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� Propose an infrared image reconstruction way by training classified dictionary pairs.
� Visible-light image samples are used to compensate detail missing in infrared images.
� Each dictionary pair are trained based on an extracted feature of samples.
� High efficiency and less time cost in image reconstruction.
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Infrared images always suffer from low-resolution problems resulting from limitations of imaging
devices. An economical approach to combat this problem involves reconstructing high-resolution images
by reasonable methods without updating devices. Inspired by compressed sensing theory, this study pre-
sents and demonstrates a Classified Dictionary Learning method to reconstruct high-resolution infrared
images. It classifies features of the samples into several reasonable clusters and trained a dictionary pair
for each cluster. The optimal pair of dictionaries is chosen for each image reconstruction and therefore,
more satisfactory results is achieved without the increase in computational complexity and time cost.
Experiments and results demonstrated that it is a viable method for infrared images reconstruction since
it improves image resolution and recovers detailed information of targets.

� 2018 Elsevier B.V. All rights reserved.
1. Introduction

Infrared imaging is widely applied to various fields such as
remote sensing [1], medical imaging [2,3], military reconnaissance
and target recognition [4,5], benefiting from abundant target infor-
mation that is not available in visible-light images. However, due
to its long wavelength (700–1050 nm) infrared images always suf-
fer from serious low-resolution problems, leading to miss of details
including texture, contexture, edge information, etc. This problem
limits the applications of infrared imaging. Efforts have been made
to meet the increasing demands for high-resolution (HR) infrared
images, leading to the development of the super-resolution (SR)
reconstruction technology. Super-resolution techniques such as
stimulated emission depletion (STED) microscopy [6,7] and local-
ization microscopy (e.g., PALM, STORM) [8] remove its intrinsic
resolution limitation by using fluorescence label, and have been
widely used in biology. Nevertheless, without employment of
any fluorescence label and requirement to make changes in hard-
ware, SR reconstruction based on signal processing is a promising
technology to achieve HR images from the raw low-resolution (LR)
images [9–11]. In general, one or more frames of LR images are
required to reconstruct HR images.

During the evolution of SR reconstruction algorithms, two
major categories, the model-based algorithm [12] and the
learning-based algorithm [13], are developed. The former one is
advantageous in reconstruction speed, but is sensitive to image
blur, noise or image displacement. Desired results are often not
achievable [14,15]. The learning-based algorithm has been widely
investigated since appearance. It attempts to achieve reasonable
details of the reconstructed images by searching and matching a
database composed of training images [16,17]. A valuable method,
denoted as sparse-coding-based SR (SCSR) algorithm, was pro-
posed based on the compressed sensing (CS) theory [18–20]. It
considerably promoted the development of learning-based SR
studies. Special attention has been paid to the dictionary learning
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based methods, including single dictionary learning [21], dual-
dictionary learning [19], multi-scale dictionary learning [22], and
adaptive dictionary learning [23], which enables to improve the
spatial resolution of the reconstructed images. These methods ben-
efit from the ability of the SR reconstruction algorithms based on
dictionary learning in combining the prior knowledge of the LR
images. Efforts were made to build optimal dictionaries which
eventually determine the final reconstruction results. It’s not easy
due to the contradiction between satisfactory reconstruction
results and low time cost. For instance, better reconstruction
results often need a dictionary with a huge amount of atoms,
which in turn costs more time to complete the process. Besides,
we find that current dictionary-learning-based SR reconstruction
methods trained only one dictionary pair for all images without
consideration of diverse images and differences in image contents.
This damages the matching accuracy between the trained dic-
tionary pair and LR images to be reconstructed, which further
affects the quality of reconstructed images.

This study aims to reconstruct HR infrared images through a
classified dictionary learning method. The features of training sam-
ples were first clustered into several groups by K-means method
[24]. After being trained offline by K-means singular value decom-
position (K-SVD) algorithm [25], the dictionary pair which has the
highest similarity with the original LR infrared image was selected
to conduct the image reconstruction online. Several groups of
experiments were conducted and the results showed the images
reconstructed by the proposedmethod were excellent on both sub-
jective vision perception and objective evaluation value.
2. Principles of the method

2.1. SR reconstruction inspired by sparse approximations

Before introducing how to reconstruct infrared images, we first
investigate how an image degrades into an LR one. In a digital
imaging system, an optical low-pass filter (OLPF) is always
employed between the lens and the image sensor to eliminate
Moiré fringes [26]. This phenomenon originates from the fre-
quency limit of the image sensor, called Nyquist frequency, beyond
which the signal passed by the optical lens cannot be resolved. The
OLPF stops the optical system from passing high-frequency infor-
mation beyond the Nyquist frequency of the sensor to the sensor,
thus only low-frequency information is received [16,27–29].
Fig. 1 shows the major events during imaging process of such
imaging system [30]. First, a raw sample at or above the Nyquist
rate is denoted with x in the following explanation. Then it was
deteriorated via warping, blurring, downsampling, and noise, and
finally reached the sensor. The deteriorated LR image was denoted
as y in the following parts. Starting with this LR image, SR recon-
struction techniques seek to restore high-frequency information
of the image without updating the sensor.
Fig. 1. General observation model o
The imaging process can be modeled in mathematics and
expressed in Eq. (1), where each image deterioration event is
denoted by a matrix. For instance, the downsampling process is
denoted as matrix S, the optical blur by matrix H, the relative
motion between the target and the imaging system by B, and the
noise during imaging by matrix N. Eq. (1) provides a further simpli-
fied form of the model after ignoring the relative motion between a
target and the imaging system considering it is neglectable for a
single-frame image.

y ¼ SHBxþ N ¼ SHxþ N ð1Þ
It’s almost impossible to obtain the original HR image x by

directly solving Eq. (1) which presents an ill-posed problem only
with known y, i.e., the captured LR image, while S, H and N are kept
unknown. Inspired by the CS theory, the sparse representation is
imported to calculate HR image. The goal of sparse representation
is to express a given signal into a linear combination of a small
number of atoms where are prior- registered in a database called
the dictionary [31]. In specific, an image x2Rn can be sparsely rep-
resented by an overcomplete dictionary D = [d1, d2, . . ., dm]2Rn�m

(n < m), where di is a vector with i = 1, 2, . . ., m, as shown in Eq. (2).

x ¼ Da; k a k0 << n ð2Þ
Along with the dictionary D is the matrix of the sparse represen-

tation coefficients a = [a1, a2, . . . , am]T2Rm, which follows the con-
straint ||a||0 << n. And ||a||0 denotes the number of nonzero
elements in matrix a. Eq. (2) clearly indicates that the known dic-
tionary D and sparse representation coefficients a enable to recon-
struct a HR image, which leaves the major work in training
reasonable dictionary and computing the optimal sparse represen-
tation coefficients.

From Eqs. (1) and (2), the degraded LR image can also be spar-
sely represented, as shown by Eq. (3),

y ¼ SHDa ¼ LDa ð3Þ
where L stands for the degradation of an HR image x into an LR
image y. In fact, the product of LD can be denoted with a dictionary
Dl, indicating features of LR images. Correspondingly, the dictionary
D in Eq. (2) involves features of HR images, which can be further
specified into Dh. Besides, Dl = LDh. With this dictionary pair, both
the HR image and the corresponding LR image can be sparsely rep-
resented by the same sparse representation coefficients, as shown
in Eq. (4).

x ¼ Dha; y ¼ Dla ð4Þ
Major work should be focused on training the optimal dic-

tionary pair, the HR dictionary and the corresponding LR dic-
tionary, to reconstruct HR images. Then the sparse representation
coefficients under the given dictionary pair are achievable based
on the principle of Eq. (5). Here, the symbol T controls the degree
of sparse representation.

a ¼ argmin
a

k y� Dla kp s:t: k a k0 << T ð5Þ
f image deterioration process.
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Finally, the HR image can be calculated based on the trained
dictionaries and the computed sparse representation coefficients.
Fig. 2 illustrates the procedures of the proposed method. Two
major parts are included, the classified dictionary learning and
the reconstruction algorithm, which will be detailed in the follow-
ing parts.

2.2. Classified dictionary learning

As discussed before, the proposed classified dictionary learning
method pursues satisfactory reconstruction results by optimizing
the trained dictionaries. Although images are diverse in appear-
ance, they can be generally characterized by several specific fea-
tures, such as wavelength, phase shift, color, and so on. Inspired
by this phenomenon, we make efforts to take advantage of the sim-
ilarity in these features by first reasonably dividing them into sev-
eral clusters, then along with each cluster, one pair of dictionaries
are trained, which is composed of an HR dictionary and a corre-
sponding LR dictionary. The reconstruction of a target image can
be time efficient with employment of the optimal pair of dictionar-
ies determined by feature extraction and membership grade calcu-
Fig. 2. Flowchart of SR reconstruction by th

Fig. 3. Detailed process of clas
lation, since only one fraction of all the items in the trained
dictionaries are involved during the reconstruction of each image
patch. Besides, since the classified dictionaries introduced and uti-
lized similarities of features in the samples, it enables more accu-
rate reconstruction results. The detailed procedures of dictionary
training are presented in Fig. 3.

(i). Samples clustering

Accurate and valid reconstruction results rely on reasonable
feature clustering, which further determines the accuracy of the
trained dictionaries. The dictionary training starts with partition-
ing each image sample into p HR patches, then all the original
HR sample patches can be indicated by {xi}, where i = 1, 2, . . ., p.
Gabor filter shown by Eq. (6) is used to extract features of {xi},
including the wavelength k, the phase offset u, deviation r, and
the spatial aspect ratio c.

g X;Y ; k; h;u;r; cð Þ ¼ exp � X02þc02Y2

2r2

� �
exp i 2p X0

k þu
� �� �

X 0 ¼ X cosðhÞ þ Y sinðhÞ;Y 0 ¼ �X sinðhÞ þ Y cosðhÞ

8<
: ð6Þ
e classified dictionary learning method.

sified dictionary training.
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where (X, Y) represents the Cartesian coordinate system, and h
indicates the rotation angle between the standard Gabor filter
stripes and the employed filter stripes. Fig. 4 exhibits an example
of Gabor filters at diverse orientations and Fig. 5 illustrates the fea-
tures extracted by these filters. In this example, only the orientation
ofGaborfilterwas takenas a variable. Similarly, replacement of vari-
ables enables extraction of other features of the samples.

The extracted features by Gabor filter are then used for cluster-
ing. Since clustering doesn’t depend on specific standards, it classi-
fies pixels in terms of similarity in each other. It’s necessary to
determine the cluster number at first. For this sake, two indexes,
Davies-Bouldin (DB) index and Calinski-Harabasz (CH) index in
Eq. (7) are exploited [24].

CHðiÞ ¼ trBðiÞ=ði�1Þ
trWðiÞ=ðk�iÞ

DBðkÞ ¼ 1
k

Pk
i¼1

max
j¼1k~; j¼i

RiþRj
Cij

� � ð7Þ
Fig. 4. Gabor function at d

Fig. 5. Filtering results with Gabor fu
In the expression, for CH index, k is the total number of clusters;
i and j are the index of the i th and j th cluster; B(i) is the between-
cluster dispersion matrix; W(i) is the within-cluster dispersion
matrix; tr calculates the trace of a matrix. While for DB index, Ri

is the mean value of distances between data in i th cluster and
the cluster center Ci; similarly, Rj is the mean value of distances
between data in j th cluster and the cluster center Cj, and Cij is
the distance between Ci and Cj.

The higher values of CH index indicate more accurate clusters,
which are characterized by high similarity in the same cluster
and significant difference between clusters. In a contrary way,
the lower DB values mean lower similarity between clusters, i.e.,
the best result is accessible when DB reaches the minimum.
According to previous research, the optimal cluster number is
within 2–6 [32]. From data in Table 1, we can reach the conclusion
that the optimal cluster number should be 5.

The practical clustering procedure is completed by K-means
cluster algorithm [33,34]. It first randomly selects K (K = 5 in this
ifferent orientations.

nctions at different orientations.



Table 1
DB and CH index in this study.

K-Value 1 2 3 4 5 6

DB index – 2.3486 2.7616 2.4465 2.3138 3.2760
CH index – 543.27 420.13 507.85 574.93 359.44
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study as discussed above) pixels from the training samples as ini-
tial clustering centers Ck (k = 1, 2, . . ., k) for the designated K clus-
ters. Afterwards, the Euclidean distances from every pixel to the
clustering centers Ck are computed [35]. Place one pixel into the
cluster whose center is the nearest compared to the others. Then
the clustering centers Ck require updates for more accurate clusters
based on Eq. (8),

Di ¼ 1
n� 1

�
Xn

i–j; j¼1

dij; i ¼ 1;2; :::;n ð8Þ

where Diindicates the average distance of pixels between each
other in one cluster, n refers to the total number of pixels in the
cluster, and dij means the Euclidean distance between xi and xj.
For the k th cluster, when Direaches the minimum, the correspond-
ing i th pixel is then updated as the new cluster center. All the K
cluster centers are updated by this way. Check the difference
between the updated cluster center and the replaced cluster cen-
ter, if it’s small enough, the clustering results are feasible for train-
ing classified dictionary pairs; if not, then clustering should be
restarted by calculating the Euclidean distances.

(ii). Dictionary training

To extract the high-frequency features in HR patches {xi}, image
downsampling to {xi} is conducted employing the bicubic method
by a factor of 3 in each dimension, followed with upsampling in the
same method which restores them to the original size but with
reduced resolution, denote the results with {xi}, i.e., the corre-
sponding LR training patches. A subtraction of xi from xi gets to
the HR features, f i, as shown in Eq. (9).

f i ¼ xif g � xif g ð9Þ

A 2 � 2 filter bank F composed of four different sub-operators in
Eq. (10) is used to extract the high-frequency features in f i.

F ¼ f 1; f 2; f 3; f 4½ � ð10Þ
Fig. 6. SR reconstruction flow by th
The four sub-operators are listed in Eq. (11), where LoG repre-
sents a 5 � 5 Gaussian-Laplacian operator.

f 1 ¼ 1;�1½ �; f 2 ¼ f T1; f 3 ¼ LoG; f 4 ¼ f T3 ð11Þ
After filtered by F, high-frequency features of the training sam-

ples can be extracted and expressed into a feature matrix Z = [Fx1,
Fx2, . . . , Fxp]. According to the clustering results obtained by K-
means strategy, partition Z into small grids and map the pixels in
Z to the corresponding K clusters. Each cluster is accompanied with
a pair of feature matrices {Zkh, Zkl }, where Zk

h = [Fx1k, Fx2k,. . ., Fxpk] (k =
1,2,. . .K) are K high-frequency feature matrices of the HR patches,
and Zk

l (k = 1,2,. . ., K) are K corresponding high-frequency feature
matrices of the LR patches derived by downsampling Zk

h. To reduce
the time cost of dictionary training, Principle Components Analysis
(PCA) algorithm is applied to reduce the dimensionality of Zkl [36].
Finally, K pairs of dictionaries {Dk

h, Dk
l } can be trained by Eq. (12),

corresponding to each cluster.

min
Dk ;ai

k Zk � FDkak
i k

� �
; s:t: k ak

i k0 6 Tk ð12Þ

In Eq. (12), Dk={Dk
h, Dk

l } is the dictionary pair corresponding to
the k th cluster, which is the key to perform the super-resolution
image reconstruction. Here, Dk

h is the HR dictionary and Dk
l the LR

dictionary; aik represents the sparse representation coefficients of
the k th dictionary pair and Tk is constant that controls the degree
of sparse representation. The problem in Eq. (12) can be solved by
the K-SVD strategy [25], which finally completes the dictionary
training process.

2.3. SR reconstruction process

The learning process in Section 2.2 trained K pairs of dictionar-
ies. An LR image can be reconstructed into an HR one by selecting
the optimal pair of the dictionaries and applying a reconstruction
algorithm.

Fig. 6 schematically illustrates the reconstruction process: An
LR image is firstly partitioned into m small patches yi (i = 1, 2, . . .,
m) with a certain size of Q � Q pixels. According to the optical
e classified dictionary learning.
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observation model discussed in Section 2.1, each LR patch yi is fur-
ther expressed by Eq. (13):

yi ¼ SHbyi þ N ð13Þ
byi is the ideal HR patch we attempt to reconstruct. For each LR

patch, the most appropriate pair of dictionaries should be selected.
It’s completed based on the similarity between the LR patch yi and
the K clusters. For i th LR patch yi, it’s firstly enlarged to three times
its original size by upsampling. Then the membership grades of yi
to each cluster are computed with known Euclidean distances
between yi and the cluster centers Ck (k = 1,2,. . .,K). Eq. (14) shows
how to determine the optimal dictionary pair Dk = {Dh

k,Dl
k} for ith LR

patch, where qk{yi, Ck} denotes the membership grade.

Dk ¼ max qk yi;Ckf gð Þ; k ¼ 1;2; :::;K; i ¼ 1;2; :::;m ð14Þ
After the dictionary pair Dk for reconstruction of yi is deter-

mined, the crucial problem left is to compute the corresponding
sparse representation coefficients aik. The filter operator F
explained in Eqs. (10) and (11) is adapted to extract its high-
frequency features {Fyi}. Subsequently, dimensionality reduction
to {Fyi} is also completed by PCA algorithm for less time cost.
The sparse representation coefficients aik are computed by Eq.
(15) based on the Orthogonal Matching Pursuit (OMP) method
[37,38]. And finally, the HR patch byiis then achievable through
multiplying Dh

i by aik.

ak
i ¼ argmin

ak
i

k Fyi � FSHDk
l a

k
i k

2

2; s:t: k ak
i k 6 T0 ð15Þ

byk
i ¼ Dk

ha
k
i ð16Þ

Eq. (16) implies that each of the LR patches can be processed by
the above procedures for the HR patches byi(i = 1,2,. . .,m), and con-
sequently a whole HR image is obtained after splicing all the HR
patches together.
Fig. 7. Partial training samples.

Fig. 8. Partial atoms of the 5
3. Experiments and results

To verify the effects of the proposed classified dictionary learn-
ing method, 120 visible-light images are employed as training
samples to train the dictionary pairs, of which 60 images are from
the internet, and the rest are taken by the authors. Fig. 7 lists some
examples of the training samples. They are characterized by broad
frequency ranges and abundant contents involving architectures,
plants, animals, human faces and so on. Trained dictionaries from
these samples can make up the detail deficiency in infrared images.
Each sample image is first processed by feature extraction and then
partitioned into small grids with a size of 4 � 4 pixels. 66,119 grids
are totally generated by the 120 training samples. The grids are
then divided into 5 clusters, each of which is composed of
11,714, 13,460, 13,909, 13,049 and 13,987 grids, respectively.
Therefore, 5 dictionary pairs are trained. Each dictionary contains
1000 atoms for both effectiveness and efficiency. Partial atoms in
the 5 HR dictionaries are exhibited in Fig. 8.

In the experiment, infrared images of 2 diverse scenes were first
collected by a FLIR infrared camera for testing, which had a resolu-
tion of 692 � 520 shown in Fig. 9(a) and (b). LR images of the two
scenes were created by downsampling to reduce the pixels in each
dimension into 1/3 of the original number. This is a good choice for
demonstration of reconstruction results since the original captured
images make a good comparison.

As refered before, Fig. 9 (a) and (b) are the original and down-
sampled pictures of a distant street scene. In comparison, Fig. 9
(c) and (d) present the original and downsampled images of a close
building. These images are ‘veiled’ due to the limitations of infrared
imaging. Accordingly, before the reconstruction step, preprocess of
the LR image was performed with regard to the loss of details in
the infrared images. By applying Histogram Double Equalization
(HDE) and edge enhancement algorithm, the LR image tends to
present much more available details. Afterwards, the preprocessed
LR images were reconstructed by the Bicubic method, the Zeyde’s
method and the proposed method, respectively. The corresponding
results to Fig. 9(b) were listed in Fig. 10(a–c), and those to Fig. 9(d)
in Fig. 10(d–f), respectively. Visual feeling of these reconstructed
images is better than that of Fig. 9. Of note, the images in Fig. 10
present quite clear appearances and dramatically enhanced con-
trast without the ‘veil’ in Fig. 9 and the original HR image. Besides,
rich details are appreciable in Fig. 10, for example, the group of
buildings in the distant street scene with clear texture. The top
of one building marked by a small red rectangle is enlarged for
clearer demonstrations. In Fig. 10(a), the result reconstructed by
the Bicubic method, much more details including the edges and
windows are visualized in contrast with the original HR image.
We considered these results encouraging but yet can be improved.
Fig. 10(b) shows an improved result after reconstruction by Zeyde’s
method, which effectively handled the blurring problem in Fig. 10
(a). Even though, it still suffers from background noise and there’re
some stripes in the margin area. The yielded image by the
trained HR dictionaries.



Fig. 9. Captured raw HR images and downsampled LR images. (a) Raw image of a distant street scene; (b) Downsampled LR image of (a); (c) Raw image of a close building; (d)
Downsampled LR image of (c).

Fig. 10. (Upper row) Reconstructed HR images of Fig. 9(b) by Bicubic, Zeyde’s and the proposed method; (Bottom row) Reconstructed HR images of Fig. 9(d) by Bicubic,
Zeyde’s and the proposed method.
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proposed method is freed from these troubles as Fig. 10(c) shows.
The example of the close building makes a more convincing com-
parison of the methods. All the reconstructed images show a clear
appearance, but the result from the Bicubic method is still blurred
and that from the Zeyde’s method gets serious noise in it.

Numerical analysis is implemented to evaluate the reconstruc-
tion by calculating the following indexes: peak signal to noise ratio
(PSNR) and Mean Structural Similarity (MSSIM). By PSNR, the gray
similarity between two images is measured; and MSSIM presents
the content structural similarity between two images. Employ-
ment of these two parameters makes an evaluation of two images
from both the gray value and structure. In Table 2, the listed data
are calculated from the six reconstructed images in Fig. 10. Test
1 indicates the distant street scene and test 2 the close building



Table 2
Numerical comparisons of reconstruction results.

Image Parameter Bicubic Zeyde Proposed method

Test 1 PSNR 31.529 38.033 39.396
MSSIM 0.790 0.795 0.831

Test 2 PSNR 31.790 35.086 35.723
MSSIM 0.823 0.833 0.859

F. Liu et al. / Infrared Physics & Technology 90 (2018) 146–155 153
scene. According to the definitions of the indexes, higher values of
PSNR and MSSIM indicate higher similarities between two images.
The data in Table 2 show accordant tendencies for PSNR and
Fig. 11. Two different examples of infrared image reconstruction. (Upper row) (a) A raw
Bicubic, Zeyde’s and the proposed method; (Bottom row) (e) A raw LR image of close scen
method.

Fig. 12. (a) A raw visible-light image of a distant street scene; (b) Zoom-in view of a build
km in (a); (d) A raw LR infrared image of (a); (e) Reconstructed result of (a) by the propos
LR infrared image of (c); (i) Reconstructed result of (h).
MSSIM that the proposed method provides reconstruction results
closer to the original HR images.

Till now, the analyses above are all based on the LR images
downsampled from HR images. Therefore, in the following parts,
analyses based on captured LR infrared images are completed.
We chose two different scenes shown as Fig. 11(a) and (e) in exper-
iments. Taking Fig. 11(a) (captured by the FLIR camera) as an
example, before reconstruction it was also preprocessed by HDE
and edge enhancement algorithm. The reconstructed images in
Fig. 11(b)–(d) were from the Bicubic method, Zeyde’s method
and the proposed method. Details regarding a lightning rod on
top of a building were enlarged for comparison, which present sim-
LR image of a distant building; (b) (c) and (d) Reconstructed results of (a) by the
e; (f) (g) and (h) Reconstructed results of (e) by the Bicubic, Zeyde’s and the proposed

ing at a distance of 670 m in (a); (c) Zoomed-in view of a building at a distance of 2.2
ed method; (f) Raw LR infrared image of (b); (g) Reconstructed result of (f); (h) Raw
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ilar results to the above analyses. In the original LR image, details
are almost indistinguishable. While among the reconstructed
images, Fig. 11(d) presents the most satisfactory result without
blurring in Fig. 11(b) and noise in Fig. 11(c). The other scene in
Fig. 11(e) focused on a car at a short distance, which was captured
by the camera XEVA-2.35 from Xenics infrared solution company
with a resolution of 320*256. The enlarged wheel hub areas from
the four images made a more intuitive comparison, of which the
noise in Fig. 11(g) reconstructed by Zeyde’s method is especially
serious. These two groups of results demonstrated the positive
ability of the proposed method in infrared image reconstruction.

The last experiment was conducted at a distant street scene
which included complex information shown in Fig. 12(a). The
raw infrared image of the distant street scene was shown in
Fig. 12(d), and the reconstructed result in Fig. 12(e) was obtained
by the proposed method. The original infrared image has a smooth
appearance but indistinct details including edges, contours and so
on. Two buildings at different distances were chosen to evaluate
the reconstruction results, and their corresponding areas in the
images were marked out and enlarged. The close one locates at
670 m away and the distant one 2.2 km away. The enhancement
of the reconstructed image can be indicated by the Chinese charac-
ters on the right side of the close building shown by Fig. 12(g).
They cannot even be seen in the original image, while after recon-
struction they are distinguishable. The analogous result is also
achievable in the distant building area.
4. Conclusion

For effective and efficient infrared image reconstruction, an SR
reconstruction method based on classified dictionary learning
was designed in this study. It originates from the idea of sparse
representation and is realized by training several pairs of dictionar-
ies according to feature clusters. During image reconstruction, the
optimal dictionary pair is firstly determined in terms of the highest
similarity between the LR image and the clusters. By this dic-
tionary pair, the HR image can be reconstructed without increase
in computational complexity and time cost. Satisfactory recon-
struction results are obtained with reasonable resolution and dis-
tinguishable details. This method is insensitive to the contents or
classifications of input images, and has the ability of enhancement
advantages in resolution and vision feeling. Thus, this method has
the potential to be applied to infrared images reconstruction cap-
tured in diverse situations. The further study will be focused on
optimizing the dictionary training process to guarantee more rea-
sonable clustering, and further to improve the reconstruction
efficiency.
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