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Predicting tool wear with multi-sensor data using deep belief networks
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Abstract
Tool wear is a crucial factor influencing the quality of workpieces in the machining industry. The efficient and accurate prediction
of tool wear can enable the tool to be changed in a timely manner to avoid unnecessary costs. Various parameters, such as cutting
force, vibration, and acoustic emission (AE), impact tool wear. Signals are collected by different sensors and then constitute the
raw data. There are two main types of methods used to make predictions, namely model-based and data-driven methods. Data-
driven methods are typically preferred when a mathematical model is not available. In such a situation, artificial intelligent
methods, such as support vector regression (SVR) and artificial neural networks (ANNs), are applied. Recently, deep learning
algorithms have been widely used because of their accuracy, computing speed, and excellent performance in solving nonlinear
problems. In this study, a deep learning network called deep belief network (DBN) is applied to predict the flank wear of a cutting
tool. To confirm the superiority of the DBN in predicting tool wear, the performance of the DBN is compared with the
performances obtained using ANNs and SVR in terms of the mean-squared error (MSE) and the coefficient of determination
(R2), considering data from more than 900 experiments.
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1 Introduction

In the machining industry, tool condition is a crucial factor
influencing workpiece quality. Various types of failure, such
as excessive load, overheating, deflection, fracture, fatigue,
corrosion, and wear, can lead to decreased productivity, in-
creased production costs, and unexpected machine downtime.
According to previous studies, the cost of maintenance per-
formed to lessen the influence of tool failure can range from
15 to 40% of the cost of goods produced [1]. According to
Malekian et al. [2], cutting tool failures typically represent
approximately 20% of machine tool downtime, and tool wear
has a direct impact on the surface finish quality. Various fac-
tors, such as force, cutting force, vibration, acoustic emission
(AE), temperature, and surface roughness, may influence tool

wear. The wear and condition of a cutting tool must be pre-
dicted to ensure adequate replacement and avoid damage.

The prediction of the health condition of a tool based on
cutting conditions is referred to as prognostics and health
management, and there are two methods used to perform
prognostics [3–5], namely model-based and data-driven prog-
nostics. Model-based prognostics are based on the mathemat-
ical description of a system. Different algorithms are used to
construct the models, such as hidden Markov models [6],
Wiener and gamma processes [7], and Kalman filters [8].
For these models, an in-depth understanding of the physical
processes is required to make accurate predictions, but in
many situations, particularly for complex manufacturing sys-
tems and processes, previous knowledge of the system behav-
ior is not available. Therefore, data-driven prognostics have
been proposed for such situations.

Data-driven prognostics are based on learning algorithms
and large training data to build models for predicting. On the
one hand, no in-depth knowledge is required for building
models; on the other hand, real-time data from machines
can be easily collected in condition monitoring systems.
Some parameters are generally used in predicting tool wear:
cutting force increases with increasing wear, and vibration
varies with increasing tool wear due to the rubbing between a
workpiece and chip against the tool. Besides, AE is a signal
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dependent on the state of cutting process because it is the
transient elastic energy released in materials deforming
when being cut. These signals are collected by different sen-
sors and stored to obtain detailed information regarding the
state of the cutter [9]. In other words, massive data are of-
fered to diagnostic systems, but the data are typically collect-
ed more rapidly than diagnosticians can analyze it [10], thus
representing an issue that data-driven prognostics aim to
solve. Many data-driven prognostics have been proposed
based on artificial intelligent algorithms, such as support
vector regression (SVR), fuzzy logic classifiers, and artificial
neural networks (ANNs). Benkedjouh et al. [11] proposed a
method for assessing tool condition and predicting lifespan
using two nonlinear feature reduction techniques combined
with SVR. Zhang and Zhang [12] presented a tool wear
model based on a least-squares support vector machine
(LS-SVR) for a ball-end milling cutter. That study demon-
strated that the LS-SVR-based tool wear model can predict
tool wear within a certain range of cutting conditions in
milling operations. Furthermore, Li et al. [13] conducted

analyses to determine effective features that reveal tool con-
ditions using an improved SVR called v-SVR, where v is a
parameter controlling the number of support vectors. ANNs
are widely used by researchers because of their high fault
tolerance and adaptability, noise suppression capability,
and ability to handle large volumes of data [14]. Samanta
and Nataraj [15] employed an ANN to diagnose bearing
faults and characterize the bearing health conditions. Lee
[16] developed a system based on neural networks by
adopting a quick propagation algorithm in tool condition
monitoring. Recently, D’Addona et al. [17] used an ANN
along with DNA-based computing (DBC) to monitor tool
wear and improve the accuracy of tool wear degree identifi-
cation. Moreover, Coppel et al. [18] combined ANN with
GA and ACO algorithm in constructing an adaptive control
optimization system and estimated cutting tool wear with
ANN, which lead to a significant decrease in production
cost.

However, neural networks have limitations; specifically,
these networks commonly adopt shallow architectures, which

Fig. 2 The Gibbs sampling
procedure and the CD algorithm

Fig. 1 The RBM architecture
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means that the networks only include one hidden layer. This
architecture limits the capacity of neural networks to learn the
complex nonlinear relationships between tool wear and ma-
chining parameters. Thus, a deep architecture network must
be established to solve this problem. A deep belief network
(DBN) is used in this study.

In 2006, the concept of deep learning and the structure of
DBNs were proposed [19]. DBNs employ a hierarchical struc-
ture with multiple stacked restricted Boltzmann machines
(RBMs) and employ a greedy layer-by-layer learning algo-
rithm followed by a fine-tuning procedure. DBNs have been
successfully used in computer vision and automatic speech
recognition in the last decade [20, 21]. They have also been
used in feature extraction for cutting state monitoring [22],
fault diagnosis of aircraft engines and electric power trans-
former [23], and diagnosis followed by fault characteristic
mining for rotating machinery [24]. The aforementioned

applications demonstrate that DBNs are a promising tool for
handling massive amounts of data, which is one of the chal-
lenges in facing the modernmanufacturing industry. Although
DBNs have been gradually adopted in the manufacturing in-
dustry, few studies have focused on their application in tool
wear prediction, particularly using data collected from multi-
ple sensors. Thus, we investigate the ability of DBNs to pre-
dict tool wear using an experimental dataset composed
of cutting force, vibration in three directions, and AE.
Furthermore, to demonstrate the superiority of DBNs in
predicting tool wear, the performance of DBNs is compared
with those of feed-forward back-propagation (FFBP) ANNs
and LS-SVR in terms of training time, predicting time, and
accuracy.

The primary contributions of this paper are as follows:

& Tool wear in milling operations is predicted using a DBN,
along with signals collected by multiple sensors. The ex-
perimental results demonstrate that the predictions are ac-
curate and stable, with a mean-squared error (MSE) as low
as 0.00692 (normalized data). The coefficient of determi-
nation (R2) is as high as 0.9888, representing a significant
improvement over existing techniques. Furthermore, this
study represents the first application of DBNs for
predicting tool wear using multi-sensor data.

& The performances of LS-SVR, ANNs, and DBNs in
predicting tool wear are compared. Standard metrics, in-
cluding the MSE, accuracy of regression (R2), training
time, and prediction time, are used to evaluate each tech-
nique. LS-SVR achieved the lowest mean-squared error
but required nearly triple the runtime compared to that of
other methods. The ANN and DBN produced similar
levels of accuracy, but when the number of hidden neu-
rons varied, the DBN was 10% more accurate than the
ANN, which means that the DBN was more stable than
the ANN.

The remainder of this paper is organized as follows: the
DBN methodology and two other algorithms are presented
in Section 2. The experimental setup is presented in
Section 3, and conclusions and comparisons are drawn in
Section 4. The deficiencies of this algorithm and plans for
future work are discussed in Section 5.

2 Methodology

2.1 Deep belief network

The DBN is a two-way deep network and is a stacking of
numerous RBMs. The training process consists of pre-train-
ing, fine-tuning, and prediction.

Fig. 3 The DBN architecture

Fig. 4 The ANN architecture
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RBMs are an effective feature extraction method for initial-
izing the feed-forward neural network and can significantly
improve the generalization capabilities of the network. Each
RBM has two layers, called the visible and hidden layers,
which composed of binary neurons. The neurons in the hidden
layer are denoted as h = (h1, h2,…, hn) ∈ {0, 1}, whereas those
in the visible layer are denoted as v(v1, v2,…, vm) ∈ (0, 1). As
shown in Fig. 1, each neuron in the visible layer is connected
to neurons in the hidden layer. This type of fully connected
adjacent layer and nonconnected interlayer structure ensures
that the activation state of each neuron is independent of the
other neurons as follows:

P hjvð Þ ¼ ∏
m

j¼1
P hj

��v� � ð1Þ

Due to this independence, the operation of input vectors
can be used as a matrix operation while updating the values
of the hidden neurons. This process can increase the speed of
training, making it suitable for online predictions.

In a binary RBM, the weights between the neurons of the
visible layer and the hidden layer are undirected and are de-
noted as w = {wij} (i = 1, 2,…, n; j = 1, 2,…, m),
where wij denotes the weight between the hidden neuron (hj)
and the visible neuron (vi). Therefore, the visible and hidden
neurons have their biases, denoted by vectors b and c, as
shown in Fig. 1.

The probability of the neurons in the RBM being 0 or 1 is
defined based on the energy of the neuron. Taking a hidden
neuron (hj) as an example, this energy is given as

E j ¼ ∑
n

i¼1
wijvi þ c j ð2Þ

Similarly, the energy of visible neuron (vi) is calculated as

Ei ¼ ∑
m

j¼1
wijh j þ bi ð3Þ

To simplify the subsequent discussion, we denote θ = {w,
b, c} as the set of parameters in the RBM. The architecture of
the RBM is explicit, including visible and hidden neurons
named v and h, respectively, and a set of parameters (θ), in-
cluding the weights and biases of the neurons.

The probability of the hidden neuron having a value of 1
can be calculated as follows:

P hj ¼ 1 vj� � ¼ σ jð Þ ¼ 1

1þ e−E j
ð4Þ

Similarly, in terms of visible neurons,

P vj ¼ 1 hj� � ¼ σ ið Þ ¼ 1

1þ e−Ei
ð5Þ

Considering all the neurons, the probability that the model
assigns to a visible vector (v) is obtained by summing over all
of the possible hidden vectors as follows:

P v; θð Þ ¼ ∑
h
P v; h; θð Þ ¼ 1

∑
h
∑
v
exp −E v; h; θð Þð Þ ∑h −E v; h; θð Þð Þ

¼ 1

∑
h
∑
v
exp −E v; h; θð Þð Þ ∑h exp vTwhþ bTvþ cTh

� �

ð6ÞFig. 5 The milling machine testbed

Table 2 Detailed description of the sensor data

Signal collected Data description

1 Fx: force (N) in the x-direction

2 Fy: force (N) in the y-direction

3 Fz: force (N) in the z-direction

4 Vx: vibration (g) in the x-direction

5 Vy: vibration (g) in the y-direction

6 Vz: vibration (g) in the z-direction

7 AE: acoustic emission (V)

Table 1 Operating conditions

Parameter Value

Spindle speed 10,400 RPM

Feed rate 1555 mm/min

y depth (radial) of the cut 0.125 mm

z depth (axial) of the cut 0.2 mm

Sampling rate 50 kHz/channel

Material Stainless steel
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To determine the values of the neurons, a random number
(u) ranging between 0 and 1 is compared to P(hj = 1) to deter-
mine the value of hj using the following criteria:

h j ¼ 1;P hj ¼ 1
� �

≥u
0;P hj ¼ 1

� �
< u

�
ð7Þ

The RBM training involves finding the optimum θ that fits
best the training dataset. This value can be determined by
performing a stochastic gradient descent on the negative log-
likelihood probability of the training data. Considering the
visible layer, the gradient of the negative log probability can
be obtained from Eq. (6) as

∂lnP v; θð Þ
∂wij

¼ vih j
� �

data
− vih j
� �

model

∂lnP v; θð Þ
∂c

¼ hj
� �

data− hj
� �

model

∂lnP v; θð Þ
∂b

¼ vih idata− hih imodel

8>>>>><
>>>>>:

ð8Þ

where 〈•〉data denotes an expectation with respect to the data
distribution and 〈•〉model denotes an expectation with respect to
the distribution defined by the model. The former term is
called the positive phase; it is calculated from given data and
increases the probability of training data. The latter term is
called the negative phase; it is calculated by model data and
decreases the probability of samples generated by the model.
However, the expectation 〈•〉model cannot be easily computed.
Gibbs sampling is used to obtain the approximation to the
gradient. As shown in Fig. 2, Gibbs sampling starts from the
given visible data (v(0)) to compute the initial expectation of
hidden neurons h(0); then, h(0) is used to compute the first
expectation of visible data (v(1)). Theoretically, infinite steps
are needed to obtain an accurate value of 〈•〉model; however, in
practice, a few steps have been shown to yield a comparable
result, referred to as contrastive divergence (CD) [25]. A sin-
gle sampling is typically adequate; then, 〈•〉model is replaced by
one Gibbs sampling.

Using Eq. (8) and single-sampled CD learning, the update
rule of the parameter θ is given as follows:

w tð Þ ¼ w t−1ð Þ þ εw v 0ð Þ
i h 0ð Þ

j

D E
− v 1ð Þ

i h 1ð Þ
j

D E� 	
c tð Þ ¼ c t−1ð Þ þ εc h 0ð Þ

j

D E
− h 1ð Þ

j

D E� 	
b tð Þ ¼ b t−1ð Þ þ εb v 0ð Þ

j

D E
− v 1ð Þ

j

D E� 	

8>>><
>>>:

ð9Þ

where εw, εc, and εb are the learning rates of the weight, hid-
den bias, and visible bias, respectively.

One time of the update of θ is called an epoch; a total of ten
epochs were adopted in this study, as this number of epochs
has demonstrated optimal performance in previous
experiments.

As shown in Fig. 3, stacking RBMs form a DBN layer-by-
layer. The training procedure is a repeat of the RBM training
by the CD algorithm: each hidden layer is trained using the
activation probabilities of the hidden layer of the lower RBM
as the input training data, and its output data are used as
the training data of the upper RBM. After N hidden layers
have been trained, an output layer is added for the real-
valued output, and a fine-tuning process is performed using
the back-propagation algorithm with the training data as out-
put. This procedure is demonstrated by the dotted arrow in

Table 3 Extracted features
Cutting force (x, y, z dimensions) Vibration (x, y, z dimensions) Acoustic emission

Maximum Maximum Maximum

Minimum Minimum Minimum

Mean Mean Mean

Standard deviation Standard deviation Standard deviation

Fig. 6 Five different wear rates in the cutting process
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Fig. 3. Four DBN layers are used in this study, and for sim-
plicity, every hidden layer is set with the same number of
hidden neurons, as was used in [26].

2.2 Compared algorithms

In this study, two artificial intelligence algorithms are also
compared with the DBN to demonstrate the fitness of the
DBN in predicting tool wear. The two other algorithms are
least-squares support vector regression (LS-SVR) and the
ANN. These algorithms are briefly described below.

Originally developed by Vapnik [27], a SVM is used to
construct a hyperplane in high-dimensional space and to clas-
sify data. SVR is a popular application of SVM techniques
[11, 27]. SVR is typically used to estimate the relationship
between input and output variables. LS-SVR training only
requires the solution for a set of linear questions instead of
the complex quadratic problems involved in standard SVR.
LS-SVR is considered in the comparison because it is a pow-
erful tool in tool wear prediction. In this study, the kernel
function of SVR is the radial basis function (RBF)

K x; xið Þ ¼ exp −p x−xik kð Þ; p > 0 ð10Þ

where p is the tuning factor and is set to 0.1.
The ANN, a widely used algorithm, is also considered in

the comparison. The ANN is an imitation of the human brain,
which is composed of neurons [28]. An ANN is generally
composed of three elements: the values of the neurons, the
weights connecting the neurons from different layers, and
the active function, which is a function used to convert the
input of every neuron to an output, considering the weights
connecting them. When training ANNs, back-propagation, a
learning algorithm, is widely used to reduce the training error.

Thus, a FFBP network is applied here. Figure 4 illustrates the
architecture of the FFBP-NN. The visible layer accepts the
input data, which are denoted as fi. These data are conveyed
from the visible layer to the hidden layer and then the output
layer. The neurons are computed using a sigmoid function, in
a similar manner as in the DBN. The output data are compared
with a label for each record and then used in the BP process to
adjust the network. In contrast to the DBN, the ANN only has
one hidden layer, which represents its weakness in learning
complex nonlinear relationships. Six hundred training data
points are used to train the network. One traversal of all the
training data is referred to as an epoch, and ten epochs are
adopted as an empirical choice to achieve a balance between
runtime and accuracy.

There is currently no standard or well-accepted method for
selecting the number of hidden neurons [29, 30]. As part of
this study, experiments are conducted with the number of hid-
den neurons (ranging from 10 to 25 as a typical range), which
include the most possible algorithm results, along with a com-
parison of the corresponding ANNs. The results are shown in
Figs. 7 and 8. The accuracy of the network fluctuated consid-
erably with variations in the number of hidden neurons.

3 Experimental setup

The data used in this paper were obtained from Li et al. [31],
which are part of the “prognostic data challenge 2010” dataset
from the Prognostics and Health Management (PHM) Society.
Experiments were performed on a high-speed CNC milling
machine (Röders Tech RFM760) with a cutter spindle speed
of 10,400 RPM, a feed rate of 1555 mm/min, a y cut depth
(radial) of 0.125mm, and a z cut depth (axial) of 0.2mm. These
values are shown in Table 1. The cutter material was high-
speed steel, while the workpiece material was stainless steel.

Table 4 A comparison of the
MSEs Mean-squared error (total)

Hidden unit number 10 11 12 13 14 15

DBN 0.017914 0.013705 0.0091717 0.0081048 0.006921 0.010889

ANN 0.023739 0.01447 0.0071075 0.024372 0.021933 0.1317

SVR 0.007775

Table 5 A comparison of the R2

values Coefficient of determination

Hidden unit number 10 11 12 13 14 15

DBN 0.97117 0.97794 0.98524 0.98696 0.98886 0.98248

ANN 0.96179 0.97671 0.98856 0.96077 0.9647 0.78804

SVR 0.96246
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The workpiece was prepared through face milling to avoid the
effects of hard regions in the original skin layer. The sensor
installation layout is shown in Fig. 5. A three-component dy-
namometer was mounted between the workpiece and machin-
ing table to record the cutting force. Three piezo accelerometers
were also mounted to the workpiece to measure the vibrations
from the machine tool during the cutting period in the x-, y-,
and z-directions [31]. Besides, an AE sensor was used to mon-
itor the high-frequency stress waves generated by the cutting
process. These signals from the different sensors represent the
data source of the models. A detailed description of the mean-
ing of these data is provided in Table 2.

The sensor signals were acquired at a sampling rate of
50 kHz by a DAQ board. Every 15 s, data was called a record,
including approximately 200,000 signals. Each cutting test
included 315 records, and there were three individual cutting
tests. Two of the tests were used as training data, and the
remainder was used as testing data. The cutters were consid-
ered to be worn to a specific stage at the end of each cutting
test, which is a criterion to end the test. The total size of the
data was approximately 8 GB.

For the data pre-processing, four statistical features were
extracted from the raw data, as shown in Table 3. Generally,
there are five stages in the wear procedure, called initial wear,
slight wear, moderate wear, severe wear, and worn-out [32]. In
Fig. 6, they are marked as stages 1 to 5, and in this study, the
experiment was stopped when tool was worn out so there were
no records in stage 5. It is demonstrated in previous research
that the wear rate differs in different processing stages [33],
which is also shown in Fig. 6. Considering this, a time stamp
was added as the last feature. Furthermore, the input of RBM
needs to range from 0 to 1, statistic features and the time stamp
were normalized, and these were the input of DBN. To train
the DBN, a label is needed for each record, which is the wear
of the cutter. The wear data were normalized as well.

4 Results and discussion

Three predictive models were used to make the comparison,
including the SVR, the ANN, and the DBN. For simplicity,
certain records were omitted. Six hundred records were
used as training data, and 300 records were used as testing
data.

Two accuracy evaluation standards were adopted: the co-
efficient of determination (expressed as R2) and the mean-
squared error (MSE). The time required for training and
predicting was an important criterion in this paper, as low
runtimes are required for online prediction.

Because the number of hidden neurons may influence the
performance of networks, experiments were conducted with
varying numbers of neurons in the hidden layer on both the
ANNs and DBNs. There is no hidden neuron in SVR; thus,
the SVR results do not fluctuate. Ten iterations were per-
formed for the ANN and DBN.

In this study, the computation was performed using
MATLAB (MathWorks, 2016). Tables 4, 5, 6, and 7 illus-
trate the prediction results in data form, whereas Figs. 7, 8, 9,
and 10 expressed the data as lines. The DBNs achieved a
minimum MSE of 0.0069, whereas the ANNs and SVR
achieved minimum values of 0.0071 and 0.0078, respective-
ly. For R2, the DBNs achieved a maximum value of 0.9889,
whereas the ANNs and SVR achieved values of 0.9886 and
0.96246, respectively. There is no significant difference in
accuracy prediction between the best performances of these
three algorithms. However, because DBNs have more hid-
den layers than do ANNs, additional time is required to train
the networks. Both the DBNs and ANNs have shorter train-
ing times than do SVR because of their superior architec-
tures. The comparison is clearly visualized in Fig. 9. It shows
that SVR required more time than the other two algorithms,
and training with DBNs was slightly more time-consuming

Table 6 A comparison of the
training times Training time (s)

Hidden unit number 10 11 12 13 14 15

DBN 0.087351 0.10028 0.08858 0.11285 0.11994 0.1041

ANN 0.062962 0.066766 0.063753 0.061384 0.066667 0.062798

SVR 0.25375

Table 7 A comparison of the
prediction times Prediction time (s)

Hidden unit
number

10 11 12 13 14 15

DBN 0.00022904 0.00096396 0.00025117 0.001882 0.00087253 0.0018945

ANN 0.0013704 0.0015722 0.0024428 0.00052961 0.00034548 0.00024027

SVR 0.042562
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than that with ANNs. However, the difference in time is
acceptable because for a particular system, the working
mode is fixed, and the network can be trained off-line.
Therefore, the time cost can be ignored. Regarding the pre-
diction time shown in Table 7, DBNs and ANNs require
approximately the same amount of time, and they are con-
siderably more efficient than SVR, with a 60% shorter pre-
diction time. Figure 10 illustrates this trend in a visual man-
ner; namely, the DBN and ANN results are extremely simi-
lar, whereas the results for SVR are considerably higher.
Therefore, both DBNs and ANNs can perform prompt on-
line prediction.

However, considering the sensitivity of network, parame-
ters of the networks can have an influence on predicting result.
We changed the number of hidden neurons, the number of
training epochs, and the learning rate of DBNs and ANNs
and found that the accuracy of ANNs was strongly influenced

by the number of hidden neurons while that of DBNs was
relatively stable. As shown in Fig. 7, the MSE of the ANNs
fluctuated with the increase in hidden neurons while DBNs
exhibit a comparatively stable performance. Compared with
ANNs, when networks with hidden neurons differ from 10 to
25, the DBNs decrease the MSE by 85.5% on average, which
is much different from the previous comparison of the best
results. Similarly, as shown in Fig. 8, the R2 of ANNs also has
violent fluctuation, which leads to a decrease in its perfor-
mance. Regrettably, previous studies have shown that the
method for determining the optimal number of hidden neurons
in ANNs has yet to be validated [28, 34], making it difficult to
avoid fluctuations in ANN. That means, it is easier to con-
struct a DBN than an ANN for a particular system; namely,
DBN has a better portability than ANN. Therefore, consider-
ing the accuracy and stability, DBN performed much better
than the other two methods.

Fig. 7 A comparison of the MSEs

Fig. 8 A comparison of the R2 values

Fig. 9 A comparison of the training times

Fig. 10 A comparison of the prediction times
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5 Conclusions and future work

This paper applied DBN to the prediction of cutting tool wear
with multiple signals and compared SVR, DBNs, and ANNs
for cutter wear prediction. The performances of these methods
were evaluated by statistical standards, including the coeffi-
cient of determination and MSE, along with the training and
prediction times. Six hundred records were used to train the
network, and 300 records were used for testing. The ANN
contained a single hidden layer, whereas the DBN contained
two layers. The ANN and DBN were iterated ten times using
varying numbers of hidden neurons. As a result, the DBN and
ANN exhibited lower runtimes than did SVR. All three of the
algorithms achieved high accuracy, but the DBN was more
stable than the ANN. In summary, the DBN featured a low
runtime, high accuracy, and high stability. These characteris-
tics make it an ideal choice for tool wear prediction, particu-
larly for online prediction with multi-sensor data.

With the development of machine learning algorithms, ar-
tificial intelligent methods can be applied to traditional ma-
chining technology. Therefore, multiple sensors are always
used to collect more specific information on the cutter state,
indicating that more powerful tools are needed to handle mas-
sive data. By using the DBN for tool wear prediction, this
study demonstrated that the DBN achieved good performance
in terms of accuracy, stability, and speed. Considering the
need for online prediction, the DBN is a suitable future choice.
In subsequent studies, experiments will be conducted to com-
pare the performance of different types of deep learning net-
works, and practical applications of machine learning will be
developed.
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