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Abstract. Phase diversity (PD) technique is an effective method for wavefront sensing and image restoration in
adaptive optics (AO). Classical PD with Tikhonov regularization can achieve proper wavefront estimation but
constantly results in overly smooth images. Nonlocal centralized sparse representation (NCSR) based on non-
local self-similarity and the sparsity model is combined with PD to obtain high-resolution images. The proposed
method contains two steps: the first step is obtaining wavefront from ordinary PD with Tikhonov regularization,
and the second step is deblurring the image with NCSR other than Tikhonov regularization. Numerical simu-
lations show that the peak signal-to-noise ratios and structural similarity index metrics of deblurred images by the
proposed method are higher than those by the traditional method. This work also studies the influence of weak
noise. Initially, the proposed method is applied to a liquid crystal AO system, where the highest spatial reso-
lutions that can be clearly distinguished are 1.59× diffraction limitation with AO on, 1.41× diffraction limitation
with traditional PD, and 1.26× diffraction limitation with the proposed method. The proposed approach can be
widely used for AO postprocessing in ground-based telescopes, fluorescence microscopes, and other applica-
tions. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JATIS.4.4.049007]
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1 Introduction
Images received by ground-based telescopes are always
degraded by atmosphere turbulence, and such degradation is
more severe for images received by larger aperture telescopes.
Adaptive optics (AO) is an effective tool for reducing aberra-
tions and improving image resolution.1,2 However, some aber-
rations still blur the images even after AO. Phase diversity (PD)
technique, which was first proposed by Gonsalves and
Chidlaw,3 is a type of digital postprocessing method to improve
image quality. This technique uses a focused image and one or
more images with known diversity phase to simultaneously
reconstruct the wavefront and restore the image. PD can restore
the point source and extended objects and has a simple and easy-
to-achieve optical layout.4,5 At present, PD technique is no
longer used just for AO wavefront sensing3 and image postpro-
cessing,6,7 but also for optical misalignment sensing in seg-
mented aperture telescopes,8 sensing of noncommon path
aberrations in AO systems,9 and complex magnitude sensing
of laser.10

Regularization is necessary in image restoration because it is
an ill-posed inverse problem from a mathematical view point.
Given that the PD technique retrieves both wavefront and
image, all wavefronts and images need to be regularized.
Wavefront aberrations are always represented by a combination
of Zernike polynomials11 or other basis functions, which entails
implicit regularization. Additionally, when PD is used for
sensing wavefront distorted by atmosphere turbulence directly,
a statistical prior, i.e., turbulence power spectra based on

Kolmogorov theory is used.12,13 A low-pass filter14,15 and
sieve on the object16 are early methods for the regularization
of an object; later, many scientists began using Tikhonov
regularization.12,17,18 Tikhonov regularization is an effective and
robust means of addressing the ill-posed inverse problem.19

However, it always obtains either overly smooth results or
sharp images with amplified noise. Block-matching and 3-D
filtering (BM3D) algorithms can reduce noise effectively.20

Yu et al.21 combined BM3D algorithms with the PD technique
to reduce Poisson noise when the photon count level of images is
low. Although their work is meaningful, it is still insufficient
because regularization is not just for noise. Sparsity is an impor-
tant feature of natural images, and it has been successfully intro-
duced in image restoration as a kind of regularization strategy.
Combining the BM3D algorithm and sparse representation can
result in excellent performance. Nonlocal centralized sparse rep-
resentation (NCSR) is such an algorithm.22,23 On the basis of the
aforementioned findings, we wonder whether adding NCSR to
the PD technique can improve the quality of restored images.

This work proposes an effective method to improve image
quality using the PD technique with NCSR. Because the
merit function is hard to calculate if Tikhonov regularization
is directly replaced by NCSR, and the wavefront restored
from ordinary PD is pretty accurate, the method is separated
to two steps. First, wavefront is constructed by PD with
Tikhonov regularization, then point spread function (PSF) is
obtained and deconvolution with NCSR is done. The simulation
results show that, for different objects, the peak signal-to-noise
ratios (PSNRs) of deblurred images by the traditional method
improved by 10 dB, while those by the proposed method
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improved by ∼15 to 20 dB. This study likewise investigates the
influence of weak noise and finds that the effects of the proposed
method are consistently better than those of the traditional PD
with the increase of noise. We initially apply this method to a
liquid crystal AO system (LC AOS) to verify its practical per-
formance. We find that the highest spatial resolutions that can
be clearly distinguished are 1.59× diffraction limitation with AO
on, 1.41× diffraction limitation with traditional PD, and 1.26×
diffraction limitation with the proposed method. The experiment
and simulation results all show that the proposed method per-
forms better than the traditional PD.

2 PD Theory and the Proposed Method

2.1 Basic PD Theory

PD technique requires a focused image and one image with
known diversity function. For brevity, diversity function is defo-
cus referred to in the following discussion. This PD can be con-
ducted with a simple optical setup, as shown in Fig. 1.

The focused image can be modeled as

EQ-TARGET;temp:intralink-;e001;63;529gðxÞ ¼ fðxÞ � hðxÞ þ nðxÞ; (1)

where * stands for the spatial convolution, gðxÞ is the focused
image, x is a 2-D spatial coordinate, fðxÞ is the original object,
nðxÞ is the additive noise, and hðxÞ is the PSF, which includes
aberrations from both optical systems and propagation media,
especially for atmosphere turbulence. hðxÞ can be written as

EQ-TARGET;temp:intralink-;e002;63;443hðxÞ ¼ jFTfPðxÞ exp½iφðxÞ�gj2; (2)

where FT½ � denotes the Fourier transform, PðxÞ is the pupil
transfer function, and φðxÞ is the unknown distorted phase.
We express the phase as the sum of the first n Zernike polyno-
mials:

EQ-TARGET;temp:intralink-;e003;63;367φðxÞ ¼
Xn
i¼1

aiZiðxÞ; (3)

where ZiðxÞ is the i’th Zernike polynomial, ai is the
corresponding coefficient. The other image can be similarly
written as

EQ-TARGET;temp:intralink-;e004;63;286gdðxÞ ¼ fðxÞ � hdðxÞ þ ndðxÞ; (4)

where the subscript d stands for the defocus. hdðxÞ can be writ-
ten as

EQ-TARGET;temp:intralink-;e005;326;752hdðxÞ ¼ jFTfPðxÞ exp½iðφðxÞ þ φdðxÞ�gj2; (5)

where φdðxÞ is the known defocus. The merit function is then
obtained based on the max likelihood
EQ-TARGET;temp:intralink-;e006;326;708

E¼
X
x

jgðxÞ−fðxÞ�hðxÞj2þjgdðxÞ−fðxÞ�hdðxÞj2þJðfÞ;

(6)

where JðfÞ stands for the regularizing term. For the conven-
tional PD merit function with the first-order Tikhonov regular-
izing term, JðfÞ ¼ λ0jfðxÞj2, where λ0 is the regularization
coefficient. From Eq. (6), the functions can be derived in the
frequency domain as follows:

EQ-TARGET;temp:intralink-;e007;326;594E ¼
X
u

jGðuÞHðuÞ − GdðuÞHdðuÞj2
jHðuÞj2 þ jHdðuÞj2 þ λ0

; (7)

EQ-TARGET;temp:intralink-;e008;326;547f̂ðxÞ ¼ FT−1
�
H�ðuÞGðuÞ þH�

dðuÞGdðuÞ
jHðuÞj2 þ jHdðuÞj2 þ λ0

�
; (8)

where u is a 2-D spatial frequency coordinate; FT−1½ � denotes
the inverse Fourier transform; GðuÞ, HðuÞ, GdðuÞ, and HdðuÞ
are the Fourier transform of gðxÞ, hðxÞ, gdðxÞ, and hdðxÞ, respec-
tively; H�ðuÞ and H�

dðuÞ are the complex conjugates of HðuÞ
andHdðuÞ, respectively; and f̂ is the restored image. Some opti-
mization algorithms can then be used to minimize Eq. (7). The
hybrid particle swarm algorithm proposed by Zhang et al.24 can
approach the global minimum for PD with high reliability and
accuracy. Thus this optimization algorithm is used in the PD
technique.

Tikhonov regularization can effectively retrieve wavefronts
robustly with just a proper regularizing coefficient, but the
restored images tend to be overly smooth, a problem that has
also been discussed in Ref. 23 and 25. Therefore, we want to
seek a better regularization method.

2.2 NCSR Regularization

The nature of regularization is the mathematical representation
of appropriate prior knowledge about an original object.
Sparsity is an effective representation in image processing

EQ-TARGET;temp:intralink-;e009;326;279α ¼ arg minfkg − ðΦ� αÞ � hk22 þ λ1kαk1g; (9)

where α ¼ ½α1; α2; : : : ; αj� is the sparse coefficient vector of
object f, and λ1 is the regularization coefficients

Fig. 1 Optical setup of classic PD technique.
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EQ-TARGET;temp:intralink-;e010;63;618f ¼ Φ� α; (10)

where Φ is an dictionary, � stands for a sparse coding operator,
and most entries of the coding vector α are zero or close to zero,
which is guaranteed by the second term. The selection of dic-
tionary Φ can be various. It can be a predefined dictionary or a
learned dictionary. Recently, a series of algorithms based on
nonlocal self-similarity make obvious improvements on image
denoising.20,22,23 Unlike ordinary sparse regularization, the
whole blurred image is separated to a serial of block, which
has some similar image patches. Each block has its dictionary,
then the sparse coefficient is shrunk to denoise or deblur the
image. The scheme is shown as in Fig. 2.

Dong et al.22 introduced the concept of sparse coding noise
based on above and proposed centralized spare representation
(CSR). The model of CSR can be written as

EQ-TARGET;temp:intralink-;e011;63;442α ¼ arg minfkg − ðΦ� αÞ � hk22 þ λ1kαk1 þ γkα − βk1g;
(11)

where γ is the regularization coefficient. The third term is the
sparse coding noise, which is the error between estimated sparse
coefficients α and real sparse coefficients. β denotes some good
estimation of α and can be considered as the real sparse coef-
ficients. Normally, β can be the mean of α, that is β ¼ EðαÞ. γ is
the regularization coefficients. As mentioned above, each block
or cluster has its dictionary. A dictionary of principal component
analysis bases is learned here. This actually leads to a very
sparse representation for the given block, thus the second
term can be removed. That is the nonlocally centralized spare
representation (NCSR) model:

EQ-TARGET;temp:intralink-;e012;63;276α ¼ arg minfkg − ðΦ� αÞ � hk22 þ γkα − βk1g: (12)

This model can be derived with maximum a posterior (MAP)
estimation. Defining θ ¼ α − β, then the MAP estimator of θ
can be expressed as follows for a given β:
EQ-TARGET;temp:intralink-;e013;63;211

θ ¼ arg max
θ

log PðθjgÞ
¼ arg max

θ
flog PðgjθÞ þ log PðθÞg: (13)

The likelihood term is modeled by the Gaussian distribution

EQ-TARGET;temp:intralink-;e014;63;142PðgjθÞ ¼ Pðgjα; βÞ

¼ 1ffiffiffiffiffi
2π

p
σn

exp

�
−

1

2σ2n
kg − ðΦ� αÞ � hk22

�
; (14)

where σn is the standard deviations of g. According to Ref. 23,
assuming that θ follows i.i.d. Laplacian distribution:

EQ-TARGET;temp:intralink-;e015;326;618PðθÞ ¼
Y
i

Y
j

�
1ffiffiffi
2

p
σi;j

exp

�
−
jθiðjÞj
σi;j

��
; (15)

where θiðjÞ is j’th element of θi, and σi;j is the standard devia-
tions of θiðjÞ. Thus
EQ-TARGET;temp:intralink-;e016;326;557

θ ¼ arg min
θ

�
kg − ðΦ� αÞ � hk22 þ 2

ffiffiffi
2

p
σ2n
X
i

X
j

jθiðjÞj
σi;j

�
:

(16)

For a given β, α can be obtained by

EQ-TARGET;temp:intralink-;e017;326;480α ¼ arg min
α

�
kg − ðΦ� αÞ � hk22

þ 2
ffiffiffi
2

p
σ2n
X
i

X
j

1

σi;j
jαiðjÞ − βiðjÞj

�
: (17)

Comparing with Eq. (12), we have

EQ-TARGET;temp:intralink-;e018;326;391γi;j ¼
2

ffiffiffi
2

p
σ2n

σi;j
: (18)

An alternative iterative algorithm23 can be used to solve
Eq. (17).

2.3 Proposed Method

If Tikhonov regularization is replaced by NCSR directly, the fol-
lowing merit will be gotten:

EQ-TARGET;temp:intralink-;e019;326;270fa;αg ¼ arg min
a;α

�
kg − ðΦ� αÞ � hk22

þ kgd − ðΦ� αÞ � hdk22 þ γ
X
j

kαj − βjk1
�
:

(19)

From Eq. (19), explicit object function cannot be gotten, and the
solution procedure will be very complex. On the other hand, the
accuracy of estimated wavefront is pretty high by ordinary PD
with Tikhonov regularization. For convenience of application,
the continuous two step method is selected: first, we use the
PD technique with Tikhonov regularization to reconstruct the
wavefront; second we use NCSR to restore high-resolution
images by Eq. (17). The flowchart of proposed method is
shown in Fig. 3.

Fig. 2 Flowchart of clustering-based sparse representation algorithms.
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3 Numerical Simulations and Experiments

3.1 Simulations

A series of numerical simulations is performed to verify the
retrieved image quality of the proposed strategy. The focused
and defocused images are generated with a known random
wavefront based on the above PD theory. Some classical pic-
tures are used as the original objects, as shown in Fig. 4.
The known random phase shown in Fig. 5, which is expressed
as the first 15 Zernike polynomials, except for piston and tip/tilt.
Empirically, the magnitude of the diversity function (i.e., defo-
cus) is 1 wavelength (1λ) peak-to-valley (PV). The scale of the
pupil wavefront is indicated by the root mean square (RMS).
The RMS of the random wavefront is 0.25λ. The simulations
need to satisfy the Nyquist sampling theorem. The values of
some parameters are listed in Table 1 and are in agreement
with the following experiment.

After simulated imaging in a charge-coupled device (CCD),
we add Gaussian noise with 0 mean and σ2 ¼ 1 × 10−4 variance
and Poisson noise considering intensity disturbance in an actual
experiment. The accuracy of the retrieved phase is measured by
the RMS error (RMSE) of wavefront difference Δφ between the
estimated and original phases. RMSE can be calculated as

EQ-TARGET;temp:intralink-;e020;326;493RMSEðλÞ ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Np

XNp

j¼1

½ΔφðjÞ − averðΔφÞ�2
vuut ; (20)

EQ-TARGET;temp:intralink-;e021;326;437Δφ ¼ φ̂ − φ; (21)

Fig. 3 Flowchart of the proposed method.

Fig. 4 Original objects: (a) marine satellite, (b) optical resolution test board USAF-1951, (c) Barbara,
(d) FluorescentCells (open sample from the software ImageJ), (e) Lena, and (f) Peppers.
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EQ-TARGET;temp:intralink-;e022;63;405averðΔφÞ ¼ 1

Np

XNp

j¼1

½φ̂ðjÞ − φðjÞ�; (22)

whereNp denotes the number of discrete points in the pupil, φ̂ is
the retrieved phase, and aver(Δφ) is the mean of the difference
between restored wavefront and original wavefront. PSNR and
structural similarity index metric (SSIM)26 are used as assess-
ment standards of the restored image quality

EQ-TARGET;temp:intralink-;e023;63;306PSNRðdBÞ ¼ 10 log10

�
max ½fðjÞ�2

1
N

P
N
j¼1 ½f̂ðjÞ − fðjÞ�2

�
; (23)

where N is the number of pixels in the image. The SSIM is cal-
culated as follows:

EQ-TARGET;temp:intralink-;e024;63;236SSIMðf̂; fÞ ¼
ð2μfμf̂ þ c1Þð2σf;f̂ þ c2Þ

ðμ2f þ μ2
f̂
þ c1Þðσ2f þ σ2

f̂
þ c2Þ

; (24)

where μ is the average, σ2 is the variance, and c1 and c2 are the
small constants to stabilize the division. Additionally, the quality
of blurred image also evaluated by PSNR for comparison:

EQ-TARGET;temp:intralink-;e025;63;152PSNRðdBÞ ¼ 10 log10

�
max ½fðjÞ�2

1
N

P
N
j¼1 ½gðjÞ − fðjÞ�2

�
: (25)

The RMSEs of the retrieved phase are 0.0122λ, 0.0283λ,
0.0206λ, 0.0149λ, 0.0193λ, and 0.0095λ. Note that although
a smaller RMSE is better in theory, these retrieved phases are
accurate enough to build good PSFs. Image deblurring with

different regularization methods uses the same PSF as well.
The NCSR deblurring method is compared with the conven-
tional Tikhonov regularization. The simulated results are pre-
sented in Table 2, and some restored images are shown in
Figs. 6 and 7. The results show that, for different objects, the
PSNRs of deblurred images by the traditional method are

Fig. 5 Random phase (units: radius): (a) phase image, (b) corresponding coefficients of Zernike
polynomials.

Table 1 Values of some parameters in simulation.

Wavelength 780 nm

Diameter of exit pupil 17 mm

Pixel size of CCD 13 μm

Sample pixels 200 × 200

Table 2 PSNRs and SSIMs of blurred images and restored images
for different objects.

Objects

Blurred
images
(dB) Tikhonov NCSR

Marine satellite 55.71 67.88 dB∕0.9899 79.67 dB∕0.9966

USAF-1951 45.69 62.88 dB∕0.9724 77.44 dB∕0.9946

Barbara 48.43 60.24 dB∕0.9801 65.50 dB∕0.9896

FluorescentCells 51.49 62.26 dB∕0.9822 65.11 dB∕0.9860

Lena 48.14 59.25 dB∕0.9779 65.01 dB∕0.9872

Peppers 47.86 59.80 dB∕0.9842 68.82 dB∕0.9938

Fig. 6 Simulated restored results with USAF-1951: (a) restored
image with Tikhonov regularization and (b) restored image with
NCSR.

Journal of Astronomical Telescopes, Instruments, and Systems 049007-5 Oct–Dec 2018 • Vol. 4(4)

Wu et al.: Phase diversity technique with sparse regularization in liquid crystal adaptive optics system

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 13 Aug 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



improved by 10 dB, while those by the proposed method are
improved by ∼15 to 20 dB. The SSIMs of the latter are also
higher than those of the former. For USAF-1951 in Fig. 6,
because of the original image’s binary value, the improved
PSNR is around 17 dB by the traditional method, while that
by the proposed method is ∼32 dB. Furthermore, the quality
improvement of the restored image is mainly reflected in the
noise reduction. In Fig. 7 (Lena), there are sharper edges and
more details restored by NCSR than by the traditional
Tikhonov regularization.

We also carried out simulations in different noise levels with
USAF-1951 because noise is the main reason for the instability
in image restoration. The results are shown in Table 3, which
reveals that even when the noise level is low, the quality of

restored images falls sharply with the increase of noise. A com-
parison of the images in Fig. 8 with those in Fig. 6 indicates that
the restored images have considerable noise for both
methods. However, the effect of NCSR is better than that of
Tikhonov regularization. The PSNRs of restored images by
Tikhonov regularization decrease from 62.88 to 51.70 dB,
and the SSIMs decrease from 0.9724 to 0.9367, whereas the
PSNRs of restored images by NCSR decrease from 77.44 to
58.14 dB, and the SSIMs decrease from 0.9946 to 0.9646. In
summary, the quality of restored images by the proposed method
is always higher than that by the traditional PD.

3.2 Experiments

In this section, the PD technique with NCSR is initially
employed in the LC AOS. Xu et al.27 proposed a high-resolution
imaging approach by applying the PD technique to the open-
loop LC AOS. The optical layout of LC AOS is shown in
Fig. 9, and a photograph of the experimental setup is shown
in Fig. 10. In the experiment, we use the optical resolution
test board USAF-1951 illuminated by a white light as the
extended object. L1 is the collimating lens to make the light sim-
ilar to a plane wave. The light then goes through a turbulence
phase screen (Lexitek, r0∶1.08 mm), a stop to restrict the beam
aperture, a tip/tilt mirror to correct the tip/tilt of the phase dis-
tortion, a long wavelength pass filter, and optical wave whose
wavelength is shorter than 700 nm is reflected to the Shack–
Hartmann wavefront sensor. The long wave band from 700
to 900 nm will transmit to the wavefront-correction branch.
Given that LC-SLM is useful for polarized waves, two LC-
SLMs are used to correct two beams whose polarization direc-
tions are perpendicular to each other. Meanwhile, any specific
and known PD can be added in one LC-SLM. Here the diversity
function is defocus with 0.4λ PV. The LC-SLMs we use both
have 256 × 256 pixels. One corrected beam and another with
a known defocus will be imaged in two separate areas in the
CCD. Next, PD and NCSR algorithm are used to retrieve
residual aberration and restore the image with higher resolution.
As the LC AOS is an open-loop system, the residual aberration
cannot be obtained after AO correction, and the wavefront
retrieved by PD is not displayed. The only measurement is
the quality of the deblurred image.

The experimental results are shown in Figs. 11 and 12.
Figures 11(a) and 11(b) show the focused images before and
after AO, and Fig. 11(c) shows the defocused image used for
PD. The resolution of the images obviously improved after
AO. Figure 12(a) shows the focused image recorded by CCD
with AO on; because of the aperture limitation of the fiber
source in LC AOS, what we can see are the line pairs in the
fifth group. In this group, even the first element is ambiguous
and barely distinguishable. The corresponding spatial resolution
is 32.00 lp∕mm, which is equivalent to 1.59× diffraction limi-
tation, and residual aberration still occurs. The focused and
defocused images are obtained simultaneously on the CCD.
Figure 12(b) shows the deblurred image by PD with classical
Tikhonov regularization. Compared to Fig. 12(a), the resolution
in Fig. 12(b) is improved, and the fifth-group second element
whose spatial resolution is 1.41× diffraction limitation
(35.92 lp∕mm) can be seen clearly. However, the image is filled
with noise. Figure 12(c) shows the deblurred image by PD with
NCSR. The noise is obviously reduced and the resolution has
further improvement. We can clearly see that the third element
of the fifth group has a spatial resolution that is 1.26× diffraction

Fig. 7 Simulated restored results with Lena: (a) restored image with
Tikhonov regularization and (b) restored image with NCSR.

Table 3 PSNRs and SSIMs of blurred images and restored images
for different noise levels.

σ∕noisy PSNR

Blurred
images
(dB) Tikhonov NCSR

0.01∕91.69 dB 45.69 62.88 dB∕0.9724 77.44 dB∕0.9946

0.02∕77.43 dB 45.57 56.33 dB∕0.9604 68.67 dB∕0.9868

0.03∕70.33 dB 45.34 54.14 dB∕0.9437 62.62 dB∕0.9773

0.04∕64.59 dB 44.95 51.70 dB∕0.9367 58.14 dB∕0.9646

Fig. 8 Simulated restored results with USAF-1951 under σ ¼ 0.03:
(a) restored image with Tikhonov regularization and (b) restored
image with NCSR.
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limitation (40.32 lp∕mm). Partial images in white block are
selected to compute the SSIMs, the values of which are
0.0971, 0.2893, and 0.4400, respectively. Thus the proposed
approach can obtain finer details and higher spatial resolution
than the traditional PD.

4 Conclusion
In this study, we proposed an effective image deblurring method
using the PD technique with NCSR and apply it initially to an
LC AOS. NCSR uses image nonlocal self-similarity and sparsity
to improve the quality of restored images. The performance of
the proposed method is confirmed by the results of simulation
and experiments with LC AOS. Simulation results show that, for
different objects, the PSNRs of deblurred images by the tradi-
tional method are improved by around 10 dB, while those by the
proposed method are improved by 15 to 20 dB. The SSIMs of
the latter are also higher than those of the former. Additionally,
this work studies the influence of weak noise and finds that the
effects of the proposed method are always better than those of
the traditional PD with increasing noise. Results with the LC
AOS show that the highest spatial resolutions that can be clearly
distinguished are 1.59× diffraction limitation with AO on, 1.41×
diffraction limitation with the traditional PD, and 1.26× diffrac-
tion limitation with the proposed method. Both simulation and

Fig. 9 LC AOS optical layout with PD. L1, L2, L3, L4, L5, L6, L7, L8, and L9 are lenses, object is test
chart, PS stands for phase screen, PBS is polarized beam splitter, and M1 is mirror.

Fig. 10 Photo of LC AOS experimental setup.

Fig. 11 Experimental results with LC AOS: (a) focused image with AO off, (b) focused image with AO on,
and (c) defocused image with AO on.
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experimental results imply the effectiveness of the method,
especially for noise reduction and detail preservation. The pro-
posed method can be applied in various high-resolution imaging
techniques such as ground-based telescopes and fluorescence
microscopes, among many other fields.
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Fig. 12 Experimental results with PD: (a) focused image, (b) deblurred image with Tikhonov regulari-
zation, and (c) deblurred image with NCSR.
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