a) The S-H WFS extended-scene sub-image array obtained in the experiment. (b) One 
sub-image of the SH extended-scene. The blue-colored box shows a 28x28 pixels sub-aperture, 
and the yellow-colored box a 16x16 pixels sub-aperture. The latter is the size we used for 
correlation calculation. 

5.1 Experiment of wavefront reconstruction 

In the wavefront reconstruction experiment, the LCOS generates a set of Zernike defocus 
wavefronts, and their PV values are 2λ, 4λ, 6λ and 8λ respectively. λ (785nm) is the central 
operating wavelength of the LCOS. The performance of the gradient cross-correlation 
algorithm was evaluated by comparing the reconstructed distorted wavefronts and the residual 
wavefronts with the periodic correlation algorithm. Same as the simulation, the added 
wavefront is defocus and the coefficient of the fourth mode is 3 as shown in Fig. 7, which 
represents that the defocus PV value is 6λ. In Fig. 11(a), the reconstructed wavefront 
employing periodic-correlation algorithm and the Zernike coefficients are shown. As we can 
see, the reconstructed wavefront mainly contains defocus and the fifth error mode 
(astigmatism), and employing gradient sub-images for shifts estimation could obviously 
reduce the coefficient of the error mode, which highly agrees with the simulation result. 
Besides, it also can be found that the coefficients of other modes become bigger than them in 
simulation. This is inevitable in experiment because of the poor quality of the edges of the 
light beams. 
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Fig. 11. (a) The reconstructed distorted wavefront employing the periodic-correlation 
algorithm for shifts estimation and its Zernike coefficients. (b) The reconstructed distorted 
wavefront employing the gradient cross-correlation algorithm for shifts estimation and its 
Zernike coefficients. 

The residual wavefronts could better illustrate how the gradient cross-correlation 
algorithm works. We can see in Fig. 12 and Fig. 13 that the residual errors employing the 
gradient cross-correlation algorithm are smaller than those employing the periodic-correlation 
algorithm. The residual errors were decreased by 28.1% averagely. This agrees with the 
theoretical analysis and simulation result that employing the gradient cross-correlation 
algorithm can reduce the wraparound effect errors. 

Fig. 12. The residual wavefronts for defocus reconstrcted of different PV value. (a) 2λ defocus 
reconstructed error employing the periodic-correlation algorithm and (e) employing the 
gradient cross-correlation algorithm. (b) 4λ defocus reconstructed error employing the 
periodic-correlation algorithm and (f) employing the gradient cross-correlation algorithm. (c) 
6λ defocus reconstructed error employing the periodic-correlation algorithm and (g) employing 
the gradient cross-correlation algorithm. (d) 8λ defocus reconstructed error employing the 
periodic-correlation algorithm and (h) employing the gradient cross-correlation algorithm. 
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Fig. 13. Comparison of residual errors corresponding to the periodic-correlation algorithm and 
the gradient cross-correlation algorithm respectively. 

5.2 Experiment of wavefront correction 

In the correction experiment, we put a phase plate between L4 and the BS as the aberration 
which needs to be corrected. The phase plate is a dioptric glass, and it introduced 1.65λ (PV 
value) defocus into the optical system. The performance of the gradient cross-correlation 
algorithm was evaluated by comparing the resolution of the images corrected with the 
periodic-correlation algorithm and the gradient cross-correlation algorithm. The images of 
object without aberration and with aberration but without correction are shown in Figs. 14(a) 
and 14(e) respectively. It can be seen that for same aberration, the two algorithms give 
different results as shown in Figs. 14(b) and 14(f). After correction according to the detected 
aberrations, the images Figs. 14(c) and 14(g) are all clearer than before while the image 
corrected using the gradient cross-correlation algorithm is clearer than the other. With almost 
same small RMS after correction as shown in Figs. 14(d) and 14(h), every fiber beam can be 
separated from the others distinctly in Fig. 14(g), while in Fig. 14(c) the specifics of the fiber 
beams and the outline of the object can be vaguely observed. This contradiction shows that 
the detected result of the periodic-correlation algorithm is inaccurate and emphasizes the 
effectiveness of the gradient cross-correlation algorithm against the wraparound effect 
further. 

Fig. 14. Images and wavefronts of the object. (a) Images of the object without aberration plate. 
(e) Images of the object with aberration plate before correction and the corresponding distorted
wavefront (b) detected by the periodic-correlation algorithm and (f) by the gradient cross-
correlation algorithm; (c) Images and (d) wavefronts of the object after correction with the
periodic-correlation algorithm; (g) Images and (h) wavefronts of the object after correction
with the gradient cross-correlation algorithm.
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The computational time of the two different algorithms were estimated in a personal 
computer, with Intel Core i3-4170 CPU (clock speed 3.70GHz) and Windows 7 operating 
system. The computation time of once wavefront reconstruction was 0.022s of periodic 
correlation algorithm and 0.124s of gradient cross-correlation algorithm using Matlab 
R2014a. The gradient correlation algorithm is more accurate but slower. However, due to 
scene-based wavefront sensor generally collects huge amount of data, hardware acceleration 
is usually needed for its data processing [15]. FPGA (Field Programmable Gate Array) 
technology is now an increasingly powerful technology, which can provide amazing 
processing ability by high speed and parallel processing. Therefore, the gradient correlation 
algorithm can be accelerated by employing it to a FPGA-based Shack-Hartmann wavefront 
sensor to satisfy the demand of real-time detection. 

6. Conclusion
In this paper, a shift estimation algorithm based on the gradient cross-correlation for S-H 
WFS was presented, well solving the wraparound effect existing in the periodic-correlation 
algorithm. Agreed well with the theoretical analysis, the gradient cross-correlation algorithm 
enabled the shift estimation with high precision, and eliminated the error reconstruction mode 
caused by the wraparound effect in simulation. Agreed well with the simulation results, the 
residual errors of the reconstructed wavefronts decreased by 28.1% averagely by employing 
the gradient cross-correlation algorithm in experiment. Close loop AO correction also showed 
considerable improvement in image resolution by employing the gradient cross-correlation 
algorithm. Due to its excellent performance against the wraparound effect, it can be a 
significant wavefront sensing algorithm broadening the range of application of scene-based 
AO system. 
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