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Abstract: To accurately obtain the phase distribution of an optical surface under test, the 

accurate phase extraction algorithm is essential. To overcome the phase shift error, a random 

two-step phase shifting algorithm, which can be used in the fluctuating and non-uniform 

background intensity and modulation amplitude, Lissajous ellipse fitting, and least squares 

iterative phase shifting algorithm (LEF&LSI PSA), is proposed;  pre-filtering interferograms 

are not necessary, but they can get relatively accurate phase distribution and unknown phase 

shift value. The simulation and experiment verify the correctness and feasibility of the LEF & 

LSI PSA. 
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1. Introduction 

Interferometry is the industry standard for optical measurement [1]. The phase-shifting 

interferometer (PSI) was introduced by Brunning [2] to achieve accurate optical metrology in 

1974, PSI and its variations have been widely used [1,3,4]. For the standard phase-shifting 

algorithm (PSA), its accuracy depends on the accuracy of the phase shift [4–6], which should 

be a special constant (e.g. π/2). However, the actual phase shift may be different from the pre-

set value because of the errors caused by the miscalibration of piezo-transducer (PZT), 

vibrational error, air turbulence in the working environment, instability of the laser frequency, 

and so on [7–9]. 

To overcome the phase shift error, several PSAs have been proposed [10,11] and they can 

be divided to two types. The first type is non-iterative method which can deal with the 

random phase shifted interferograms. While it is relatively fast to obtain the phase, the 

accuracy may not be high enough. In 1992 Farrell and Player [12] utilized Lissajous figures 

and ellipse fitting to calculate the phase difference between two interferograms, but the 

correction result is not accurate if the intensity distribution is non-uniform. From 2003 to 

2014, Cai et al. [13–21] proposed a series of statistical algorithms which can extract the phase 

shifts and tested phase, however most of these algorithms need to know the intensity of object 

and reference. In 2016, Xu et al. [22] proposed a simple and rapid Euclidean matrix norm 

algorithm to retrieve the unknown phase shifts and phase in three-frame generalized phase-

shifting interferometry, however this algorithm needs three phase-shifted interferograms. In 

2016, Liu et al. [23] proposed a PSA which can simultaneously extract the tested phase and 

phase shift from only two interferograms using Lissajous figure and ellipse fitting technology, 

but the two interferograms used in this algorithm need to be filtered by the Hilbert-Huang 

pre-filtering. 

The second type is the iterative method which can extract the unknown phase shift and 

tested phase from a series of phase shifting interferograms. It takes more time than the non-

iterative algorithm, but its accuracy is higher generally. In 2004, an advanced random PSA 

based on a least-squares iterative procedure was proposed [24], it copes with the limitation of 

the existing iterative algorithms by separating a frame-to-frame iteration from a pixel-to-pixel 

iteration, and it provides stable convergence and accurate phase extraction even when the 
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phase shifts are completely random. In 2008, Xu et al. [25] presented an advance iterative 

algorithm to extract phase distribution from random and spatial non-uniform phase-shifted 

interferograms, this algorithm divides the interferograms into small blocks and retrieves local 

phase shifts accurately by iterations. In 2013, an iterative phase-shifting algorithm based on 

the least-squares principle was developed to overcome the random piston and tilt wavefront 

errors generated from the phase shifter [26]. However, all the above iterative algorithms need 

at least three interferograms. 

Recently, we proposed a method which can correct fringe-print-through (FPT) error in 

snapshot phase-shifting interference microscope based on the 4-step PSA and Lissajous 

ellipse fitting [27], this algorithm uses all four phase-shifted interferograms and can be 

applied in the different intensity distribution conditions, even the intensity distribution is non-

uniform, it can also correct the FPT error by only one measurement. However, it is only 

suitable for the 4-step PSA, and the phase shift should be a constant (π/2). 

For general two-step PSA, especially when the phase shift is unknown, it is difficult to 

obtain high accurate phase because of the non-uniform background intensity and modulation 

amplitude of different pixels and interferograms. In this paper, we will discuss the fast and 

accurate two-step PSA with unknown phase shift. Section 2 presents the principle and process 

of the proposed PSA - Lissajous ellipse fitting and least squares iterative phase shifting 

algorithm (LEF & LSI-PSA). In Section 3 the simulation of the LEF&LSI-PSA is discussed, 

Section 4 evaluates the novel algorithm with the experimental data. The conclusion is finally 

drawn in Section 5. 

2. Principles 

The intensity of two-frame interferograms can be expressed as 

 
        

        
1 1 1

2 2 2

, , , cos ,

, , , cos , .

I x y A x y B x y x y

I x y A x y B x y x y



 

 

  
 (1) 

where  1 ,I x y  and  2 ,I x y  are the intensity of two interferograms, 

 1 ,A x y ,  2 ,A x y ,  1 ,B x y  and  2 ,B x y  respectively represent the background intensity 

and the modulation amplitude of the two interferograms,   is the tested phase, and   is the 

phase shift. 

2.1 Principle of two step Lissajous ellipse fitting phase shifting algorithm 

Providing that background intensity  1 ,A x y and  2 ,A x y  and modulation 

amplitude  1 ,B x y  and  2 ,B x y  are independent on the frame of the interferogram and the 

position of the pixel, we can set    1 2, ,A x y A x y a  ,    1 2, ,B x y B x y b  . Equation 

(1) is rewritten as 

 
    

    
1

2

, cos ,

, cos , .

I x y a b x y

I x y a b x y



 

 
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 (2) 

In the above equations, there are four unknowns a , b ,  ,x y  and  , typically we need four 

interferograms to extract the phase. In the following paragraphs, we will introduce the 

Lissjous ellipse LEF-PSI which can calculate the tested phase and phase shift from only two 

phase-shifted interferograms. 

According to Eq. (2), we compute the sum and difference of  1 ,I x y  and  2 ,I x y , 
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where the spatial dependency (x,y) has been omitted to simplify the equations. Then we can 

obtain 

 

sin
2

2 sin
2

2
cos .
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2 cos
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dif

sum

I

b

I a
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Because 2 2sin cos 1
2 2

 
 
   

      
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, Eq. (3) can be rewritten as 

 

22

0 0 1.
dif sum

x y

I x I y

a a

   
     

   

 (5) 

Note that Eq. (5) is just an ellipse equation. If no error exists, 

 
0 02 sin , 2 cos , 0, 2 .

2 2
x ya b a b x y a

    
      

   
 (6) 

According to Eq. (5), a general conic function can be obtained 

 

2 2 2 2
0 0 0 0

2 2 2 2 2 2
2 2 1 0.

dif difsum sum

x y x y x y

I x II y I x y

a a a a a a
        (7) 

A general conic function can be also expressed by the following second order polynomial: 

 
2 2 .F ax bxy cy dx fy g       (8) 

For an ellipse, Eq. (8) needs to meet the conditions of 0F   and 2 4 0b ac  . According to 

Eqs. (7) and (8), the semi-major amplitude 
xa , semi-minor amplitude ya , the center offset 

0x and
0y  can be calculated as 

              
2 2 2 2 2 2
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(9) 

From Eqs. (6) and (9), the unknown random phase shift  and tested phase   can be easily 

calculated as 

 12tan .x

y

a

a
 

 
  

 
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 (10) 
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Provided that there are no background intensity and modulation amplitude errors, 
0x  will be 

equal to zero, Eq. (11) can be rewritten as 

 1

0

tan
dif y

sum x

I a

I y a
   
  

 
 (12) 

because 1tan x

y

a

a


 
 
 
 

 is a piston which doesn’t affect the result and can be ignored. However, 

the background intensity and modulation amplitude vary between the phase shifted 

interferograms and individual pixels, leading to the errors in calculated phase and phase shift. 

2.2 Principle of least squares algorithm with preset phase 

The least squares algorithm (LSA) with preset phase introduced in this section is directly 

adapted for the completeness of this paper. 

Provided that the phase of the tested optical surface is preset as a column vector 

 1 2, , , ,k N    , the intensity of the phase-shifted interferogram is 

  , , , cos .i j i j i j j iI A B       (13) 

where i is the number of the interferogram ( 1,2,3,...,i M ), j is the number of the pixel in 

one interferogram ( 1,2,3,...,j N ), j  is the phase of the pixel j, and 
i  is the phase shift 

of the interferogram i. 

Provided that the background intensity ,i jA  and modulation amplitude ,i jB  are irrelevant 

to j, only relevant to i, so ,1 ,2 ,= = = =i i i N iA A A A , ,1 ,2 ,= = = =i i i N iB B B B . By setting
i ia A , 

cosi i ib B  , and sini i ic B   , Eq. (13) becomes 

 , cos sin .i j i i j i jI a b c      (14) 

The squared sum of the differences between the theoretical intensity and actual intensity of 

the interferogram can be expressed as 

    
2 2

, , ,

1 1

cos sin .
N N

i i j i j i i j i j i j

j j

S I I a b c I 
 

        (15) 

According to the least squares theory [25, 26], 
iS  should be minimum when 

0i iS a   , 0i iS b   , 0i iS c   , so 

 
-1 .i i iX S R  (16) 
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   .
T
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cos sin .

T
N N N
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R I I I 
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ib  and 
ic  can be obtained by Eq. (16), and the phase shift can be calculated by 

 1tan .i

i

i

c

b
   

  
 

 (20) 

We can also extract the background intensity and modulation amplitude from Eq. (16), 

i iA a , 2 2=i i iB b c . 

If we obtain only two phase-shifted interferograms, the phase shift 
1  and 

2  of these 

two interferograms can be calculated by Eq. (20), the relative phase shift is 
2 1     . 

The LSA has obvious advantage that it can calculate the random phase shift without more 

than three interferograms, however the accuracy of the preset tested phase distribution is 

important to obtain accurate phase shift. 

2.3 Principle of Lissajous ellipse fitting and least squares iterative phase shifting 
algorithm 

Based on the principles of LEF-PSA and LSA, we propose a novel PSA, namely Lissajous 

ellipse fitting and least squares iterative phase shifting algorithm (LEF & LSI-PSA), which 

uses only two phase-shifted interferograms without other information. In order to improve the 

accuracy of calculation, the iteration is introduced. In the following, we will introduce the 

algorithm in detail: 

1) Plot an approximate ellipse with
1 2I I  as the x coordinate and 

1 2I I  as the y 

coordinate; 

2) calculate the semi-major amplitude 
xa , semi-minor amplitude ya , the center offset 

0x and
0y  of the Lissajous ellipse using LEF-PSA; 

3) estimate the initial phase distribution using Eq. (11); 

4) using the initial phase distribution as the known phase distribution, calculate the 

relative phase shift  , the background intensity 
1A and

2A , and modulation 

amplitude 1B and 2B  using LSA, then use Eqs. (21) and (22) to calculate the new 

phase distribution; 
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 (22) 

5) repeat step 4) with the new phase distribution until  1k kRMS     , the final 

phase distribution and relative phase shift   can be obtained. 

where   is the predefined converging threshold of iteration, i.e., 0.1 nm, and k presents the 

iterative times. 

The whole procedure of the LEF & LSI PSA is illustrated in Fig. 1. 

 

Fig. 1. Flow chart of LEF & LSI-PSA. 

3. Simulation 

To validate the effectiveness and robustness of the proposed LEF & LSI PSA, we perform 4 

simulations under different conditions with the different background intensity and modulation 

amplitude distribution. We will also compare LEF & LSI-PSA with LEF-PSA. 

In the following simulations, we first simulate a tested phase distribution (101 

pixels*101pixels) using the Zernike polynomials with 2nd, 3rd, 5th and 10th coefficients of the 

Zernike polynomials as 1, 1, 0.2, and 0.3 and others as zero as shown in Fig. 2(a), then we 

use Eq. (1) to generate two interferograms by assigning a random phase shift (e.g., 1.2217 

rad) between them (Fig. 2(b) and 2(c)). In the end we calculate the phase distribution and 

phase shift value using LEF and the proposed LEF & LSI-PSA. 
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Fig. 2. Simulated tested surface and two phase shifting interferograms. (a) The tested surface, 

(b) the first interferogram, and (c) the second interferogram. 

In the first simulation, the background intensity and modulation amplitude distribution of 

two interferograms are uniform
1 2 1A A  and

1 2 1B B  . In the second simulation, there are 

fluctuations in the background intensity and modulation amplitude distribution between 

different interferograms. In the simulation, we set 
1 1.09A  , 

2 1.25A  , 
1 0.94B  , 

2 1.15B  . The third simulation is similar to the first one with
1 2 1A A  and 

1 2 1B B  , but 

we add the random noise using rand function in Matlab to the two interferograms (the SNR of 

noise is 20dB). In the last simulation, we add noise with SNR of 20dB to the second 

simulation. 

The results of 4 different simulations are as shown in Table 1, every simulation has two 

results calculated by LEF and LEF&LSI PSI respectively. The calculated phase distributions 

are shown in the third row, and the phase errors are displayed in the fourth row. For the LEF 

& LSI PSA, the last row shows the iterative curves. 

From the first simulation, we can see that the phase error is approximately equal to zero 

for two PSAs when the background intensity and modulation amplitude distribution are 

perfect, and the calculated phase shift is also equal to the pre-set value (1.2217 rad). Only one 

iteration is needed for LEF & LSI PSA to converge. In the second simulation, the phase 

distribution calculated by LEF is not very smooth and the phase error is relatively large (PV = 

24.5684 nm, RMS = 7.9062 nm), the obtained phase shift value 1.1704 rad is also away from 

the pre-set value. In contrast after 7 iterations with LEF&LSI PSA, the retrieved surface is 

smoother than that from LEF PSA and phase error is decreased to a very small value with a 

PV value of 0.2098 nm and a RMS value of 0.0643 nm. In addition, the calculated phase shift 

value (1.2213 rad) is almost the same as to the pre-set value. 

The third simulation is a little complex because the background intensity and modulation 

amplitude distribution are non-uniform for each pixel. The additional noise causes the 

additional phase error (PV = 31.5175 nm, RMS = 6.6464 nm) and incorrect phase shift value 

(1.1491 rad) for LEF PSI. Due to the non-uniform background intensity and modulation 

amplitude distribution, the calculated phase error (PV = 15.8666 nm, RMS = 2.4459 nm) 

from LEF & LSI PSA is relatively large, but the estimated phase shift value (1.2221 rad) after 

6 iterations is still close to the pre-set value. The last simulation is more complex, it includes 

both the fluctuations and noise. For LEF PSA, the above mixed errors cause large phase error 

(PV = 43.1340 nm, RMS = 10.4027 nm) and the calculated phase shift value (1.1483 rad) is 

quite different from the pre-set value. In contrast, the LEF & LSI PSA can still obtain 

relatively accurate result, the phase error after 7 iterations can be corrected to a smaller value 

(PV = 16.6617 nm, RMS = 2.6393 nm) and the phase shift value after correction is 1.2204 

rad. 

Table 2 shows the phase shift error, RMS phase error, and processing time with different 

PSAs in 4 different simulations. For LEF PSA, the more complex the design error, the larger 

the phase shift error. However, for LEF & LSI PSA, the phase shift error is approximately 

equal to zero in all 4 simulations. In addition, the phase errors from LEF PSA are larger than 

that from LEF & LSI PSA. LEF & LSI PSA is not very sensitive to the fluctuations of the 
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background intensity and modulation amplitude distribution (simulation 2), moreover, we 

find that the non-uniform of the background intensity and modulation amplitude distribution 

plays an important role in generating phase error according to the similar phase error in the 

third and last simulations. Hence, if we can calibrate and correct the non-uniform of the 

background intensity and modulation amplitude distribution, the phase error will decrease 

further. Moreover, the processing time for LEF PSA in 4 different simulations are similar, 

indicating that different background intensity, modulation amplitude distribution and noise 

will not affect the processing time. The processing time for LEF & LSI PSA are longer than 

LEF PSA since LSI PSA costs more time. For LEF & LSI PSA, the time of the first and third 

simulations are lower than the second and fourth simulations because there are less iterations. 

Generally, to obtain higher accuary the time in LEF & LSI PSA are longer than those in LEF 

PSA. 
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Table 1. The calculated phase distribution, phase error and iterative curve LEF & LSI 

method in different simulations. 

Num PSI Calculated phase 

distribution 

Phase error Iterative curve 

1 LEF 

  

 

LEF 
& LSI 

  

 

2 LEF 

  

 

LEF 

& LSI 

  
 

3 LEF 

 
 

 

LEF 
& LSI 

 
 

 
4 LEF 

 
 

 

LEF 

& LSI 
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Table 2. The phase shift error, RMS phase error and processing time of LEF and LEF & 

LSI PSAs in 4 different simulations 

 Simulation index 1 2 3 4 

Phase shift error 

(rad) 

LEF 0 0.0513 0.0726 0.0734 

LEF & LSI 0 0.0004 0.0004 0.0013 
RMS Phase error 

(nm) 

LEF 0 7.9062 6.6464 10.4027 

LEF & LSI 0 0.0643 2.4459 2.6393 

Processing time 
(s) 

LEF 3.36 3.34 3.37 3.35 
LEF & LSI 3.96 5.82 5.34 5.80 

We know that the phase shift value is important to PSAs, hence, it is necessary to discuss 

the robustness of LEF & LSI PSA with different phase shift values. We uniformly set the 

distribution of the phase shift value in the range of 0.1 rad to 2.6 rad, other simulated 

conditions are same as the fourth simulation discussed above. Under normal circumstances, 

the range should be 0 to pi, we cannot choose 0 rad because it means no phase shift, and we 

choose 2.6 rad as the max phase shift value since the phase error is too large when the phase 

shift value is more than 2.6 rad for LEF PSA. Figure 3 represents the phase error with 

different phase shift values in uniform distribution, we can see that, for LEF PSA the phase 

error is less than 10 nm RMS only when the phase shift value is between 0.54 rad and 1.72 

rad, other phase shift values will generate large phase error. For LEF & LSI PSA, the phase 

error is less than 5 nm when the phase shift value is more than 0.25 rad, moreover, the 

smallest phase error is 2.3 nm when the phase shift value is π/2 rad. Therefore, LEF & LSI 

PSA is more stable than LEF PSA. In addition it is better to choose phase shift value which is 

close to π/2 rad to obtain the more accurate phase distribution. 

 

Fig. 3. The phase errors of LEF and LEF & LSI PSAs for different phase shift values. 

In order to understand the effect of the fluctuating background intensity and modulation 

amplitude distribution between different interferograms, different background intensity and 

modulation amplitude distributions are simulated. We analyze 8 situations as shown in Table 

3. In 8 different situations, 
1A  and 

1B  are same, but 
2A  and 

2B  are different. Table 4 

displays that the phase shift errors and RMS phase errors with 8 different situations for LEF 

and LEF & LSI PSAs, LEF & LSI PSA is almost insensitive to the fluctuations of the 

background intensity and modulation amplitude. 

Table 3. The background intensity and modulation amplitude in 8 different situations 

 1 2 3 4 5 6 7 8 

1A  1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 

1B  0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 

2A  1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 

2B  1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 
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Table 4. The phase shift errors and RMS phase errors of LEF and LEF & LSI PSAs with 

different fluctuations in the background intensity and modulation amplitude distribution 

 Simulation 

index 
1 2 3 4 5 6 7 8 

Phase 
shift 

error 

(rad) 

LEF 0.0052 0.0163 0.0321 0.0513 0.0727 0.0955 0.1191 0.1431 

LEF & LSI 0.0004 0.0006 0.0007 0.0005 0.0005 0.0005 0.0003 0.0002 

RMS 

Phase 

error 
(nm) 

LEF 2.3461 4.2315 6.0809 7.9062 9.7110 11.4945 13.2538 14.9859 

LEF & LSI 0.0743 0.0677 0.0977 0.0643 0.0793 0.0942 0.0550 0.0623 

Through the above four different simulations, we know that the noise which is added to 

the background intensity and modulation amplitude distribution will affect the accuracy of the 

phase calculation. We analyze the phase error and phase shift extraction for different noises 

from 20 dB to 80 dB with an interval of 10dB. The phase error is plotted in Fig. 4(a) and the 

phase shift error is plotted in Fig. 4(b). The phase error decreases with the increase of SNR 

from 20 dB to 80 dB, the phase error can be ignored when the SNR is more than 50 dB. In 

addition, LEF PSA is more sensitive to the noise than LEF & LSI PSA. Figure 4(b) shows 

that the phase shift error is less than 0.08 rad for LEF PSA when the noise varies from 20 dB 

to 80 dB. LEF & LSI PSA can better suppress the noise, the phase shift error is approximately 

equal to zero. 

 

Fig. 4. (a) The phase error (RMS) and (b) phase shift error of LEF and LEF & LSI PSAs with 

different noises. 

Based on the above different simulations, the advantages of proposed LEF & LSI PSA 

can be summarized as: 1) It has a higher accuracy than LEF PSA; 2) it is less sensitive to the 

phase shift value; 3) it is almost insensitive to the fluctuations of the background intensity and 

modulation amplitude; and 4) it can partially suppress the effect introduced by the non-

uniform of the background intensity and modulation amplitude distribution. 

4. Demonstration with experimental data 

To demonstrate the proposed algorithm, we measured a half-inch diamond turned copper 

surface, 4 phase shifted interferograms were collected as shown in Fig. 5. We used standard 

4-step PSA, LEF PSA and LEF & LSI PSA to calculate the phase distribution of the tested 

surface. Only the first and second interferograms in Fig. 5 were used to obtain the phase 

distribution in LEF PSA and LEF & LSI PSA. The 2D map of the phase distribution 

calculated from standard 4 step PSA is plotted in Fig. 6(a) (PV = 452.7nm, RMS = 44.3 nm). 

Figure 6(b) shows the calculated phase distribution using LEF PSA, which is different from 

the result using 4 step PSA. In addition both PV and RMS value (PV = 703.4 nm, RMS = 

54.3 nm) are quite different from that calculated by standard 4-step PSA, the main reason is 
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that the LEF PSA is sensitive to the non-uniform intensity between different pixels. The result 

from LEF & LSI PSA is plotted in Fig. 6(c), the surface shape is similar to the result of the 4-

step PSA. There are small differentce PV and RMS values (PV = 493.3 nm, RMS = 48.4 nm) 

from the 4-step PSA due to the non-uniform intensity. The converging curve is shown in Fig. 

7(a), showing that the converging threshold of iteration (0.1 nm RMS) is achieved after 6 

iterations. The curves of the calculated phase and phase shift (Figs. 7(b) and 7(c)) are 

relatively smooth and steady. Through the experimental result, we demonstrate that: 1) the 

proposed LEF & LSI PSA without pre-filtering can obtain relatively accurate result by only 

two interferograms, it can partially suppress the effect introduced by the non-uniform of the 

background intensity; and 2) LEF PSA cannot obtain accurate result when the background 

intensity distribution is especially non-uniform. 

 

Fig. 5. Four phase shifted interferograms with π/2 phase shift. 

 

Fig. 6. The 2D maps of the calculated phase distributions by (a) 4 step PSA (PV = 452.7nm, 

RMS = 44.3 nm), (b) LEF PSA (PV = 703.4 nm, RMS = 54.3 nm) and (c) LEF & LSI PSA 

(PV = 493.3 nm, RMS = 48.4 nm). 

 

Fig. 7. The calculated result by LEF & LSI PSA. (a) the iterative curve, (b) and (c) the 

calculated phase and phase shift with different iterative times. 
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5. Conclusion 

In this paper, we present a random two step phase shifting algorithm based on Lissajous 

ellipse fitting and least squares technologies, the initial phase distribution and unknown phase 

shift are calculated by LEF PSA firstly, then more accurate phase distribution and phase shift 

are extracted by LSI PSA after several iterations. The proposed algorithm can achieve higher 

accuracy than LEF PSA, and it can be used in different situations, such as the different phase 

shift values, fluctuations and non-uniform of the background intensity and modulation 

amplitude. We have demonstrated the proposed method with the simulated data and 

experimental data of a diamond turned optical surface. This method has the potential 

applications for the high accurate phase extraction in phase-shifting interferometry. 
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